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ABSTRACT

We investigate the use of a topology-based clustering technique on the data generated by dynamic event
tree methodologies. The clustering technique we utilizes focuses on a domain-partitioning algorithm
based on topological structures known as the Morse-Smale complex, which partitions the data points
into clusters based on their uniform gradient flow behavior. We perform both end state analysis and
transient analysis to classify the set of nuclear scenarios. We demonstrate our methodology on a dataset
generated for a sodium-cooled fast reactor during an aircraft crash scenario. The simulation tracks the
temperature of the reactor as well as the time for a recovery team to fix the passive cooling system.
Combined with clustering results obtained previously through mean shift methodology, we present the
user with complementary views of the data that help illuminate key features that may be otherwise hidden
using a single methodology. By clustering the data, the number of relevant test cases to be selected for
further analysis can be drastically reduced by selecting a representative from each cluster. Identifying
the similarities of simulations within a cluster can also aid in the drawing of important conclusions with
respect to safety analysis.

Key Words: high-dimensional data analysis, computational topology, nuclear reactor safety analysis,
visualization

1 Introduction

Dynamic Probabilistic Risk Assessment (DPRA) [1] methodologies couple system simulator codes (e.g.,
RELAP [2], MELCOR [3], MAACS [4]) with simulation controller codes (e.g., ADAPT [5], ADS [6],
MCDET [7], RAVEN [8]). While system simulator codes accurately model system dynamics (determin-
istically), simulation controller codes introduce both deterministic (e.g., system control logic, operating
procedures) and stochastic (e.g., component failures, parameter uncertainties) elements into the simulation.

Typically, a DPRA is performed by 1) sampling values of a set of parameters from the uncertainty space
of interest (using the simulation controller codes), and 2) simulating the system behavior for that specific
set of parameter values (using the system simulator codes). For complex systems, the major challenges
in using DPRA methodologies, especially those that employ dynamic event trees (DETs), are the heavier
computational and memory requirements needed to search the uncertain parameter space systematically and
to generate a large number of scenarios due to the time evolution of a large number of variables.
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The analysis of such data is normally achieved by considering the end state of each simulation run (e.g.,
fuel melting temperature reached v.s. intact core) and observing the sequence and the timing of events that
lead to that end state. When system complexity is very high (e.g., analysis of nuclear power plant accident
scenarios), analysis of such large quantities of data may require advanced tools that evaluate impact of
uncertainties and timing/sequence of events on system dynamics.

A first approach toward discovering these correlations from data generated by DPRA methodologies has
been developed using Fuzzy classification [9] and clustering algorithms [10]. In particular, clustering al-
gorithms partition the set of scenarios into clusters by identifying similarities based on certain criteria,
allowing users to organize and interpret the trends in scenario evolution and risk contributors for each initial
event [11]. The set of scenarios could be analyzed in two modes, either by end state analysis that classifies
the scenarios into clusters based on their end state (e.g. final outcome) (e.g. [12]), or by transient analysis
that considers the complete system dynamics (e.g. time evolution of scenarios) and identifies clusters having
similar temporal behavior of the state variables (e.g. [10]). The work that is of most relevance to us utilizes
a mode-seeking clustering method, the mean-shift algorithm [10]. The mean shift algorithm [13] is a non-
parametric iterative procedure that assigns each data point to the average of data points in its neighborhood
as the cluster center. The data points are therefore clustered based on observation density.

Contributions. In this paper, we present a software tool that provides the domain experts with an interactive
analysis and environment for understanding the structures of high-dimensional nuclear simulation datasets.
In particular, such a tool enables the end users to perform both end state analysis that apply to the end state
of the scenarios, and transient analysis that apply to their time evolution data, to classify the set of nuclear
scenarios. We focus on clustering algorithms based on topological structures such as the Morse-Smale
complex, which partitions the data points into clusters based on their uniform gradient flow behavior. We
compare our techniques with mean shift methodology on a dataset generated by a DET for a sodium-cooled
fast reactor during an aircraft crashing scenario. We demonstrate that these techniques offer complementary
views of the data that help illuminate key features that may be otherwise hidden using a single methodology.

2 Background

Our topology-based clustering algorithm relies heavily on the concepts of Morse-Smale complex, its ap-
proximation in high dimension and persistence simplification. We provide minimal technical background on
these concepts with intuitive examples, to convey a basic understanding of these concepts for non-specialists.
It is important to note, that topological clustering assumes we can treat our data as a scalar function, where
an arbitrary number of inputs in the the domain space, map to scalar output values in the range space. The
clustering we provide, defined in terms of gradient behavior with respect to the output value, maintains a
coherent, non-overlapping segmentation of the domain space.

Morse-Smale Complex and Its Approximation. Our clustering methodology is based upon the topological
structure know as the Morse-Smale complex [14–16], which is derived from the Morse theory [17]. Let
f : M → R be a smooth function defined on a smooth manifold embedded in Rn. A point x ∈ M is
called critical if its gradient (e.g. a vector that points in the direction of the greatest increase of the function)
∇f(x) = 0, otherwise it is regular. At any regular point x the gradient is well-defined and integrating it
traces out an integral line. The function increases along the integral line, which begins at a local minimum
and ends at a local maximum of f . The ascending/descending manifold of a critical point p is defined as all
points whose integral lines start/end at p. The descending manifolds form the Morse complex of f while the
ascending manifolds form the Morse complex of −f . The set of intersections of ascending and descending
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Figure 1. For a height function defined on a 2D domain (where maxima, minima and saddles are colored
red, blue and green respectively): (a) For each descending manifold, the gradient flow (white arrow) ends
a the same maxima; (b) For each ascending manifold, the gradient flow starts at the same minimum; (c)
For each Morse-Smale crystal, the gradient flow begins and ends at the same maximum-minimum pair. To
illustrate persistence simplification: In (d), the left peak at the maximum x is considered less important
topologically than its nearby peak at maximum z, since x is lower. Therefore, at a certain scale, we would
like to represent this feature as a single peak instead of two separate peaks, as shown in (e), by redirecting
gradient flow (white arrow) that originally terminates at x to terminate at z. In this way, we simplify the
function by removing (canceling) the local maximum x with its nearby saddle y.

manifolds creates the Morse-Smale complex of f . Each crystal of the Morse-Smale complex is a union of
integral lines that all share the same origin and the same destination. In other words, all the points inside
a single crystal have uniform gradient flow behavior. These crystals yield a decomposition into monotonic,
non-overlapping regions of the domain. Figure 1(a)-(c) illustrate these concepts.

To approximate the Morse-Smale complex of a high-dimensional scalar function f defined on a finite set
of points X in Rn, we would need to estimate the gradient at each input point. This is done by imposing a
neighborhood graph that connects points in X with edges that approximates its underlying structure. At each
point in X, we choose the steepest ascending edge to represent the gradient. With this gradient approxima-
tion, we can determine the extrema by labeling all points with no neighbors of higher values as maximum
and all points with no neighbors of lower values as minimum. We then label all points in X according to
the local extrema at which its gradient begins and terminates. Subsequently, we collect all vertices with the
same pair of labels into crystals and add the extrema to all crystals that share the corresponding label. These
crystals form an approximation of the Morse-Smale complex [18]. The key component in our proposed
work is that such Morse-Smale crystals form the clustering of X. In fact, such type of clustering based on
topological structure is not entirely new. As pointed out in [18], the Morse complex can be thought of as a
variant of mean shift clustering in which the kernel density estimation is replaced with function values of f .

While many neighborhood graphs are possible [19,20], we use a relaxed Gabriel graph [21] here which has
certain desirable properties (such as relatively dense connectivities). The Gabriel graph [22] is a specific
type of β-skeleton graph (β = 1) all of which belong to a larger class of graphs known as empty region
graphs. As such, these class of graphs are comprised of all edges that pass an empty region test. For the
Gabriel graph, this entails circumscribing a proposed edge between points p and q with a d-dimensional ball
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with a diameter equal to the length of the edge pq. As long as no other points lie within the circumscribing
ball, the edge is added to the graph. We can relax this property by further prescribing that only neighbors
of p and q are considered in the empty region test. Thus, if r is not a neighbor of p or q, but lies within the
circumscribing region, then the edge pq may be added. In order for this process to work correctly, we begin
at a given point and add edges in increasing order of distance.

Persistence Simplification. In real datasets, there is often noise which may manifest itself as small topolog-
ical artifacts, either spurious extrema that may not truly exist in the data or small features the user does not
deem relevant. To account for this and allow the user to select a scale appropriate for the specified dataset,
we use the notion of persistence simplification [23,24], whereby less salient features are merged with neigh-
boring, more significant features. We illustrate the persistence simplification procedure intuitively through
the example in Figure 1(d)-(e).

3 Analysis Methodology and Results

Analysis methodology overview. In this paper, we apply clustering algorithms based on Morse-Smale
complex to nuclear datasets generated by DETs. We model such a dataset as a high-dimensional scalar
function f defined on a finite set of points X in Rn. We partition the points in X based on their function
values and gradient behavior with respect to the approximated Morse-Smale complex. That is, points belong
to the same cluster if they have uniform gradient flow behavior.

Demo example. To illustrate the proposed clustering methodology, we use a dataset generated for the
analysis of recovery from an aircraft crash into an RVACS of a conceptual design for a sodium-cooled
fast reactor [10, 25–27]. The RVACS is a passive decay-heat removal system that removes heat by natural
circulation of air in the gap between the vessel and a duct surrounding the vessel. With this system, the
reactor decay heat is released to the atmosphere through four cooling towers. The Analysis of Dynamic
Accident Progression Trees (ADAPT) tool [5] is used as the DET generator while the system dynamics is
modeled using RELAP5 [2]. A typical scenario is the following: the plant is operating at 100% power when
an airplane crashes into the plant, destroying three of the four towers and, thus, the reactor core cooling
capabilities are disabled. A recovery crew then arrives at the site and attempts to reestablish the cooling
of the reactor by restoring the damaged towers one by one. An ensemble of 609 transient simulations has
been generated∗, and among which 132 scenarios are considered system failures when the reactor reaches
a maximum temperature of 1000K before the end of simulation, which is fixed to be 2 × 105 seconds†.
The rest of the 477 scenarios are considered simulation completions. Each simulation includes information
regarding: (a) Time profile of core temperature; (b) Crew arrival time; and (c) Recovery time of tower 1, 2
and 3.

Data representation for end state analysis. For the end state analysis, the above data is represented as
various 4D scalar functions. We employ two types of representations: 4D scalar function based on absolute
timing and relative timing, respectively.

For the 4D absolute timing analysis, the four input parameters represent the time for the crew to arrive at
the plant (t0), and the time for them to recover the first (t1), second (t2) and third (t3) tower, respectively. In
certain cases, the third tower has not been recovered before the end of the simulation, so t3 = 0. The output
variables considered are: (1) MT: maximum temperature reached in the simulation; (2) TTF: time to reach
∗One transient simulation out of 610 simulations is considered as an outlier due to discrepancies among crew arrival times.
†Scenarios that reach 1000K before the end of simulation have been extended in time with the last value simulated.
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Label Description Label Description Label Description
A.1 4D-MT-all-2C B.1 4D-Delta-MT-all-5C C.1 100D-MT-all-4C
A.2 4D-MT-completions-4C B.2 4D-Delta-MT-completions-5C C.2 100D-MT-completions-3C
A.3 4D-TTF-all-2C B.3 4D-Delta-TTF-all-4C C.3 100D-TTF-all-3C
A.4 4D-TTF-failures-3C B.4 4D-Delta-TTF-failures-4C C.4 100D-TTF-failures-3C
A.5 4D-TTM-all-3C B.5 4D-Delta-TTM-all-4C C.5 100D-TTM-all-3C
A.6 4D-TTM-completions-3C B.6 4D-Delta-TTM-completions-4C C.6 100D-TTM-completions-3C

Table I. Various 4D and 100D functions under analysis. A: End state absolute timing analysis. B: End state
relative timing analysis. C: Transient analysis.

failure temperature‡; (3) TTM: time to reach maximum temperature. In other words, in the Morse-Smale
complex formulation, the finite set of points X is embedded in R4 with coordinates coming from the 4 input
parameters, and the scalar function f defined on X obtains its values as one of the three figures of merit (e.g.
MT, TTF or TTM).

For the 4D relative timing analysis, the four input parameters represent the relative time between recovering
procedures, that is, the time for the crew to arrive at the plant from the time when the accident occurs
(t′0 = t0 − 0 = t0), the time between recovering the first, second and third tower respectively, that is,
t′1 = t1 − t0, t′2 = t2 − t1, t′3 = t3 − t2. The output variable of interest is designed to be MT, TTF or TTM.

Data representation for transient analysis. For the transient analysis, since only a single state variable
(e.g. the core temperature) is under consideration, we model the temporal evolution of each scenario as a
d-dimensional point, where d is the number of uniform temperature samples obtained along its time profile.
We set d = 100. Therefore, the above data is modeled as various 100D scalar functions. Again, the output
variable of interest is designed to be MT, TTF or TTM.

Cases under analysis. A further analysis of these various 4D and 100D functions based on all scenarios,
system failure scenarios and simulation completion scenarios leads to the detailed clustering results for the
following cases summarized in Table I. The shorthand description of each case encodes the dimension,
output variable of interest, scenarios included and number of crystals obtained. For example, case (A.1) 4D-
MT-all-2C means a 4D function under the end state absolute timing analysis, where the output variable is
MT, and the obtained result includes 2 crystals. Similarly, case (B.4) 4D-Delta-TTF-failures-4C means a 4D
function under the end state relative timing analysis for the system failure cases, where the output variable
is TTF and the result includes 3 crystals; case (C.6) 100D-TTM-completions-3C means a 100D function for
the simulation completion cases under the 4 crystal setting, where the output variable of interest is TTM.

Objective. We would like to understand how these input variables impact system dynamics [26, 27]. Un-
derstanding the structure of such 4D and 100D functions may help domain scientists to make decisions
regarding repair strategies and evacuation plans.

3.1 Visual Interface

We review and illustrate our visual interface in Figure 2 through the analysis of a 4D function under case
(A.1) described above. Such visual interface is inherited and extended from the capabilities provided by HD-
Viz [18] and has been previously employed for nuclear reactor analysis and visualization [28]. As shown

‡For scenarios where failure temperature is never reached, this is set to 2× 105.
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in Figure 2 (a), the topological summary interface summarizes each Morse-Smale crystal into a 1D curve in
high-dimensional space which is then projected onto a viewable 3D space. The interface encodes three steps
(detailed in [18]), to arrive at a 3D representation for analysis and visualization of the d-dimensional scalar
function f , defined on a set of sampled points X. (1) Morse-Smale approximation: We approximate the
Morse-Smale crystals in high dimension using a relaxed Gabriel graph. (2) Geometric summaries: For each
crystal of the Morse-Smale complex, since each point has similar approximated monotonic gradient behav-
ior, a geometric summary is constructed by an inverse regression, yielding a 1D curve in the d-dimensional
domain of f . Intuitively, the value of the parametrized curve at a given location yields a representation of
the crystal as the average of the function values of level sets within the crystal. (3) Dimension reduction:
The set of regression curves can be represented by a graph embedded in Rd with each edge corresponding
to a curve and vertices corresponding to extremal points. Such a graph is then embedded into 2D preserving
the spatial relation among the extrema and the geometry of the crystals that connect them using PCA or
ISOMAP [29], while the third dimension is reserved for the output parameter. A simple example of the
above three step process is shown for a simple 2D height function in Figure 3.

Selected 
point/curve

Luminance of edge 
signifies sampling density

Varying width signifies 
spread of data

Statistical information
at a selected point 

Range space color mapping shows 
the range of the selected crystal 

and the selected output level

Current rotation 
transformation 

of axes

Persistence graph shows the selected persistence level 
as a red block and value in red indicates number of crystals rendered 

(a) (b) (c)

1 2

1

2

1

2

Figure 2. Visual interface illustrated through analysis of 4D function described in (A.1). (a) The topological
summary visual interface. (b) Left: Inverse coordinate plots for crystals 1 and 2 in (a); (b) Right: combined
inverse coordinate plots for crystals sharing the same minima; (c) Parallel coordinate plots for crystals 1 and
2 in (a).

Various visual components are described in Figure 2 (a), three of which are of most relevance to us in
the current context: the crystal projection, the persistence graph and the range space color mapping. To
enable multi-scale analysis, we use a modified version of the persistence diagram [23], referred to as the
persistence graph. It shows the number of Morse-Smale crystals (y-axis) as a function of scale (i.e. x-axis,
persistence threshold normalized by the range of the dataset). A selected scale is drawn with a red box and
a corresponding number of Morse-Smale crystals is displayed along the y-axis in red. Stable features are
considered as those that exist over a large range of scales (i.e. a sequence of persistence simplification with
increasing scales), which correspond to long horizontal lines in the persistence graph.

In the inverse coordinate plots, each input parameter (e.g. t0) is considered as a 1D function of the output
variable (e.g. MT). This is shown in Figure 2(b), where the 1D regression curve as well as the data points
are colored according to range space values. Furthermore, we could create combined inverse coordinate
plots by superimposing those from crystals that belong to the same ascending/descending manifold. This
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Local maximum 
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Figure 3. Key steps in generating the topological summary of a simple 2D height function. (a) Morse-Smale
crystal approximations that decompose the domain into 4 crystals. (b) Each crystal obtains a 1D geometric
summary which encodes the average of function values at level sets within the crystal. (c) The collection of
1D curves are then projected to a viewable 3D space preserving the spatial relations among the extrema and
the geometry of the crystals. Several important visual components are described here as well.

enables further differentiations among various dimensions across crystals. We further use parallel coordinate
plots [30] to illustrate the correlations among input parameters in the high dimensional datasets for each
crystal, as shown in Figure 2 (c), where the curves are colored based on range space values as well.

(a) (b) (c)1

2

1

2

Case (A.1)

1
2

Figure 4. Visual interface highlighting clustering structure for 4D function described in (A.1). (a) The topo-
logical summary visual interface. (b) Inverse coordinate plots for both crystals individually and combined.
(c) Parallel coordinate plots.

To highlight clustering structures obtained from the topological segmentation, we change our color map
of the above visual interface where the 1D regression curve as well as data points are colored based on
clustering membership, as shown in Figure 4.
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3.2 End State Analysis

For this section, we showcase some insights obtained from various analysis cases. These insights and their
implied conclusions are only a fraction of possible outcomes from our analysis and visualization framework,
and a lot of these observations demand further investigations. Nevertheless, they give us some initial un-
derstanding of the nuclear dataset analyzed, and offer complementary views compared to results obtained
with mean-shift methodology [10]. For each of the following cases, the number of crystals (i.e. number of
clusters) are chosen based on the persistence graph. In the situations where several possible clusterings with
different cluster numbers give comparable results, we choose one of the clusterings arbitrarily. We use the
word cluster and crystal to mean the same thing. Important observations/insights are obtained from the part
of the visual interface highlighted by arrows in cyan.

Case (A.2)

Case (A.3)

Case (A.4)

1 2 3 4

1

2

3

4

2
1

21

2

1

3

3
1

2

Figure 5. End state analysis, cases (A.2) through (A.4).
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Figure 6. End state analysis, cases (A.5) and (A.6).

4D Absolute Timing Analysis. The results are shown in Figure 4 for case (A.1) and Figure 5 for cases (A.2)
through (A.4) and Figure 6 for cases (A.5) and (A.6). We now describe each case in detail. For (A.1) 4D-
MT-all-2C, both crystals have maximum temperature of 1000K. Crystal 1 (red) contains scenarios where
t3 6= 0, however, in these scenarios, the maximum temperature reaches the failure temperature of 1000K.
This means that even though the crew managed to recover all three towers, since the recovery time for all
towers is high, the core temperature keeps rising reaching system failure anyway. Crystal 2 (green) contains
all scenarios where t3 = 0, indicating all scenarios where the 3rd tower is not recovered and the failure
temperature is reached. For (A.2) 4D-MT-completions-4C, we only analyze simulation completion cases.
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The four local maximum have temperatures 999.98K, 999.79K, 999.80K and 999.61K respectively. Crystal
1 (green) and 2 (red) have comparable range of values for t0, t1 and t2, however crystal 1 contains data
points with higher t3 values compared to crystal 2, this indicates a later recover time for tower 3. Or in
other words, recovery time for tower 3 differentiates these two crystals. Crystal 3 (blue) and 4 (purple)
contain scenarios characterized by small values of t0 and high values of t1, t2 and t3, i.e., early crew arrival
time and late recovery of the 3 towers. When looking at the combined inverse regression plots based on
the ascending manifold, we see that the crystals 1 and 2 contain data points with higher t0, compared to the
other two crystals, indicating late crew arrival time. For (A.3) 4D-TTF-all-2C, crystal 2 (green) contains
all cases where t3 = 0. For (A.4) 4D-TTF-failures-3C, we exclude non-failure scenarios. The two local
maxima correspond to approximately 1.45×105 seconds and 1.54×105 seconds. The two local minima are
roughly 1.01× 105 seconds and 1.00× 105 seconds. Crystals 1 (red) and 2 (green) both contain significant
number of scenarios. However, they do not share the same local maxima, that is, time to reach failure in
their local regions. Based on the combined inverse coordinates plot of crystals on the ascending manifold,
they can also be differentiated by variations in the general trends of t0 and t1. In particular, crystal 3 (blue)
contains scenarios that lead to an early time to reach failure characterized by late crew arrival and late
recovery of the first 2 towers. In (A.5) 4D-TTM-all-3C, the three local minimum corresponding to roughly
1.00 × 105, 1.01 × 105 and 1.05 × 105 seconds. Crystal 1 (green) contains all scenarios where t3 = 0,
and some scenarios where the crew arrived at the site early (where t0 is small) and the temperature peaked
(reached its maximum) late. Both crystals 1 and 2 (blue) have some scenarios of the crew arriving early
and the temperature peaking late, while crystal 3 (red) has none of the extreme cases. Finally, in (A.6)
4D-TTM-completions-3C, the three local minimum are very close in value, roughly around 1.58 × 105

seconds. Crystal 1 (blue) contains purely scenarios that reach maximum temperature early, with early crew
arrival time and a large gap between time to fix the towers (see the large slope in its corresponding parallel
coordinate plot). Between crystal 1 and crystal 3 (green), v.s. crystal 2 (red), the former two have higher
gap between t2 and t3 (large slope in the parallel coordinate plots), meaning a big delay in recovering
tower 3. Again, late crew arrival and late tower recovery times cause these scenarios to reach the maximum
temperature early; while early crew arrival and early tower recovery times result in reaching maximum
temperature late.

4D Relative Timing Analysis. The results are shown in Figure 7 with detailed descriptions below. We omit
cases (B.2), (B.4) and (B.6) since they do not lead to drastically different conclusions. For (B.1) 4D-Delta-
MT-all-5C, the two local maxima correspond to 991.66K and 1000K. The four local minima are valued at
990.48K, 990.5K, 988.61K and 990.15 respectively. Crystal 1(orange) contains only a single data point.
However it is persistent across multiple scales up to two crystals. It also reaches the lower local maxima
temperature of 991.66K, and corresponds to the largest t′3 value (according to the parallel coordinate plot),
indicating a very late recovering time for tower 3. Both crystal 3 (purple) and 4 (green) contain some cases
where t′3 = 0. Crystal 3 contains late crew arrival (e.g. large t′0) scenarios and some early tower three
fixing time (small t′3). Crystal 2 (red) contains late t′3 while crystal 5 (blue) contains late t′2 and moderate
t′3 scenarios. In (B.3) 4D-Delta-TTF-all-4C and (B.5) 4D-Delta-TTM-all-4C, both corresponding crystal
1 (blue) contain all cases where t′3 = 0 that is t3 = 0, meaning no recovering of tower 3. These two cases
have extremely similar clustering structure, which may be interesting to further investigate.

3.3 Transient Analysis Results

For transient analysis results, we first focus on case (C.1) 100D-MT-all-4C, illustrated in Figure 8. As
shown in (a), the analysis results in 4 clusters, and the 4th cluster contains most of the scenarios in (d). As
for MT profiles in (e), cluster 2 contains scenarios with the lowest MT, while cluster 3 contains some of
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Figure 7. End state analysis, cases (B.1), (B.3) and (B.5).

those with the highest MT. For each cluster, the distributions of crew arrival time and the recover time of
each tower are shown in (f). Note that for cluster 3 and 4, part of the distribution for t3 is concentrated
around 0 which correspond to the failure scenarios where the crew was not able to recover tower 3 on time
(e.g. t3 = 0). Cluster 3 is characterized by a fixed range of crew arrival time (t0) and an extreme late crew
recover time of tower 3 (t3), this explains the high MT obtained by thoes scenarios.

Transient analysis results for (C.2) and (C.3) are shown in Figure 9. For (C.2) 100D-MT-completion-3C,
among all completion scenarios, cluster 2 contains those with the lowest MT, which is also characterized by
very early crew arrival time and relatively early tower 3 recover time, leading to low MT. On the contrary,
cluster 1 has late crew arrival time and late tower 3 recover time, leading to scenarios with some of the
highest MT. In (C.3) 100D-TTF-all-2C, cluster 3 contains those with the highest TTF, while cluster 1
contains those with the lowest TTF. Scenarios in cluster 1 reach failure temperature earliest because they are
characterized by late crew arrival time and late recovering time for all towers.

For completeness, the remaining transient analysis results are shown in Figure 10. As we could observe from
these figures, for cases (C.4), (C.5) and (C.6), there are clusters with distinctive patterns for the distributions
of the variables t0, t1, t2 and t3, differentiating them from one another.

Complementary Views. Now we could combine the above transient analysis results based on topological
clustering, with previous results obtained through mean shift methodology ( [10], Figure 19 and Figure 20).
We argue that both methodologies offer complementary views of the nuclear simulation dataset. Further
investigations are currently underway to understand how such views help the end users in the drawing of
important conclusions with respect to safety analysis.
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Figure 8. Transient analysis for case (C.1). (a) Topological summary with 4 crystals, corresponding to 4
clusters colored accordingly. (b) Persistence graph under the 4 crystal setting. (c) Parallel coordinate plot
combining all 4 clusters, colored by cluster labels, showcasing time-varying profiles of all scenarios: x-axis
corresponds to 100 values sampled along time, y-axis indicates core temperature. Parallel coordinate plots
corresponding to each individual cluster, colored by cluster labels in (d) and by function values in (e). (f)
Distribution of crew arrival time t0 (red) and the recovery time of tower 1 (blue), 2 (green) and 3 (yellow)
for each cluster.

4 Conclusions

In this paper, we investigate the use of a topology-based clustering technique on the data generated by
dynamic event tree methodologies. Our clustering technique is inspired by Morse-Smale complex which
partitions the data based on their uniform gradient behavior. We demonstrate our analysis technique and
visual interface on a dataset generated for a sodium-cooled fast reactor during an aircraft crash scenario,
and describe some interesting insights obtained from its end state and transient analysis. Combining with
previously obtained mean-shift clustering results, and with further involvement by domain scientists, we
expect to obtain in-depth understandings of such datasets.

In comparison to mean-shift clustering, each cluster has a representative center, but in an optimization
or goal-seeking setting, a maximum/minimum representative of each cluster could be more beneficial to
domain experts which is something that is readily available and inherent to topological clustering. It is also
important to note that new topology-based clustering techniques could be inspired by the various topological
structures such as contour trees and Reeb graphs. However understanding whether and how such techniques
could produce meaningful results for analyzing DPRA-related nuclear datasets remains a challenge.
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Figure 9. Transient analysis, cases (C.2) and (C.3).
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Figure 10. Transient analysis, cases (C.4) to (C.6).
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