
SCIRUN/BIOPSE: INTEGRATED PROBLEM SOLVING ENVIRONMENT FOR
BIOELECTRIC FIELD PROBLEMS AND VISUALIZATION

R.S. MacLeod D.M. Weinstein, J. Davison de St. Germain, D.H. Brooks
�

, C.R. Johnson, and S.G. Parker
�

Scientific Computing and Imaging Institute University of Utah, Salt Lake City, Utah
�

Department of Electrical and Computer Engineering, Northeastern University, Boston, MA

ABSTRACT

SCIRun is a general purpose problem solving environ-
ment that seeks to integrate the steps of preparing, ex-
ecuting, and visualizing simulations of physical and bi-
ological systems. The implementation of SCIRun is by
means of an interactive dataflow network consisting of
modules and data pipes exposed as a visual program-
ming language. SCIRun also contains specific modules
for bioelectric field simulations and visualizations and the
combination of SCIRun with this package is known as
BioPSE (www.sci.utah.edu/software/biopse). This software
has been in the public domain since 2000 and in that time
we have developed strategies for software development, en-
gineering, testing, documentation, and training. We have
also continued to expand the scope of the SCIRun/BioPSE
package not only through our own codes but by constructing
bridges to other systems, both open source and proprietary.
We have also created a repository for relevant sample net-
works and datasets with the aim of allowing diverse groups
to test and evaluate algorithms using identical data and to
share their results with the community for comparison of
performance and accuracy. We present here a summary of
the software system and describe specific experiences and
conclusions with regard to creating and managing a large
open source software project carried out within a university
setting.

1. INTRODUCTION AND DESIGN GOALS

SCIRun is a problem solving environment that seeks to in-
tegrate steps that are traditionally part of separate programs
into a seamless software system [1, 2]. The underlying
structure of SCIRun is a data pipeline that passes informa-
tion through a series of processing elements, each of which
is general in formulation but has a specific purpose within
the application. A SCIRun program is therefore a collection
of processing elements and the connections that link them.
The usual interface to this structure is as a visual program-
ming language composed of modules (the processing steps)

�
Support for this research has come from the NIH/NCRR for the

Center for Bioelectric Field Modeling, Simulation, and Visualization,
HL P41RR12553.

and pipes (the connections) that join to form networks. The
modules are the commands of the language and the pipes
form the communication system passing information to and
from those commands.

There are three pillars of the SCIRun vision: software
re-use by leveraging algorithmic and visualization com-
monalities across disciplines, integration of all aspects of
the simulation process in a “computational steering” envi-
ronment, and multiple levels of access and re-use.

Fundamental to the vision that drove the creation of the
SCIRun problem solving environment is that while each sci-
entific discipline has its own terminology and its own spe-
cific problems of interest, from a broader perspective, their
similarities often outnumber their differences. This is true,
for example, when one considers the tasks of image pro-
cessing, analysis and visualization. The clinical brain imag-
ing community will have a significantly different terminol-
ogy from that of the small animal imaging or cardiovascular
communities, but the image processing, analysis, and visu-
alization needs are attainable using similar fundamental al-
gorithms, all of which come from a common (application
independent) source in signal/image processing and com-
puter science. Hence the goal of SCIRun was and is to iden-
tify and then implement in an integrated problem solving
environment a set of common tools for scientific modeling,
simulation, and visualization so that users can apply them
to specific problems.

A second pillar of the SCIRun vision is integration
of all aspects of scientific computation and visualization.
The traditional (and still quite common) approach, for even
moderately-sized problems, employs a suite of separate, of-
ten incompatible, programs. Typically, one creates a geo-
metric model from image data with one set of programs.
This model becomes input to a simulation program which,
say, creates a linear system to solve a governing PDE. The
next step is a linear system solver, followed by a separate
program to visualize the results. At each inter-program in-
terface there is logistical overhead. The biggest problem is
that changing problem parameters usually requires another
pass through most or all of this pipeline, thus creating long
iteration loops. SCIRun integrates all these computing steps



into a single connected process. Moreover, the user can in-
tervene at any point in the process and see the consequences
almost immediately. Achieving this flexibility requires a so-
phisticated, efficient infrastructure and multiple interactive
access points.

A final component of the SCIRun vision is to provide
multiple levels of access to the software. Each level will
offer a different degree of control and thus flexibility but at
an associated cost in user proficiency. The lowest level ac-
cess is to the source code itself, which allows the developer
to add almost limitless functionality but requires knowledge
of C++ and the architecture of SCIRun. The next level is a
visual programming interface to the network diagrams that
define a SCIRun program. Networks link functional ele-
ments (modules) through data-pipes and the user can inter-
actively add modules and connections as desired to create
solutions. The highest level of access is in the form of ded-
icated applications that are built on top of the network dia-
grams. We have recently developed these “PowerApps” to
provide access to the necessary control parameters of the
underlying network through a customized visual interface
so that the user is required only to understand features and
options relevant to the particular application. At each of
these levels of interaction, we provide documentation sup-
port and guidance so that the user can first decide on and
then find the appropriate interface level.

2. SOFTWARE INFRASTRUCTURE AND
IMPLEMENTATION

Fig. 1. BioPSE dataflow interface to the forward bioelectric
field application. The underlying dataflow network imple-
ments the application with modular inter-connected compo-
nents called modules. Data are passed between the modules
as input and output parameters to the algorithms.

The SCIRun project began as a doctoral thesis of

Dr. Steve Parker in the early 1990’s [1] and has since
grown and become an established part of a number of
funded research projects and centers at the SCI Institute
and other institutions across a broad range of applica-
tion areas [2, 3]. Most visible of these is perhaps the
NIH/NCRR funded Center for Bioelectric Field Model-
ing, Simulation, and Visualization (www.sci.utah.edu/ncrr),
from which the BioPSE (for Biological Problem Solving
Environment) tools have come. SCIRun/BioPSE thus con-
sists of a complete system for solving bioelectric field prob-
lems such as computing the electrocardiogram (ECG) from
known bioelectric sources in the heart or localizing sources
of electrical activity in the brain from the electroencephalo-
gram (EEG) or magnetoencephalogram (MEG) measured
on or outside the head. In a completely different applica-
tion, SCIRun also provides the infrastructure for simulat-
ing rapid fires and explosions in a large project funded by
the Department of Energy’s ASCII program called C-SAFE
(www.csafe.utah.edu).

Historically, one of the major hurdles to SCIRun be-
coming a tool for the scientist as well as the engineer has
been SCIRun’s dataflow interface. While visual program-
ming is natural for computer scientists and engineers who
are accustomed to writing software and building algorith-
mic pipelines, it is overly cumbersome for application scien-
tists. Even when a dataflow network implements a specific
application, the user interface (UI) components of the net-
work are presented to the user in separate applications win-
dows, without any semantic context for the control of their
settings. For example, Figure 1 contains an example of a
dataflow network that solves a bioelectric forward problem
using the finite element method. The figure shows a BioPSE
network with the typical mix of visualization window, sev-
eral UI’s, and, in the background, the network diagram. Al-
though SCIRun provides file browser UI’s for reading in
data, all of the file browsers in the dataflow network have the
same generic presentation. As a result, there has not been a
way in SCIRun to indicate that one file browser entry should
identify an electrode input file and another should identify
a finite element mesh file. Similarly, the context of the spe-
cific modules often makes the meaning of the user controls
difficult to interpret. For example, in Figure 1 the text-entry
field of the SampleField user interface in the upper right cor-
ner of the figure that is labeled “Maximum number of sam-
ples” is controlling the number of electric field streamlines
that are produced for the visualization. In another context,
the same user interface element could have a completely
different meaning.

The most recent release 1.20 of BioPSE/SCIRun (in Oc-
tober, 2003) has addressed the complexity of the network in-
terface through the introduction of “PowerApps”. A Power-
App is a customized interface built atop a dataflow applica-
tion network. The dataflow network controls the execution



Fig. 2. The BioFEM custom interface. Though the ap-
plication is functionality equivalent to the dataflow version
shown in Figure 1, this PowerApp version provides a cus-
tom interface that is much simpler to navigate.

and synchronization of the modules that comprise the ap-
plication. In a PowerApp, the associated network diagram
and generic UI elements disappear (but are still available)
in exchange for a comprehensive customized user interface.
Each PowerApp has its own arrangement of user interface
elements and visualization features and the organization of
control parameters encourages a sequential approach that
reflects the expected work flow of someone using the appli-
cation.

One example of a PowerApp, released with the 1.20 ver-
sion of SCIRun/BioPSE is called “BioFEM”. BioFEM is
built atop the finite element method forward solution net-
work and provides a useful example for demonstrating the
differences between the dataflow and PowerApp views of
the same functionality. Figure 2 shows the user interface
for BioFEM, running the same problem as in Figure 1. The
visualization window is unobscured by UI elements and all
user controls are consolidated in the control panel to the
right. All controls include an explicit context through se-
mantically linked labels and are grouped logically by means
of the tabs along the top of the control panel. Application-
specific textual tips (not shown) appear when the user places
the cursor over any user interface element.

3. OPEN SOFTWARE FEATURES

SCIRun/BioPSE has been available as source code since
2000 and we have recorded several thousand downloads
over a dozen code releases. In that time, we have gained
experience in many aspects of open source software devel-
opment, deployment, and maintenance. We summarize here
a few aspects of those experiences and measures we have
implemented from them.

3.1. Choice of platforms

The rapid growth of SCIRun/BioPSE has come in part be-
cause of the focused platform base we have supported to
date. Unix offers a comprehensive set of development tools
(gcc compilers, make, autoconf, CVS, etc.,) and, more im-
portantly, a stable and relatively portable set of low level op-
erating system features. The OpenGL graphics library, de-
veloped initially by Silicon Graphics (SGI) and now an open
standard (www.opengl.org), offers the same consistency of
interface to the graphics hardware. Thus the progression
of SCIRun development has been from the Silicon Graph-
ics Irix (Unix) to Linux to Apple OSX. Limiting SCIRun to
these platforms has reduced the overhead required to main-
tain different versions and thus permitted more focus on in-
creasing the capabilities and stability of the code. The asso-
ciated disadvantage, of course, is the limitations to the user
base of the software. The continuous pressure to expand the
supported platforms to include Microsoft Windows is sub-
stantial and we are now in the planning phase of this tran-
sition and hence cannot yet robustly estimate the associated
cost.

3.2. Open standards

One of the driving principals of the SCIRun design has al-
ways been to leverage open-standards as much as possible.
Examples that have been part of SCIRun from the begin-
ning include the use of pthreads for the implementation
of multithreading (when available on the target platform);
OpenGL for all rendering; and tcl/tk for all user-interface
widgets. Other examples of standards that have become part
of SCIRun as they appeared and gained dominance include
the standard template library (STL), which required that
SCIRun migrate away from the original native set of con-
tainer classes, and XML, which is the markup language that
describes user-interface port behavior for each module and
the module level documentation. Two additional change,
also in the planning or early implementation phases, is to
replace the native SCIRun scene graph with an open stan-
dard such as OpenSceneGraph and to implement a Common
Component Architecture (CCA), which provides defined in-
terfaces between portable and reusable modules.

3.3. Bridging to other software system

A tenet of Unix and many open source software projects
is to build on the work of others and thus it has always
been a goal of SCIRun to make use of software outside
our own code base. This desire has also come from the
past frustration of trying to marry the best features of dif-
ferent software packages into an integrated whole. To
achieve more seamless integration, we have developed a
range of bridging mechanisms for linking SCIRun to other
software libraries and applications. Specific examples of



such mechanisms include the simplest step of integrating
at the linker level the libraries that have interfaces suitable
to direct access from SCIRun, as we have implemented for
the Teem library (teem.sourceforge.net) and the BLAS li-
brary (www.netlib.org/blas/). A more complex linkage was
necessary to interact with Matlab (www.mathworks.com),
in which we used a Unix socket based interface to send
data and commands from SCIRun to Matlab and receive
results back. A further approach to linking to programs
that run independently of SCIRun is to share data through
a file or database, a strategy we implemented to com-
municate with the GENESIS nerve cell simulation system
(http://www.genesis-sim.org). The most important finding
of all these projects is that discovering a way to bridge to
other high quality software systems, while sometimes chal-
lenging, is almost always a more efficient and satisfying ap-
proach than re-creating the software within the host system.

3.4. Software engineering

Creating and implementing consistent software engineering
practices in a university based development project remains
an ongoing challenge for us and for many other groups.
Factors that contribute to this challenge include the lack
of training among academics—even computer scientists—
in software engineering concepts and practice; encourag-
ing contributions from students who are training to be-
come specialists in scientific disciplines and thus poorly
motivated to take the required additional time; and the re-
stricted budget typically available in academic settings to
create, maintain, and enforce sound software engineering
techniques. We have attempted to address some of these ob-
stacles by consolidating resources in order to recruit trained
software engineers and to secure support from the leader-
ship of the projects in order to make the compromises in
apparent progress required to create stable, robust, depend-
able computer programs.

3.5. Data I/O and conversion

Once a user has open source software compiled and in-
stalled, the most frequent question in our experience with
scientific users is how they can import their own data into
the program. Thus creating flexible tools for this purpose is
an essential component of achieving widespread use of new
software. Our approach in the SCIRun/BioPSE project has
been to develop converters between our internal file formats
and simple text based formats that we document clearly. In
this way, users can often treat the text format as a lowest
common form and create their own conversion support to
their local software. While reasonably robust, this approach
is not really adequate and we are planning an alternative
based on an XML description of data that SCIRun/BioPSE
can use to execute file conversion. By encapsulating the
file format description in the XML (or some derivative) the

software that manages data conversion can be stable and the
customization burden shifts to the markup language which
allows for faster iterations and better re-use of previous de-
scriptions.

3.6. User support

Academic settings are typically much less equipped to man-
age user support than the private sector. However, the open
source software movement has created a different–and often
more forgiving—set of expectations with regard to user sup-
port. Dedicating valuable resources to user support is often
even more difficult than the situation with regard to software
engineering as academic institutions offer little support for
positions and career paths in the related areas of technical
writing and customer support. Fortunately, however, many
users of open source software will tolerate a lower standard
of support than would be acceptable in a commercial set-
ting. Even more important, the user community of open
source software is often prepared to provide mutual sup-
port through mailing lists and user group sessions at con-
ferences or even whole meetings dedicated to using and de-
veloping a software package. A sign of vitality in any new
software system is the first time that questions posed to the
users’ mailing list receive answers from other users before
the developers of the software have a chance to reply. In
the SCIRun/BioPSE project, we have used a combination
of extensive documentation as well as email based support
lists and annual workshops to educate and support users.
We have used the software in courses offered to biomedical
engineers and have conducted tutorial workshops at inter-
national conferences. Most useful in our experience have
been the online tutorials we have developed for the entry
level user.

4. REFERENCES

[1] S.G. Parker and C.R. Johnson, “SCIRun: a scientific
programming environment for computational steering,”
in Proc ACM IEEE Supercomputing Conf. 1995, vol. 2,
pp. 1419–1439, IEEE, Los Alamitos, CA.

[2] S.G. Parker, D.M. Beazley, and C.R. Johnson, “Compu-
tational steering software systems and strategies,” IEEE
Computational Science and Engineering, vol. 4, no. 4,
pp. 50–59, 1997.

[3] J.D. de St. Germain, J. McCorquodale, S.G. Parker, and
C.R. Johnson, “Uintah: A massively parallel prob-
lem solving environment,” in Ninth IEEE International
Symposium on High Performance andDistributed Com-
puting. Nov 2000, pp. 33–41, IEEE, Piscataway, NJ.


