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Abstract—Uintah is a highly parallel and adaptive multi-
physics framework created by the Center for Simulation of
Accidental Fires and Explosions in Utah. Uintah, which is
built upon the Common Component Architecture, has facilitated
the simulation of a wide variety of fluid-structure interact ion
problems using both adaptive structured meshes for the fluid
and particles to model solids. Uintah was originally designed
for, and has performed well on, about a thousand processors.
The evolution of Uintah to use tens of thousands processors has
required improvements in memory usage, data structure design,
load balancing algorithms and cost estimation in order to improve
strong and weak scalability up to 98,304 cores for situations in
which the mesh used varies adaptively and also cases in which
particles that represent the solids move from mesh cell to mesh
cell.

Keywords-Adaptive Mesh Refinement, Parallelism, Load Bal-
ancing

I. I NTRODUCTION

The University of Utah Center for the Simulation of Acci-
dental Fires and Explosions (C-SAFE) [1] is a Department of
Energy ASC center that focuses on providing state-of-the-art,
science-based tools for the numerical simulation of accidental
fires and explosions. The primary objective of C-SAFE has
been to provide a software system in which fundamental chem-
istry and engineering physics are fully coupled with nonlinear
solvers and visualization tools, thereby integrating expertise
from a wide variety of disciplines. The creation of Uintah has
furthered C-SAFE’s understanding of fires, explosions, and
other problems involving complex fluid-structure interactions.

For example, on August 11, 2005 a truck carrying 35,500
pounds of explosives down Utah’s Spanish Fork Canyon
overturned and caught fire. Within minutes the truck detonated
with a force much larger than expected leaving behind a
70 foot crater. Fortunately no one was hurt. Why did a
detonation occur as opposed to a deflagration, which is several
orders of magnitude less violent? Could the packing of the
individual explosive charges influence the propagation of the
combustion wave, or the amount of energy released? These are
the types of questions that C-SAFE is addressing and hopes to
further address through the use of future petascale simulations.
Large-scale simulations have allowed C-SAFE to further the
understanding of explosions by providing the ability to look

more closely at the underlying physical phenomena than is
possible through experimental tests.

The target simulation scenario for C-SAFE is a small
cylindrical steel container filled with plastic bonded explosive
(PBX-9501) subjected to convective and radiative heat fluxes
from a fire which heats the container and the PBX. After some
amount of time the critical temperature in the PBX is reached
and the explosive begins to rapidly decompose into a gas.
The solid-to-gas reaction pressurizes the interior of the steel
container causing the shell to rapidly expand and eventually
rupture. The gaseous products of reaction form a blast wave
that expands outward along with pieces of the container and
the unreacted PBX.

Simulating this problem requires expertise from a wide
variety of disciplines including combustion, structural me-
chanics, and fluid dynamics. In addition, such a problem
requires a large amount of processing power necessitating
the need for both adaptive mesh refinement (AMR) [2] and
parallelism. AMR focuses the computational resources where
needed by adding refinement in areas where rapidly evolving
physical processes are occurring. For example, in the case of
the exploding container mentioned above; the container, the
explosive, and the pressure wave all need to be highly resolved,
where as the surrounding atmosphere has a lower resolution
requirement. Even with AMR, the processing requirements
for such a problem are still large necessitating the use of
parallelism.

The need for parallelism, AMR, and a wide variety of
physics has led to the development of the Uintah Computa-
tional Framework [1], [3], [4]. Uintah, which was developed
by C-SAFE provides a large degree of encapsulation that
allows scientists to focus on their area of expertise without
fully understanding complexities outside of their domain.

In preparation for petascale architectures and simulations,
the performance of frameworks like Uintah must be ana-
lyzed and optimized. Poor performance in any portion of
the framework can have a significant impact on the overall
performance. Achieving a high degree of scalability for AMR
based simulations is challenging due to poor scalability as-
sociated with the changing grid. With AMR, whenever the
grid changes, a number of operations must be performed.



For example, the new grid must be created, work must be
load balanced and migrated to the owning cores, and the
communication schedule must be created. In the past, opti-
mizations to these operations have led to improvements in
scalability within general purpose AMR frameworks [5]–[7].
Previously application specific AMR codes have been shown
to scale up to 60,000 cores [8], [9]. The challenge is to see
if a general purpose framework such as Uintah is capable of
scaling to such numbers of cores. We address this challenge
by: describing Uintah and its novel approach to parallelism,
describing a tool used to identify inefficiencies in memory
usage and data structures, and presenting a new method to
estimate costs used in load balancing, which together have
led to substantial improvements in Uintah’s scalability.

II. U INTAH

The Uintah computational framework, is a set of paral-
lel software components and libraries built upon the DOE
Common Component Architecture (CCA) that facilitate the
solution of partial differential equations (PDEs) on structured
AMR grids. Uintah is a sophisticated framework that can inte-
grate multiple simulation components, analyze the dependen-
cies and communication patterns between them, and efficiently
execute the resulting multi-physics simulation. Uintah employs
an abstract task graph representation to describe computa-
tion and communication [3], [4]. Through this mechanism,
Uintah components delegate decisions about parallelism to
a framework component, which determines communication
patterns and characterizes the computational workloads needed
for global resource optimization. This allows parallelismto
be integrated between multiple components while maintaining
overall scalability. Uintah also analyzes the structure ofthe
computation and automatically enables load balancing, data
communication, parallel I/O, checkpointing and restarting ca-
pabilities.

One of the primary strengths of Uintah is that application
designers can develop large-scale parallel AMR simulations
with little understanding of the underlying parallelism. To do
this the designers must specify their algorithm as a series of
serial tasks that run on a hexahedral mesh patch. Each task
specifies the computation to be performed for a single time
step and the related variable dependencies. Variable dependen-
cies state what variables the task requires for the computation
(along with the stencil width) and what variables the task mod-
ifies or computes. Using these dependencies, Uintah creates
a directed acyclic task graph that specifies the task execution
order and the required communication for the simulation. This
design shields developers from the parallelism while allowing
Uintah to utilize highly sophisticated communication patterns
including a large amount of asynchronous communication and
message coalescing. By using these advanced communication
techniques Uintah is able to hide the cost of some of the
communication by overlapping it with computation. As we
move to petascale architectures advanced frameworks such
as Uintah that can implement advanced parallel techniques

independent of the simulation components will be increasingly
necessary.

Uintah achieves parallelism by dividing the grid into hex-
ahedral mesh patches, which are uniquely assigned to cores.
Each core executes the tasks on its assigned patches achieving
a domain-based parallelism. When a task requires a vari-
able with a non-zero stencil width, communication between
neighboring patches is required before the task can execute.
Using the task graph and the core assignments for each patch,
Uintah determines the communication necessary and schedules
communication and computation at the appropriate times. All
communication, including intra-level (within a single level),
inter-level (between AMR levels), and data migration after
load balancing is included in this schedule. The schedule is
then executed repeatedly with each execution corresponding
to a single time step of the simulation. In static grid compu-
tations, this schedule is created once and reused for the entire
simulation. However, in AMR computations the schedule must
be recreated whenever the patch set changes (regridding) or
whenever the patch assignments change (load balancing). The
framework also utilizes parallel I/O to store simulation data
for use in checkpointing, restarting, and visualization within
VisIt [10].

Uintah was originally designed for a few thousand cores and
has been used regularly for AMR simulations with up to 2,000
cores. However, scalability at larger numbers of cores was
problematic because the memory utilization, data structures,
and load balancing did not scale well on 4,000 or more cores.
In particular, memory utilization was an issue due to data
structures that consumed memory on the order of the number
of cores or the number of patches. As the number of cores or
patches increased the size of these data structures would also
increase eventually exceeding the available resources. Recently
these inefficiencies were resolved through the creation of atool
that aides in the tracking memory allocations over time. These
improvements are described in Section III.

The component design has allowed Uintah to excel as a
research platform. Components can be swapped in and out,
allowing them to be developed and tested within the entire
framework, without affecting other components. This has led
to a highly flexible simulation package which has been able to
simulate a wide variety of problems including shape charges,
stage-separation in rockets, the biomechanics of microves-
sels [11], the properties of foam under large deformation [12],
and the evolution of large pool fires caused by transportation
accidents [13], in addition to the exploding container scenario
described in Section I.

Uintah currently contains three main simulation algorithms,
or components, that are capable of using AMR: i) the ICE
compressible multi-material CFD formulation [14]–[16], ii)
the particle-based Material Point Method (MPM) [17] for
structural mechanics, and iii) the combined fluid-structure
interaction algorithm MPMICE [18]. In addition, Uintah inte-
grates numerous sub-components including equations of state,
constitutive models, and reaction models.

ICE is a “multi-material” CFD algorithm that was developed



by Kashiwa and others at LANL [14]–[16]. This technique can
be used in both incompressible and compressible flow regimes,
which is necessary when modeling fires and explosions. This
method conserves mass, momentum, energy, and the exchange
these quantities between materials.

TheMaterial Point Methodis a particle method that is used
to evolve the equations of motion for the solid materials. MPM
is a powerful technique for computational solid mechanics,
and has found favor in many applications involving complex
geometries [11], large deformations [12], and fracture [19].
Originally described by Sulsky, et al., [20], MPM is an
extension to solid mechanics of FLIP [21], [22], which is a
particle-in-cell (PIC) method for fluid flow simulation [23].
MPM simulations have added complexity over ICE simula-
tions because particles move throughout the simulation which
can causes load imbalance.

III. PEFORMANCE& M EMORY IMPROVEMENTS

The original implementation of the Uintah framework used a
few data structures that had memory complexity on the order
of the number of patches or cores. As the problem size or
number of cores increased the memory requirement of these
data structures would also increase.

Uintah has been in development for over ten years and now
contains around a half a million lines of code. Uintah was
initially designed for upwards of a thousand cores. The data
structures and algorithms used in Uintah worked well for a
few thousand cores but became inefficient when moving to
tens of thousands of cores. Inefficiencies like these will be
common in many codes attempting to move onto petascale
platforms. Identifying these inefficiencies in large legacy codes
like Uintah is a challenging task that has been a significant
focus of some C-SAFE personnel. Many inefficiencies within
Uintah have been identified using parallel profiling tools like
TAU [24]. In particular, TAU was recently used to identify a
performance bottleneck within the task scheduling algorithm
that was preventing scalability to large numbers of cores for
some problems. However, we have been unable to use TAU
on very large problems on large numbers of cores due to large
overheads in both memory and processing time. In particular,
on some problems we would be unable to run at large scales
due to lack of memory. Similar problems with overhead on
have been reported in [25]. These overheads have necessitated
different methods to identify these inefficiencies.

One method that proved to be successful in Uintah was to
look at memory allocation. By looking at memory allocation
between strong scaling runs we were able to quickly identify
portions of the code that did not strong scale in terms of
memory usage. Poor scalability within memory utilization can
indicate poor scalability in application time. For example, if
memory allocation is proportional to the number of processors
then at minimum a component of the runtime must also be
proportional to the number of processors.

The need for this type of analysis has led to the development
of MallocTrace [26]. MallocTrace is a low-memory-overhead
tool for tracking memory usage within an application. This

tool logs memory allocations in C++ programs through a series
of macros and library hooks. The logs contain information
including the file name and line number where the allocation
occurred which is useful for tracking memory usage. The
tool also provides a basic mechanism to parse the logs and
provides a summary of memory usage at any given time in
the simulation. This allows a user to see where memory is
allocated at any point in the simulation. The low memory
overhead allows the tool to be used with a large number of
cores on programs like Uintah.

This tool has allowed us to rapidly identify and eliminate
inefficiencies in memory usage at large numbers of cores.
The effect of eliminating these inefficiencies can be seen
in Figure 1. This graph shows an algorithmic decrease in
memory usage. Prior to the optimizations the memory usage
would sometimes increase with the number of cores. The same
increase was not seen after the optimizations.
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Fig. 1. A comparison of the memory usage of Uintah before and after the
elimination of inefficiencies identified with MallocTrace.

Figure 2 shows the corresponding increase in scalability due
to the elimination of inefficiencies identified with MallocTrace.
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Fig. 2. A comparison of the scalability of Uintah before and after the
elimination of inefficiencies identified with MallocTrace.



By analyzing the memory utilization of Uintah we were able
quickly identify and eliminate memory inefficiencies leading
to significant increases in performance. It took less than a
week from the deployment of this tool to achieve the results
shown here. Inefficiencies like those found in Uintah are not
uncommon in large legacy codes. Undoubtedly similar issues
will exist when moving to hundreds of thousands of cores.
Determining which portions of Uintah need to be redesigned
is a challenging task that is made easier with tools that are
capable of running on large-scale problems like MallocTrace,
see [26].

IV. DYNAMIC LOAD BALANCING

The variety of available simulation components within Uin-
tah necessitates a sophisticated load balancer that is flexible
enough to handle all of Uintah simulations. Dynamic load
balancing can be described as the minimization of three
competing costs: The cost of load imbalance, the cost of
communication, and the cost to generate the load distribution.

A load imbalance occurs when one or more cores are
assigned more work than other cores. A large load imbal-
ance will cause cores to wait for other cores to finish their
computation leading to poor utilization of system resources.

In addition, too much communication can also cause perfor-
mance issues. Communication across the network is slow rel-
ative to the time for computation and can easily dominate the
time to reach a solution. In many simulations, communication
is predominantly local, meaning that only a small area around
each patch must be communicated from physically neighbor-
ing patches. By clustering neighboring patches together the
framework can greatly reduce the necessary communication
and significantly affect the overall runtime.

Finally, with AMR methods the workload changes as the
mesh changes. In addition, with particle methods the workload
can change on each time step as particles move throughout
the domain. This can necessitate that load balancing occurs
often, making it important that the time to generate the patch
distribution is small relative to the overall computation.If
a slow load balancing algorithm is used and load balancing
occurs often, the time to load balance can dominate the overall
runtime. In this case, it may be preferable to use a faster load
balancing algorithm that produces more load imbalance.

The need for fast and effective load balancing techniques
has led to the development of widely used load balancing
applications like Metis [27], Jostle [28], and Zoltan [29],
[30]. Uintah has recently added support for the Zoltan load
balancing package, providing easy access to a number of
algorithms. In addition, Uintah can use its own highly parallel
load balancing algorithm [31] that utilizes space-filling curves,
which has been shown to be better than Zoltan’s space-filling
curve load balancer within Uintah [32].

To balance the computation effectively load balancers need
an estimate of the cost (execution time) of the computation.
A poor estimate of the cost will lead to a decrease in load
balance. Thus it is important that this estimate be accurate.

One method to estimate these costs is to use algorithmic cost
models.

A. Algorithmic Cost Models

Algorithm cost models (ACM) attempt to model the under-
lying algorithms. For example, the ICE algorithm is a cell-
based algorithm that performs a constant amount of work per
cell and as such the cost is proportional to the number of
cells. Equation (1) below, describes an accurate ACM for ICE,
whereCp is the cost of a patch,Nc is the number of cells in
that patch, andc1 is the constant time execution time the ICE
algorithm on a single cell.

Cp = c1Nc (1)

In addition to performing cell-based computations, MP-
MICE also has particle-based computations in regions where
solid materials exist. Equation 2 below describes a possible
ACM for MPMICE, where Np is the number of particles
within the patch andc2 is the constant execution time on a
particle.

Cp = c1Nc + c2Np (2)

This model is not as accurate as the ICE model because the
work performed by MPMICE is not constant per particle or
cell. In MPMICE, during the equilibration pressure solve, the
simulation performs a local iterative solve on a per-cell basis
[18]. This solve may converge at different rates throughoutthe
domain depending on the underlying physics. Capturing such
behavior in an ACM is a challenging task.

In addition to developing these models, estimates for the
constants must be determined on a per-problem basis. The
constants can vary greatly depending on the underlying phys-
ical processes. To make matters worse these constants can
also vary according to system architectures, compilers, and
compiler optimization flags. In order to achieve an effective
load balance, these constants must be proportionally accurate.
For models with a single constant, like the model used for
ICE, estimating the constant is trivial. However, the difficulty
in estimating these constants increases significantly withthe
number of constants in the model. Maintaining an accurate
list of these constants for each possible problem, architecture,
and compiler combination is not feasible, thus placing the
challenge of estimating these constants on the user.

B. Forecasting Cost Model

Since developing an accurate algorithmic cost model is
challenging, we have added an alternative approach to Uintah
which utilizes a forecasting cost model (FCM) to predict
the cost of each patch based on time series. During task
execution, the time to complete each task on a region of the
domain is recorded and used to update a simple forecasting
model. That model is then used to predict the execution time
on that region in the future. This provides a mechanism to
accurately predict the cost of each patch and eliminates the
need to estimate constants for an ACM. Uintah uses simple



exponential smoothing, which is also known as a fading
memory filter, as its forecasting model [33]. The model is
as follows:

Wr,t+1 = αEr,t + (1 − α)Wr,t, (3)

where Wr,t is the predicted cost at time step t on region r,
Er,t is the actual execution time at time step t on region
r, and α is a weighting factor in the range of [0,1] which
represents the rate of decay on past data. This method can
also be viewed as a weighted moving average where the weight
on past observations decreases exponentially [33]. A smaller
value forα causes the algorithm to put more weight on recent
observations causing the forecast to respond more quickly
to changes in the actual value but also causes the forecast
to become more susceptible to noise. A larger value forα

will cause that data to be smoother eliminating noise but also
causes the forecast to react more slowly to changes in the
actual value.α can be defined in terms of the size of a moving
average window using the following equation:

α =
2.0

T + 1
, (4)

where T is the number of time steps that will contain 99.9%
of the total weight in the weighted average [33]. Uintah uses
a default value of 10 for T.

On the first time step of the simulationWr,t is unavailable,
requiring an estimation of the initial value. For the initial time
step Uintah load balances using the algorithmic cost models
described above. The initial measurements are then used to set
the initial value by settingWr,0 = Er,0. Doing this helps the
forecast to rapidly converge.

A different initialization approach is used when new regions
of refinement are created during the regridding process. During
this process refinement may be added in regions where it
previously did not exist. When these regions are created,Wr,t

must be estimated. Using an ACM would likely produce a
poor estimate that would not be proportionally accurate to the
forecasted values elsewhere in the domain. In order to estimate
the cost while maintaining proportional accuracy, Uintah sets
Wr,t for the new regions equal to the average value ofWr,t

for all regions. This ensures that the initial value for the new
region is at least close to the actual value which also ensures
that the estimation will be accurate within a few time steps and
that load imbalance caused by this estimation will be limited.

To allow for changing patch sets forecasting is performed on
a per-region basis instead of a per-patch basis. The difference
between regions and patches is shown in Figure 3. Regions
are constant-sized portions of the domain that are contained
within a single patch. Patches on the other hand are variable-
sized portions of the domain that may contain many regions.

By forecasting on a per-region basis, the patch set can
change without needing to migrate forecasting data between
the changing patch sets. This necessitates mechanisms to
interpolate the data between regions and patches. Since regions

Regions

Patches

Fig. 3. The difference between regions and patches. Patchesare composed
of one or more fixed size blocks referred to as regions.

are completely contained within patches these mechanisms are
straight forward to describe and implement. The measured
cost for each region is equal to the cost of the patch, times
the proportion of the patch that the region encompasses, as
described in the following equation:

Er,t = Ep,t

Vr

Vp

, (5)

where t is the current time step,Er,t is the measured
computation time for region r,Ep,t is the measured execution
time for patch p,Vp is the volume of patch p, andVr is the
volume of region r. In addition,Wp,t+1 can be defined as the
sum of the weights of all regions contained in patch p:

Wp,t+1 =

r∈p∑

r

(Wr,t+1). (6)

Uintah stores the forecasting data while minimizing both
storage and communication. The forecasting data is stored
locally on each core. When a core executes a task on a
patch, it adds the contribution to its local forecast data using
Equation (5). If a region was owned by a different core in the
past, then local forecast data will exist on multiple cores but
each core will only update its local data. At the end of each
time step the simulation finalizes the forecast data by applying
Equation (3). Updating the forecast data each time step is a
local operation which does not require any communication.
However, communication is required when load balancing
occurs. During load balancing, each core must know the cost
of each patch. This is done by applying Equation (6) locally
and then performing a MPIAllreduce to get the global sum.

In order to keep the data structures for forecasting as small
as possible, contributions are stored in a Standard Template
Library (STL) map, which is a sparse data structure. This
causes the storage per core to be proportional to the number
of patches per core. In addition, when a core has not updated a
region in its map for over T time steps, the contributing weight
for that region is less than 0.1% of the total weight, at this
point we consider the weight to be insignificant and delete it
from the map. This prevents the size of the maps from slowly
increasing over time.

C. Forecasting Results

The effect of forecasting on Uintah’s runtime was tested
using two different simulation components. The first test used



the ICE, multi-material algorithm with explicit time stepping
to simulate the transport of two fluids with a prescribed
initial velocity. For this problem the conservation of mass,
momentum, and energy equations are solved for two inviscid
fluids. The fluids exchange momentum and heat through the
exchange terms in the governing equations. This problem
exercises all of main features of ICE and amounts to solving
eight P.D.E’s, along with two point-wise solves, and one
iterative solve for more information see [18].

The second simulation was C-SAFE’s target problem using
the MPMICE algorithm with explicit time stepping seen in
Section I. In this problem, a steel container filled with an
explosive material is suspended over a fire. As the simulation
progresses, the explosive heats up and ignites causing the
container to rupture resulting in a violent explosion. This
is a complex problem whose computational cost is diffi-
cult to predict. As the container ruptures, the performance
characteristics of the problem rapidly change as pressurized
gasses and explosive materials move across the domain. These
problems were selected because of the complexity of the
relevant physics.

The computational cost of the ICE problem is predictable
and developing an accurate ACM is straight forward. In
contrast, the computational cost of the MPMICE problem is
difficult to predict, hindering the creation of an accurate ACM.
For the ICE simulation, Equation (1) above was used for the
ACM with c1 = 1. For the MPMICE simulation, Equation (2)
above was used for the ACM withc1 = 1 and c2 = 1.25.
While these values are not representative of actual machine
constants, they are proportionally accurate, which is sufficient
for the load balancing process.

Figure 4 shows the difference in load imbalance for the ICE
simulation using a FCM versus an ACM. The load imbalance
varies between 3% and 10% with an average imbalance of
5.3% using the FCM and 6% using the ACM. In this case the
difference in runtime was marginal. This shows that Uintah’s
performance using a FCM is similar to performance using an
accurate ACM.

The load imbalance for the MPMICE simulation can be
seen in Figure 5. When using an ACM, the load imbalance
varies between 13%-35% with an average imbalance of 20%.
This variance is due to rapid changes in the performance
characteristics that are not captured by the current model.
At the same time the load imbalance when forecasting was
relatively constant with an average imbalance of 4%.

The improved load balance led to a substantial increase in
performance seen in Figure 6. When forecasting, the MPMICE
simulation was approximately 15% faster than when using the
ACM.

These results show that forecasting can produce accurate
cost estimations that are at least as effective as an accurate
ACM. In addition, forecasting is able to predict complex
interactions that may be difficult to capture in an ACM leading
to improved cost estimations and reduced runtimes. Higher
order forecasting methods described in [33] have also been
used but provided no benefit over the first order forecasting
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Fig. 4. A comparison of the load imbalance when using an ACM versus a
FCM for ICE. This figure shows there is little difference between the ACM
and the FCM.
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Fig. 5. A comparison of the load imbalance when using an ACM versus a
FCM for MPMICE. This figure shows that using the FCM provides amuch
lower load imbalance than an ACM.
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large improvement in overall runtime.



methods described above. In the future, it may be worthwhile
to use a Kalman filter [34], [35] or other advanced forecasting
methods.

V. SCALABILITY OF AMR IN UINTAH

The scalability of Uintah’s AMR infrastructure was tested
in both the weak and strong sense using both the ICE
problem described in section IV-C and a similar MPMICE
problem that transports a solid explosive through air at mach
2. The MPMICE has the added complexity of representing
the solid with particles. These problems were chosen because
the location of refinement rapidly changes but the total size
of the grid remains fairly constant allowing the scalability to
be accurately measured. The tests were ran on Kraken1. For
weak scalingthe problem size per core was held constant as
the number of cores increases and instrong scaling the total
problem size was held constant while the number of cores
increases.

For the ICE scaling test the time to complete 50 timesteps of
a full AMR simulation was recorded. This problem contained
three mesh levels with each level being a factor of four more
refined than the coarser level. Patches were uniformly sized
with 163 cells in each patch. Regridding and load balancing
were performed as needed and occurred around 5 times in each
problem. The performance was tested for five problem sizes
with each problem size containing approximately four times
as many cells as the previous problem. The smallest problem
contained 1.7 million cells and the largest problem contained
435 million cells.

12 24 48 96 192 384 768 1536 3072 6144 12288 24576 49152 98304

10
1

10
2

M
ea

n 
T

im
e 

P
er

 T
im

es
te

p 
[s

ec
.]

Processors

AMR−ICE Scaling

 

 

Strong
Weak

Fig. 7. The strong and weak scalability up to 98,304 cores of AMR in Uintah
using ICE.

The comprehensive weak and strong scaling up to 98,304
cores for ICE can be seen in Figure 7 and the corresponding
data can be found in Table I. The elimination of efficiencies
within Uintah and improvements to the load balancer have led
to marked improvements to Uintah’s scalability. Good strong

1Kraken is a supercomputer located at the University of Tennessee with
99,072 cores. More information is available at http://www.nics.tennessee.edu/
computing-resources/kraken.

ICE Scaling Data (s)
Strong 1 Strong 2 Strong 3 Strong 4 Strong 5

Weak 1 91.26 93.48 92.04 93.05 105.76
Weak 2 47.35 46.24 46.71 47.18 54.08
Weak 3 22.91 22.65 22.81 23.33 28.01
Weak 4 11.30 11.72 12.37 12.90 17.06
Weak 5 6.46 6.47 7.12 7.32 10.43
Weak 6 4.26 4.65 4.76 5.70 8.67

TABLE I
THE WEAK AND STRONG SCALABILITY DATA SHOWN IN FIGURE 7.

scaling occurred for every problem size tested. In each test
scaling occurred down to approximately one patch per core.
Decent weak scaling also occurred for each test though the
scaling was not ideal.

For the MPMICE test the time to complete 100 timesteps
of the MPMICE simulation using full AMR was recorded.
This problem contained three mesh levels with each level
being a factor of four more refined than the coarser level.
Patches were uniformly sized with83 cells in each patch.
Regridding and load balancing were performed as needed and
occurred 2 times in each problem. The performance was tested
for three problem sizes with each problem size containing
approximately eight times as many cells and particles as the
previous problem. The smallest problem contained approxi-
mately 450 thousand cells and 1.07 million particles and the
largest problem contained 11.6 million cells and 68.8 million
particles.

The comprehensive weak and strong scaling up to 98,304
cores for MPMICE can be seen in Figure 8 and the correspond-
ing data can be found in Table II. This figure shows decent
strong scalability for each problem size tested. At smaller
amounts of work per core the weak scaling was not ideal and
showed an increase in runtime as the processors increased.
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Fig. 8. The strong and weak scalability up to 98,304 cores of AMR in Uintah
using MPMICE.

In order to show where Uintah’s performance can be further
improved a breakdown of the scaling results above will now be
presented. Figures 9 and 10 shows a break down of Uintah’s



MPMICE Scaling Data (s)
Strong 1 Strong 2 Strong 3 Strong 4

Weak 1 5.88 5.82 5.20 5.65
Weak 2 3.81 2.98 2.83 3.22
Weak 3 2.26 1.59 1.57 2.15
Weak 4 1.13 0.87 0.96 1.74
Weak 5 0.69 0.58 0.74 1.58
Weak 6 0.35 0.42 0.63 –

TABLE II
THE WEAK AND STRONG SCALABILITY DATA SHOWN IN FIGURE 8.

strong and weak scalability using ICE. In this figure the narrow
bar represents the maximum time across all cores and the wide
bar represents the average time, with the difference between
those two bars representing the load imbalance. The black line
represents the total time, which is approximately equal to the
sum of the average times. This figure breaks down the simula-
tion timings into five categories. The execution time is the time
spent executing tasks, the global communication time is the
time within collective MPI operations like MPIAllreduce, the
local communication is the time spent posting MPI messages,
the AMR time is the time spent load balancing, regridding,
and scheduling, and the wait time is the time spent within
MPI Wait. The wait time is a combination of time spent
waiting for other tasks to complete so that communication
can be sent (time for synchronization) and waiting for the
communication to occur (time for communication).
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Fig. 9. A break down of the ICE strong scaling in Uintah. The thick bar is
the average time per core and the narrow bar is the maximum time across all
cores.

These figures shows a large amount of time is spent within
task execution and MPIWait. A majority of the MPI Wait
time is due to synchronization. The wait and execution times
scale in the strong sense but as the number of processors
increases the wait time becomes dominate. When weak scaling
the load imbalance in the execution time increases with the
number of processors which also increases the wait time.
Reducing the load imbalance for the large problems would sig-
nificantly improve the weak scalability of Uintah. In addition,
advanced scheduling algorithms may be able to lower the wait
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Fig. 10. A break down of the ICE weak scaling in Uintah. The thick bar is
the average time per core and the narrow bar is the maximum time across all
cores.

time and increase scalability. Research into better scheduling
and load balancing algorithms is currently being undertaken.
Finally this figure also shows that the time spent performing
AMR functions increases rapidly at the last data point. For
weak scaling to much larger problems it is likely that portions
of the AMR infrastructure will need further improvements.

Figures 11 and 12 show the breakdown of the MPMICE
scaling. The strong scaling breakdown shows the wait time
becomes dominate eventually limiting the scalability. The
weak scaling breakdown shows a large increase in the wait
time which is due to increases in the load imbalance in the
local communication and execution time. This increase is
likely due to either synchronization issues or inefficiencies in
the MPI library. The source of theses increase is currently
being investigated.
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Fig. 11. A break down of the MPMICE strong scaling in Uintah. The thick
bar is the average time per core and the narrow bar is the maximum time
across all cores.
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Fig. 12. A break down of the MPMICE weak scaling in Uintah. Thethick
bar is the average time per core and the narrow bar is the maximum time
across all cores.

VI. CONCLUSIONSAND FUTURE WORK

The primary strength of Uintah is that simulation designers
can develop large-scale parallel AMR simulations with little
understanding of the underlying parallelism. This allows for
rapid development of large-scale simulations for a wide variety
of problems using Uintah with features like, automated load
balancing, parallel I/O, and checkpointing. Uintah’s compo-
nent design allows for the use of sophisticated algorithms
without burdening users by complicating the individual com-
ponents.

In preparation for emerging petascale architectures, it is
important that the performance of frameworks like Uintah are
analyzed for inefficiencies. Poor performance in any portion of
the framework can hinder performance for the entire simula-
tion. Because of this we have placed substantial effort into
identifying, analyzing, and eliminating inefficiencies within
Uintah using tools like TAU and MallocTrace. By analyzing
Uintah’s memory usage at large numbers of cores with Malloc-
Trace, we were able to rapidly identify and eliminate multiple
inefficiencies. This led to a substantial decrease in memory
usage and corresponding increase in performance.

The effect of load balance on the overall performance of
a simulation is substantial. A poor load balance will cause
poor utilization of system resources preventing scalability.
Because of this it is essential that we use effective load
balancing algorithms. However, these algorithms will onlybe
effective if the cost estimates provided to them are accurate.
Poor cost estimates will cause a poor load balance regardless
of what load balancing algorithm is used. While algorithmic
cost models can be used to produce these estimates, they are
often prone to large error and require the user to estimate
model constants. We have shown that an alternative method
for estimating these costs eliminates the constants while still
providing an accurate estimate that is at least as effective
as, and in many cases better than, algorithmic cost models.
In the future, more sophisticated forecasting methods could

be used to further improve estimates allowing for a greater
utilization of system resources. We are currently working
on automatically estimating the ACM constants using least
squares methods in addition to utilizing Kalman filters [34],
[35].

The scalability shown in this paper is due to work performed
by the C-SAFE team over the last five years that has focused
on algorithm and data structure design and efficiency [5], [31],
[32]. In particular improvements to the memory utilization
and load balancer have led to significant improvements to
the overall scalability, which has been shown in both strong
and weak sense for AMR problems within Uintah on up to
98,304 cores on Kraken. We expect even greater scalability
when larger machines are made available.
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