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Abstract—Uintah is a highly parallel and adaptive multi- more closely at the underlying physical phenomena than is
physics framework created by the Center for Simulation of possible through experimental tests.
Accidental Fires and Explosions in Utah. Uintah, which is The target simulation scenario for C-SAFE is a small

built upon the Common Component Architecture, has facilitaed lindrical steel tai filled with plastic bonded v
the simulation of a wide variety of fluid-structure interaction cylindrical steel container hifled with plastic bonded exgve

problems using both adaptive structured meshes for the fluid (PBX-9501) subjected to convective and radiative heat 8uxe

and particles to model solids. Uintah was originally desigad from a fire which heats the container and the PBX. After some
for, and has performed well on, about a thousand processors. amount of time the critical temperature in the PBX is reached
The evolution of Uintah to use tens of thousands processorsah and the explosive begins to rapidly decompose into a gas.

required improvements in memory usage, data structure degn, . - . . .
load balancing algorithms and cost estimation in order to inprove The solid-to-gas reaction pressurizes the interior of tieels

strong and weak scalability up to 98,304 cores for situatiosin container causing the shell to rapidly expand and eventuall
which the mesh used varies adaptively and also cases in whichrupture. The gaseous products of reaction form a blast wave

particles that represent the solids move from mesh cell to n#h  that expands outward a|ong with pieces of the container and

cell. the unreacted PBX.
Keywords-Adaptive Mesh Refinement, Parallelism, Load Bal-  Simulating this problem requires expertise from a wide
ancing variety of disciplines including combustion, structuralem

chanics, and fluid dynamics. In addition, such a problem
requires a large amount of processing power necessitating
The University of Utah Center for the Simulation of Acci-the need for both adaptive mesh refinement (AMR) [2] and
dental Fires and Explosions (C-SAFE) [1] is a Department pfrallelism. AMR focuses the computational resources wher
Energy ASC center that focuses on providing state-of-tfie-aneeded by adding refinement in areas where rapidly evolving
science-based tools for the numerical simulation of actd@le physical processes are occurring. For example, in the clse o
fires and explosions. The primary objective of C-SAFE hake exploding container mentioned above; the container, th
been to provide a software system in which fundamental cheexplosive, and the pressure wave all need to be highly redolv
istry and engineering physics are fully coupled with noaéin where as the surrounding atmosphere has a lower resolution
solvers and visualization tools, thereby integrating efipe requirement. Even with AMR, the processing requirements
from a wide variety of disciplines. The creation of Uintatshafor such a problem are still large necessitating the use of
furthered C-SAFE’s understanding of fires, explosions, ammhrallelism.
other problems involving complex fluid-structure inteians. The need for parallelism, AMR, and a wide variety of
For example, on August 11, 2005 a truck carrying 35,5Qthysics has led to the development of the Uintah Computa-
pounds of explosives down Utah’s Spanish Fork Canydional Framework [1], [3], [4]. Uintah, which was developed
overturned and caught fire. Within minutes the truck detedatby C-SAFE provides a large degree of encapsulation that
with a force much larger than expected leaving behind alows scientists to focus on their area of expertise withou
70 foot crater. Fortunately no one was hurt. Why did &lly understanding complexities outside of their domain.
detonation occur as opposed to a deflagration, which is akever In preparation for petascale architectures and simulation
orders of magnitude less violent? Could the packing of thke performance of frameworks like Uintah must be ana-
individual explosive charges influence the propagationhef tlyzed and optimized. Poor performance in any portion of
combustion wave, or the amount of energy released? Thesethe framework can have a significant impact on the overall
the types of questions that C-SAFE is addressing and hopeg#&rsformance. Achieving a high degree of scalability for AMR
further address through the use of future petascale silonkat based simulations is challenging due to poor scalability as
Large-scale simulations have allowed C-SAFE to further tledciated with the changing grid. With AMR, whenever the
understanding of explosions by providing the ability to koogrid changes, a number of operations must be performed.

|. INTRODUCTION



For example, the new grid must be created, work must redependent of the simulation components will be increglgin
load balanced and migrated to the owning cores, and thecessary.

communication schedule must be created. In the past, optiUintah achieves parallelism by dividing the grid into hex-
mizations to these operations have led to improvementsahedral mesh patches, which are uniquely assigned to cores.
scalability within general purpose AMR frameworks [5]=[7]Each core executes the tasks on its assigned patches achievi
Previously application specific AMR codes have been showndomain-based parallelism. When a task requires a vari-
to scale up to 60,000 cores [8], [9]. The challenge is to sedle with a non-zero stencil width, communication between
if a general purpose framework such as Uintah is capable rfighboring patches is required before the task can execute
scaling to such numbers of cores. We address this challengging the task graph and the core assignments for each patch,
by: describing Uintah and its novel approach to parallelisitintah determines the communication necessary and sagedul
describing a tool used to identify inefficiencies in memorgommunication and computation at the appropriate timek. Al
usage and data structures, and presenting a new method¢dmmunication, including intra-level (within a single &y,
estimate costs used in load balancing, which together hawmger-level (between AMR levels), and data migration after

led to substantial improvements in Uintah’s scalability. load balancing is included in this schedule. The schedule is
then executed repeatedly with each execution correspgndin
I1. UINTAH to a single time step of the simulation. In static grid compu-

tations, this schedule is created once and reused for tlre ent

The Uintah computational framework, is a set of parakimulation. However, in AMR computations the schedule must
lel software components and libraries built upon the DOBe recreated whenever the patch set changes (regridding) or
Common Component Architecture (CCA) that facilitate theshenever the patch assignments change (load balancing). Th
solution of partial differential equations (PDEs) on stuwed framework also utilizes parallel 1/0 to store simulationtala
AMR grids. Uintah is a sophisticated framework that can-intdor use in checkpointing, restarting, and visualizatiorthivi
grate multiple simulation components, analyze the depende/isit [10].
cies and communication patterns between them, and effigient Uintah was originally designed for a few thousand cores and
execute the resulting multi-physics simulation. Uintalpéoys  has been used regularly for AMR simulations with up to 2,000
an abstract task graph representation to describe compuieres. However, scalability at larger numbers of cores was
tion and communication [3], [4]. Through this mechanisnproblematic because the memory utilization, data strestur
Uintah components delegate decisions about parallelism aad load balancing did not scale well on 4,000 or more cores.
a framework component, which determines communication particular, memory utilization was an issue due to data
patterns and characterizes the computational workloagidete structures that consumed memory on the order of the number
for global resource optimization. This allows paralleligm of cores or the number of patches. As the number of cores or
be integrated between multiple components while maintgini patches increased the size of these data structures waald al
overall scalability. Uintah also analyzes the structuretied increase eventually exceeding the available resourcesriRlg
computation and automatically enables load balancinga datese inefficiencies were resolved through the creationtodha
communication, parallel I/O, checkpointing and restgrtaa- that aides in the tracking memory allocations over time.SEhe
pabilities. improvements are described in Section Il1.

One of the primary strengths of Uintah is that application The component design has allowed Uintah to excel as a
designers can develop large-scale parallel AMR simulatioresearch platform. Components can be swapped in and out,
with little understanding of the underlying parallelisno @o allowing them to be developed and tested within the entire
this the designers must specify their algorithm as a seriesfeamework, without affecting other components. This has le
serial tasks that run on a hexahedral mesh patch. Each task highly flexible simulation package which has been able to
specifies the computation to be performed for a single tinsmulate a wide variety of problems including shape charges
step and the related variable dependencies. Variable depen stage-separation in rockets, the biomechanics of microves
cies state what variables the task requires for the comipuatatsels [11], the properties of foam under large deformatidj,[1
(along with the stencil width) and what variables the taskdimoand the evolution of large pool fires caused by transporatio
ifies or computes. Using these dependencies, Uintah creaesidents [13], in addition to the exploding container scén
a directed acyclic task graph that specifies the task exatutdescribed in Section .
order and the required communication for the simulatiorisTh Uintah currently contains three main simulation algorithm
design shields developers from the parallelism while albmv or components, that are capable of using AMR: i) the ICE
Uintah to utilize highly sophisticated communication patts compressible multi-material CFD formulation [14]-[16]) i
including a large amount of asynchronous communication atite particle-based Material Point Method (MPM) [17] for
message coalescing. By using these advanced communicasioactural mechanics, and iii) the combined fluid-struetur
techniques Uintah is able to hide the cost of some of thateraction algorithm MPMICE [18]. In addition, Uintah &t
communication by overlapping it with computation. As werates numerous sub-components including equations tef sta
move to petascale architectures advanced frameworks sgolnstitutive models, and reaction models.
as Uintah that can implement advanced parallel techniquedCE is a “multi-material” CFD algorithm that was developed



by Kashiwa and others at LANL [14]-[16]. This technique catool logs memory allocations in C++ programs through a serie
be used in both incompressible and compressible flow regimes macros and library hooks. The logs contain information
which is necessary when modeling fires and explosions. Thigluding the file name and line number where the allocation
method conserves mass, momentum, energy, and the exchawpeirred which is useful for tracking memory usage. The
these quantities between materials. tool also provides a basic mechanism to parse the logs and
The Material Point Methods a particle method that is usedprovides a summary of memory usage at any given time in
to evolve the equations of motion for the solid materials N\MIP the simulation. This allows a user to see where memory is
is a powerful technique for computational solid mechanicallocated at any point in the simulation. The low memory
and has found favor in many applications involving compleaverhead allows the tool to be used with a large number of
geometries [11], large deformations [12], and fracture][19cores on programs like Uintah.
Originally described by Sulsky, et al., [20], MPM is an This tool has allowed us to rapidly identify and eliminate
extension to solid mechanics of FLIP [21], [22], which is anefficiencies in memory usage at large numbers of cores.
particle-in-cell (PIC) method for fluid flow simulation [23] The effect of eliminating these inefficiencies can be seen
MPM simulations have added complexity over ICE simuldn Figure 1. This graph shows an algorithmic decrease in
tions because particles move throughout the simulatiorthvhimemory usage. Prior to the optimizations the memory usage
can causes load imbalance. would sometimes increase with the number of cores. The same

increase was not seen after the optimizations.
Ill. PEFORMANCE& M EMORY IMPROVEMENTS

The original implementation of the Uintah framework used a
few data structures that had memory complexity on the order 10 : ——

. —e—Before Optimizations
of the number of patches or cores. As the problem size or —-— After Optimizations
number of cores increased the memory requirement of these
data structures would also increase.

Uintah has been in development for over ten years and now
contains around a half a million lines of code. Uintah was
initially designed for upwards of a thousand cores. The data
structures and algorithms used in Uintah worked well for a
few thousand cores but became inefficient when moving to
tens of thousands of cores. Inefficiencies like these will be
common in many codes attempting to move onto petascale
platforms. Identifying these inefficiencies in large legaodes y ‘ ‘ ‘ ‘ ‘ ‘ ‘
like Uintah is a challenging task that has been a significant T T
focus of some C-SAFE personnel. Many inefficiencies within
Uintah have beep identified using parallel profiling took_eli Fig. 1. A comparison of the memory usage of Uintah before dtef the
TAU [24]. In particular, TAU was recently used to identify aelimination of inefficiencies identified with MallocTrace.
performance bottleneck within the task scheduling alamit

that was preventing scalability to large numbers of cores fo Figure 2 shows the corresponding increase in scalabiliey du

some problems. However, we have been unable to use Tf§khe elimination of inefficiencies identified with Mallocice.
on very large problems on large numbers of cores due to large

overheads in both memory and processing time. In particular s Scaling - ICE 3D AMR Blastwave

on some problems we wom_JId_ be unable to run at large scales o ‘ " [—e—Before Optimzations
due to lack of memory. Similar problems with overhead on —-— After Optimizations
have been reported in [25]. These overheads have necedsitat
different methods to identify these inefficiencies.

One method that proved to be successful in Uintah was to
look at memory allocation. By looking at memory allocation
between strong scaling runs we were able to quickly identify
portions of the code that did not strong scale in terms of
memory usage. Poor scalability within memory utilizatianc
indicate poor scalability in application time. For exampfe
memory allocation is proportional to the number of processo
then at minimum a component of the runtime must also be ‘ ‘ ‘ ‘ ‘ ‘ ‘
proportional to the number of processors. B eors T 20

The need for this type of analysis has led to the development
of MallocTrace [26]. MallocTrace is a IOW'mem0ry'over}’]eaﬁlig. 2. A comparison of the scalability of Uintah before ariterathe
tool for tracking memory usage within an application. Thislimination of inefficiencies identified with MallocTrace.

Memory Usage - ICE 3D AMR Blastwave

Memory Usage (MB)
o
o

Elapsed Time [sec.]




By analyzing the memory utilization of Uintah we were abl®©ne method to estimate these costs is to use algorithmic cost
quickly identify and eliminate memory inefficiencies leagi models.
to significant increases in performance. It took less than a _—
week from the deployment of this tool to achieve the result%' Algorithmic Cost Models
shown here. Inefficiencies like those found in Uintah are not Algorithm cost models (ACM) attempt to model the under-
uncommon in large legacy codes. Undoubtedly similar issub#ng algorithms. For example, the ICE algorithm is a cell-
will exist when moving to hundreds of thousands of coreased algorithm that performs a constant amount of work per
Determining which portions of Uintah need to be redesign&gll and as such the cost is proportional to the number of
is a challenging task that is made easier with tools that a¢ells. Equation (1) below, describes an accurate ACM for,ICE
capable of running on large-scale problems like Malloc&acwhereC;, is the cost of a patchy. is the number of cells in
see [26]. that patch, and; is the constant time execution time the ICE

algorithm on a single cell.
IV. DYNAMIC LOAD BALANCING
. . . . . . Cp =c1 N, (1)

The variety of available simulation components within Uin-
tah necessitates a sophisticated load balancer that idlétexi N addition to performing cell-based computations, MP-
enough to handle all of Uintah simulations. Dynamic loat!/CE also has particle-based computations in regions where
balancing can be described as the minimization of thréglid materials exist. Equation 2 below describes a possibl
competing costs: The cost of load imbalance, the cost 86M for MPMICE, where N, is the number of particles
communication, and the cost to generate the load distdbuti Within the patch and:, is the constant execution time on a

A load imbalance occurs when one or more cores ap&ticle.
assigned more work than other cores. A large load imbal-
ance will cause cores to wait for other cores to finish their Cp = c1Ne + 2Ny (2)

computation leading to poor utilization of system resosrce  pig model is not as accurate as the ICE model because the

In addition, too much communication can also cause perfQirk performed by MPMICE is not constant per particle or
mance issues. Communication across the network is slow rglyj |, MPMICE, during the equilibration pressure solvee t
ative to the time for computation and can easily dominate tgnyjation performs a local iterative solve on a per-cetiia
time to reach a solution. In many simulations, communicetiq1g] This solve may converge at different rates througtibat

is predominantly local, meaning that only a small area atouiomain depending on the underlying physics. Capturing such
each patch must be communicated from physically neighb@shavior in an ACM is a challenging task.

ing patches. By clustering neighboring patches together th |y aqgition to developing these models, estimates for the
framework can greatly reduce the necessary communicati@fhstants must be determined on a per-problem basis. The
and significantly affect the overall runtime. constants can vary greatly depending on the underlying-phys
Finally, with AMR methods the workload changes as thga| processes. To make matters worse these constants can
mesh changes. In addition, with particle methods the waiklo 5|50 vary according to system architectures, compilers, an
can change on each time step as particles move throughgstpiler optimization flags. In order to achieve an effeetiv
the domain. This can necessitate that load balancing occlygd balance, these constants must be proportionally ateur
often, making it important that the time to generate the Ipat¢or models with a single constant, like the model used for
distribution is small relative to the overall computatidf. ICE, estimating the constant is trivial. However, the diffty
a slow load balancing algorithm is used and load balancifg estimating these constants increases significantly thieh
occurs often, the time to load balance can dominate the bveig,mber of constants in the model. Maintaining an accurate
runtime. In this case, it may be preferable to use a fastel logst of these constants for each possible problem, ardhitec
balancing algorithm that produces more load imbalance. and compiler combination is not feasible, thus placing the

The need for fast and effective load balancing techniqugRallenge of estimating these constants on the user.
has led to the development of widely used load balancing

applications like Metis [27], Jostle [28], and Zoltan [29]B- Forecasting Cost Model
[30]. Uintah has recently added support for the Zoltan load Since developing an accurate algorithmic cost model is
balancing package, providing easy access to a numbercbllenging, we have added an alternative approach to hlinta
algorithms. In addition, Uintah can use its own highly pkefal which utilizes a forecasting cost model (FCM) to predict
load balancing algorithm [31] that utilizes space-fillingnees, the cost of each patch based on time series. During task
which has been shown to be better than Zoltan’s space-filliegecution, the time to complete each task on a region of the
curve load balancer within Uintah [32]. domain is recorded and used to update a simple forecasting
To balance the computation effectively load balancers nestbdel. That model is then used to predict the execution time
an estimate of the cost (execution time) of the computatioon that region in the future. This provides a mechanism to
A poor estimate of the cost will lead to a decrease in loaatcurately predict the cost of each patch and eliminates the
balance. Thus it is important that this estimate be accurateed to estimate constants for an ACM. Uintah uses simple
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exponential smoothing, which is also known as a fading p—— _ o | o
memory filter, as its forecasting model [33]. The model is ,, Regions L \ -
as follows: o I (8 R

Patches :_ - : - - :
Wiisr = aB + (1 —a)W,,, (3) Lo : L

Wher_e W’Vt is the predlCte_d CO_St at tlm_e step t on reglon_ IE’ig. 3. The difference between regions and patches. Pataieesomposed
E, . is the actual execution time at time step t on regiost one or more fixed size blocks referred to as regions.

r, and « is a weighting factor in the range of [0,1] which

represents the rate of decay on past data. This method can

also be viewed as a weighted moving average where the weighg completely contained within patches these mechanisens a

on past observations decreases exponentially [33]. A smalstraight forward to describe and implement. The measured
value fora causes the algorithm to put more weight on recegost for each region is equal to the cost of the patch, times
observations causing the forecast to respond more quickiye proportion of the patch that the region encompasses, as
to changes in the actual value but also causes the foreddgscribed in the following equation:

to become more susceptible to noise. A larger value dfor

will cause that data to be smoother eliminating noise but als V.,

causes the forecast to react more slowly to changes in the Ere = Epigrs ®)

e : : Vo
actual valuea can be defined in terms of the size of a moving h tis th i ¢ is th d
average window using the following equation: where LS the current ime sep’ﬂr,t IS the measure
computation time for region i, , is the measured execution

time for patch p,V, is the volume of patch p, and,. is the

a = ﬂ, (4) volume of region r. In additionl,, ;1 can be defined as the
T+1 sum of the weights of all regions contained in patch p:
where T is the number of time steps that will contain 99.9%
of the total weight in the weighted average [33]. Uintah uses rep
a default value of 10 for T. Woitr = > (Wripa). (6)
On the first time step of the simulatidfr,. , is unavailable, r

requiring an estimation of the initial value. For the initiene Uintah stores the forecasting data while minimizing both
step Uintah load balances using the algorithmic cost modelgrage and communication. The forecasting data is stored
described above. The initial measurements are then used to§cally on each core. When a core executes a task on a
the initial value by settingV’,.o = E\o. Doing this helps the patch, it adds the contribution to its local forecast datagis
forecast to rapidly converge. Equation (5). If a region was owned by a different core in the
A different initialization approach is used when new regionyast, then local forecast data will exist on multiple coras b
of refinement are created during the regridding processingur each core will only update its local data. At the end of each
this process refinement may be added in regions wherejjhe step the simulation finalizes the forecast data by apgly
previously did not exist. When these regions are credtéd, Equation (3). Updating the forecast data each time step is a
must be estimated. Using an ACM would likely produce gycal operation which does not require any communication.
poor estimate that would not be proportionally accuraten® t However, communication is required when load balancing
forecasted values elsewhere in the domain. In order to e&imoccurs. During load balancing, each core must know the cost
the cost while maintaining proportional accuracy, Uintatss of each patch. This is done by applying Equation (6) locally
W, for the new regions equal to the average valuéigf; and then performing a MPAllreduce to get the global sum.
for all regions. This ensures that the initial value for tr@wn  |n order to keep the data structures for forecasting as small
region is at least close to the actual value which also essugg; possible, contributions are stored in a Standard Templat
that the estimation will be accurate within a few time stelp)SaLibrary (STL) map, which is a sparse data structure. This
that load imbalance caused by this estimation will be ”mitecauses the Storage per core to be proportiona| to the number
To allow for changing patch sets forecasting is performed @ patches per core. In addition, when a core has not updated a
a per-region basis instead of a per-patch basis. The diftere region in its map for over T time steps, the contributing virtig
between regions and patches is shown in Figure 3. Regiggs that region is less than 0.1% of the total weight, at this
are constant-sized portions of the domain that are cordaingoint we consider the weight to be insignificant and delete it

within a single patch. Patches on the other hand are vafiabi@&m the map. This prevents the size of the maps from slowly
sized portions of the domain that may contain many regiongcreasing over time.

By forecasting on a per-region basis, the patch set can .
change without needing to migrate forecasting data between Forecasting Results
the changing patch sets. This necessitates mechanisms tbhe effect of forecasting on Uintah’s runtime was tested
interpolate the data between regions and patches. Sinimasegusing two different simulation components. The first tesidus



the ICE, multi-material algorithm with explicit time steipg ICE = FCM vs ACM - Load Imbalance

to simulate the transport of two fluids with a prescribed T T T T o Algorithmic Cost Model
initial velocity. For this problem the conservation of mass ol *_Forecasting Cost Model|
momentum, and energy equations are solved for two inviscid
fluids. The fluids exchange momentum and heat through the — _ = 1
exchange terms in the governing equations. This problem <
exercises all of main features of ICE and amounts to solving R 1
eight P.D.E’s, along with two point-wise solves, and one émf |
iterative solve for more information see [18]. g

The second simulation was C-SAFE'’s target problem using ~ 10p . R P SN 1
the MPMICE algorithm with explicit time stepping seen in 83 oo SRy g ° g %,;-0‘,:.‘8& ° ¥y
Section 1. In this problem, a steel container filled with an A S m ‘.‘f._°'-;°-§."<>‘?'o'2:%5 o o]
explosive material is suspended over a fire. As the simulatio o RN
progresses, the explosive heats up and ignites causing the Co N estep

container to rupture resulting in a violent explosion. This

is a complex problem whose computational cost is difffig. 4. A comparison of the load imbalance when using an ACKSwe a
cult to predict. As the container ruptures, the performan&€M for ICE. This figure shows there is little difference beem the ACM
characteristics of the problem rapidly change as pressdiriZ2™d the FCM.

gasses and explosive materials move across the domaire Thes

problems were selected because of the complexity of the MPMICE - FCM vs ACM - Load Imbalance

relevant physics. 7 T@® | [ o Algorinmi Cost Mode
The computational cost of the ICE problem is predictable sl *_Forecasting Cost Model]

and developing an accurate ACM is straight forward. In =¥ =

contrast, the computational cost of the MPMICE problem is \@25,"*9 e o

difficult to predict, hindering the creation of an accuratéM. T’g 00 o

For the ICE simulation, Equation (1) above was used for the &% > & a&® .2 o |

ACM with ¢; = 1. For the MPMICE simulation, Equation (2) £l ° o ° PR gm %o

above was used for the ACM with; = 1 and ce = 1.25. 3 ° °

While these values are not representative of actual machine = 1of 1

constants, they are proportionally accurate, which is cefiit . e e, " .

for the load balancing process. BT Tty e
Figure 4 shows the difference in load imbalance for the ICE ot ;0 PR 70 “éo '50' o

simulation using a FCM versus an ACM. The load imbalance Timestep

varies between 3% and 10% with an average imbalance of

5.3% using the FCM and 6% using the ACM. In this case th®y. 5. A comparison of the load imbalance when using an ACKsw& a

difference in runtime was marginal. This shows that UingahFCM for MPMICE. This figure shows that using the FCM providemach
. s . lower load imbalance than an ACM.

performance using a FCM is similar to performance using an

accurate ACM.

The load imbalance for the MPMICE simulation can be MPMICE Execution Time - FCM vs ACM
seen in Figure 5. When using an ACM, the load imbalance 7 [ o Algorithmic Cost Model
varies between 13%-35% with an average imbalance of 20%. 5 » Forecasting Cost Model
This variance is due to rapid changes in the performance
characteristics that are not captured by the current model. o 00 1
At the same time the load imbalance when forecasting was ¢ . ;“’o % o
relatively constant with an average imbalance of 4%. S b 350 %  oape . oFs 0

The improved load balance led to a substantial increase in § o 0y © ° . LI N % 0o,
performance seen in Figure 6. When forecasting, the MPMICE X om%‘*” . o °
simulation was approximately 15% faster than when using the 5P % ) _".___:.u.* u.‘*"."." e PR
ACM. . Sl .

These results show that forecasting can produce accurate 37";'-.‘_-" 1
cost estimations that are at least as effective as an aecurat T T T
ACM. In addition, forecasting is able to predict complex Timestep

interactions that may be difficult to capture in an ACM leagin
to improved cost estimations and reduced runtimes. Highigg. 6. A comparison of the time spent in task execution in MEH using

order forecasting methods described in [33] have also be¥h/CM versus a FCM. This figure shows that the using the FCMtded
arge |mprOVement in overall runtime.

used but provided no benefit over the first order forecasting



" . . ICE Scaling Data (s)
methods described above. In the future, it may be worthwhile Sfrong T Strong 2 Strong 3 Strong 4 Strong| 5

to use a Kalman filter [34], [35] or other advanced forecaptin Weak 1| 91.26 93.48 92.04 93.05 105.74

methods. Weak 2 | 47.35 46.24 46.71 47.18 54.08
Weak 3| 22.91 22.65 22.81 23.33 28.01
Weak 4 | 11.30 11.72 12.37 12.90 17.06
V. SCALABILITY OF AMR IN UINTAH Weak 5 6.46 6.47 7 12 7 82 10.43
The scalability of Uintah’s AMR infrastructure was tested [ Weak 6| 4.26 4.65 4.76 5.70 8.67
in both the weak and strong sense using both the ICE TABLE |

problem described in section IV-C and a similar MPMICE THE WEAK AND STRONG SCALABILITY DATA SHOWN IN FIGURE7.
problem that transports a solid explosive through air athmac
2. The MPMICE has the added complexity of representing
the solid with particles. These problems were chosen becaus
the location of refinement rapidly changes but the total sizgaling occurred for every problem size tested. In each test
of the grid remains fairly constant allowing the scalapilib scaling occurred down to approximately one patch per core.
be accurately measured. The tests were ran on Kfakesr Decent weak scaling also occurred for each test though the
weak scalingthe problem size per core was held constant agaling was not ideal.
the number of cores increases andstrong scalingthe total For the MPMICE test the time to complete 100 timesteps
problem size was held constant while the number of cores the MPMICE simulation using full AMR was recorded.
increases. This problem contained three mesh levels with each level
For the ICE scaling test the time to complete 50 timestepsioéing a factor of four more refined than the coarser level.
a full AMR simulation was recorded. This problem containePatches were uniformly sized witk® cells in each patch.
three mesh levels with each level being a factor of four moRegridding and load balancing were performed as needed and
refined than the coarser level. Patches were uniformly sizedcurred 2 times in each problem. The performance was tested
with 16 cells in each patch. Regridding and load balancinfgr three problem sizes with each problem size containing
were performed as needed and occurred around 5 times in eapproximately eight times as many cells and patrticles as the
problem. The performance was tested for five problem sizpgevious problem. The smallest problem contained approxi-
with each problem size containing approximately four timesately 450 thousand cells and 1.07 million particles and the
as many cells as the previous problem. The smallest probl¢srgest problem contained 11.6 million cells and 68.8 iwili
contained 1.7 million cells and the largest problem coredin particles.

435 million cells. The comprehensive weak and strong scaling up to 98,304
cores for MPMICE can be seen in Figure 8 and the correspond-
AMR-ICE Scaling ing data can be found in Table II. This figure shows decent
: strong scalability for each problem size tested. At smaller
-°-Weak amounts of work per core the weak scaling was not ideal and
5 showed an increase in runtime as the processors increased.
2l
g
g AMR-MPMICE Scaling
E 10 F : : : : —e—Strong ||
5 -eo-Weak
£ —
'; 10! 8
3 9,
s g
3
£
S
1‘2 2‘4 A‘B 9‘5 1;2 3‘34 7‘58 15‘36 30‘72 51‘44 122‘88 24;76 49152 98304 &
Processors g
E 10° ¢
Fig. 7. The strong and weak scalability up to 98,304 coresMfRAN Uintah S
using ICE. =
The comprehensive weak and strong scaling up to 98,304

. i ) 1‘2 2‘4 4‘8 9‘6 1‘92 38‘4 7é8 15‘36 30‘72 61‘44 12;88 24.%76 49:;.52 951‘%04
cores for ICE can be seen in Figure 7 and the corresponding Processors

d"."ta. Car.] be founq in Table . The elimination of eff|C|enC|e|§| . 8. The strong and weak scalability up to 98,304 coresMRAN Uintah
within Uintah and improvements to the load balancer have Igg?ng MPMICE.

to marked improvements to Uintah’s scalability. Good styon

. , N _ In order to show where Uintah’s performance can be further

Kraken is a supercomputer located at the University of Tesee with . dab kd fth l | b il b
99,072 cores. More information is available at http://wwias.tennessee.edu/ Improved a .rea own of the scaling resuits above wi HQW e
computing-resources/kraken. presented. Figures 9 and 10 shows a break down of Uintah's



MPMICE Scaling Data (s) ICE Weak Scaling Breakdown
Strong 1  Strong 2  Strong 3 Strong ¢ : i T i
Weak 1| 5.88 5.82 5.20 5.65 ol =§f§§;‘|“20mm
Weak 2 | 3.81 2.98 2.83 3.22 [ JLocal Comm
Weak 3 2.26 1.59 1.57 2.15 *|| I MPI Wait
Weak 4 1.13 0.87 0.96 1.74 L[| IlAMR
Weak 5 0.69 0.58 0.74 1.58
Weak 6 0.35 0.42 0.63 - or
TABLE Il

THE WEAK AND STRONG SCALABILITY DATA SHOWN IN FIGURE 8.

Mean Time Per Timestep [sec.]

~
T

-
T

strong and weak scalability using ICE. In this figure the oarr
bar represents the maximum time across all cores and the wide
bar represents the average time, with the difference betwee Processors

those two bars representing the load imbalance. The blaek i

represents the total time, which is approximately equaht® tFig. 10. A break down of the ICE weak scaling in Uintah. Thektbar is
sum of the average times. This figure breaks down the Simul%efeaé\{erage time per core and the narrow bar is the maximum dicross all
tion timings into five categories. The execution time is tiheet

spent executing tasks, the global communication time is the

time within collective MPI operations like MPAllreduce, the

local communication is the time spent posting MPI messagéisje and increase scalability. Research into better sdimegu
the AMR time is the time spent load balancing, regriddinggnd load balancing algorithms is currently being undenrake
and scheduling, and the wait time is the time spent withiainally this figure also shows that the time spent performing
MPI_Wait. The wait time is a combination of time spenfAMR functions increases rapidly at the last data point. For
waiting for other tasks to complete so that communicatiomeak scaling to much larger problems it is likely that pamto
can be sent (time for synchronization) and waiting for thef the AMR infrastructure will need further improvements.

communication to occur (time for communication). Figures 11 and 12 show the breakdown of the MPMICE
scaling. The strong scaling breakdown shows the wait time
becomes dominate eventually limiting the scalability. The

)

ICE Strong Scaling Breakdown

Il Execute : : f P
I Global Comm vyeak sgalln_g breakdqwn shows_ a large increase in th_e wait
T ELocal Comm || time which is due to increases in the load imbalance in the
3 MPI Wait . . . . . . .
g EEAVR local communication and execution time. This increase is
8 1 likely due to either synchronization issues or inefficiescin
o . . .
£ the MPI library. The source of theses increase is currently
'é being investigated.
[
£
£
c
é MPMICE Strong Scaling Breakdown
6 T T T T T
Il Execute
[ Global Comm
sk [_JLocal Comm |
3072 6144 12288 24576 49152 98304 - MPI Walt
Processors Il AMR

Fig. 9. A break down of the ICE strong scaling in Uintah. Thiekhbar is
the average time per core and the narrow bar is the maximum dicnoss all
cores.

These figures shows a large amount of time is spent within
task execution and MPWait. A majority of the MPI Wait
time is due to synchronization. The wait and execution times
scale in the strong sense but as the number of processor:

Mean Time Per Timestep [sec.]

6144 12288 24576 49152 98304

increases the wait time becomes dominate. When weak scaling Processors
the load imbalance in the execution time increases with the

number of processors which also increases the wait tinfég. 11. A break down of the MPMICE strong scaling in UintatheTthick

Reducing the load imbalance for the large problems would Sigr is the average time per core and the narrow bar is the memitime
oo . . . " ross all cores.

nificantly improve the weak scalability of Uintah. In additi,

advanced scheduling algorithms may be able to lower the wait



_MPMICE Weak Scaling Breakdown be used to further improve estimates allowing for a greater

] =§T§§;;‘éomm | utilization of system resources. We are currently working
_ C—JLocal Comm on automatically estimating the ACM constants using least
H =m'RWa“ squares methods in addition to utilizing Kalman filters [34]
St | [35].
g The scalability shown in this paper is due to work performed
5 by the C-SAFE team over the last five years that has focused
E ! on algorithm and data structure design and efficiency [5]],[3
E [32]. In particular improvements to the memory utilization
ém—, and load balancer have led to significant improvements to
the overall scalability, which has been shown in both strong
and weak sense for AMR problems within Uintah on up to
° w2 w536 1228 sag0s 98,304 cores on Kraken. We expect even greater scalability
Processors . .
when larger machines are made available.
Fig. 12. A break down of the MPMICE weak scaling in Uintah. Thiek VIl. ACKNOWLEDGEMENTS
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