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1.1 INTRODUCTION

Fig. 1.1 Depiction of a typical C-SAFE sce-
nario involving hydrocarbon fires and explosions
of energetic materials

The University of Utah Center for the
Simulation of Accidental Fires and
Explosions (C-SAFE) [15] is a De-
partment of Energy ASC center that
focuses on providing state-of-the-art,
science-based tools for the numerical
simulation of accidental fires and ex-
plosions. The primary objective of C-
SAFE has been to provide a software
system in which fundamental chem-
istry and engineering physics are fully
coupled with nonlinear solvers, visu-
alization, and experimental data veri-
fication, thereby integrating expertise
from a wide variety of disciplines. The
primary target scenario for C-SAFE is
the full simulation of metal contain-
ers filled with a plastic-bonded explo-
sive (PBX) subject to heating from a
hydrocarbon pool fire, as depicted in
Figure 1.1. In this scenario, a small
cylindrical steel container (4" outside
diameter) filled with plastic bonded explosive (PBX-9501) is subjected to convective
and radiative heat fluxes from a fire to heat the outside of the container and the PBX.
After some amount of time the critical temperature in the PBX is reached and the ex-
plosive begins to rapidly decompose into a gas. The solid→gas reaction pressurizes
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Fig. 1.2 Cross-section of an energetic device at the point of rupture

the interior of the steel container causing the shell to rapidly expand and eventually
rupture. The gaseous products of reaction form a blast wave that expands outward
along with pieces of the container and the unreacted PBX. The physical processes
in this simulation have a wide range in time and length scales from microseconds
and microns to minutes and meters. An example of this simulation is depicted in
Figure 1.2.

The Uintah Computational Framework, developed as the main computational
workhorse of the C-SAFE Center, consists of a set of parallel software components
and libraries that facilitate the solution of Partial Differential Equations (PDEs) on
Structured AMR (SAMR) grids. Uintah is applicable to a wide range of engineer-
ing domains that require fluid-structure interactions and highly deformable models.
Uintah contains several simulation algorithms, including a general-purpose fluid-
structure interaction code that has been used to simulate a wide array of physical sys-
tems, including stage-separation in rockets, the biomechanics of microvessels [12],
the effects of wounding on heart tissue[17, 18], the properties of foam under large
deformation [7], evolution of transportation fuel fires [25], in addition to the scenario
described above.

The heart of Uintah is a sophisticated computational framework that can inte-
grate multiple simulation components, analyze the dependencies and communication
patterns between them, and efficiently execute the resulting multi-physics simula-
tion. Uintah employs an abstract taskgraph representation to describe computation
and communication. Through this mechanism, Uintah components delegate deci-
sions about parallelism to a scheduler component, which determines communication
patterns and characterizes the computational workloads, needed for global resource
optimization. These features allow parallelism to be integrated between multiple
components while maintaining overall scalability and allow the Uintah runtime to
analyze the structure of the computation to automatically enable load balancing, data
communication, parallel I/O, and checkpoint/restart.



UINTAH OVERVIEW iii

We describe how these simulations are performed in the Uintah framework, be-
ginning with a discussion of the Uintah framework (Section 1.2) and the techniques
to support Structured AMR in this framework (Section 1.3). We will then discuss the
adaptive ICE hydrodynamics solver employed (Section 1.4) and the particle-based
Material Point Method (Section 1.5) that are used in this computation. Subsequently,
we will discuss the results achieved in these computations (Section 1.6). Finally, we
will discuss the status of Uintah and its future (Section 1.7).

1.2 UINTAH OVERVIEW

The fundamental design methodology in Uintah is that of software components that
are built on the DOE Common Component Architecture (CCA) component model.
Components are implemented as C++ classes that follow a very simple interface to
establish connections with other components in the system. The interfaces between
components are simplified because the components do not explicitly communicate
with one another. A component simply defines the steps in the algorithm that will
be performed later when the algorithm is executed, instead of explicitly performing
the computation tasks. These steps are assembled into a dataflow graph, as described
below.

The primary advantage of a component-based approach is that it facilitates the
separate development of simulation algorithms, models, and infrastructure, such
that components of the simulation can evolve independently. The component-based
architecture allows pieces of the system to be implemented in a rudimentary form at
first and then evolve as the technologies mature. Most importantly, Uintah allows
the aspects of parallelism (schedulers, load-balancers, parallel input/output, and so
forth) to evolve independently of the simulation components. This approach allows
the computer science support team to focus on these problems without waiting for
the completion of the scientific applications or vice-versa.

Uintah uses a non-traditional approach to achieving high degrees of parallelism,
employing an abstract taskgraph representation to describe computation and com-
munication that occur in the coarse of a single iteration of the simulation (typically
a timestep or nonlinear solver iteration). Components, by definition, make local
decisions. Yet parallel efficiency is only obtained through a globally optimal do-
main decomposition and scheduling of computational tasks. Consequently, Uintah
components delegate decisions about parallelism to a scheduler component through a
description of tasks and variable dependencies that describe communication patterns,
which are subsequently assembled in a single graph containing all of the computa-
tion in all components. This taskgraph representation has a number of advantages,
including efficient fine-grained coupling of multi-physics components, flexible load
balancing mechanisms, and a separation of application concerns from parallelism
concerns. However, it creates a challenge for scalability that we overcome by creat-
ing an implicit definition of this graph and representing the details of the graph in a
distributed fashion.
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This underlying architecture of the Uintah simulation is uniquely suited to taking
advantage of the complex topologies of modern HPC platforms. Multi-core proces-
sors in SMP configurations combined with one or more communication networks
are common petascale architectures, but applications that are not aware of these dis-
parate levels of communication will not be able to scale to the large CPU counts
for complex problems. The explicit taskgraph structure enables runtime analysis of
communication patterns and other program characteristics that are not available at
runtime in typical MPI-only applications. Through this representation of parallel
structure, Uintah facilitates adapting work assignments to the underlying machine
topology based on the bandwidth available between processing elements.

Tensor product task graphs Uintah enables integration of multiple simulation algo-
rithms by adopting an execution model based on coarse-grained “macro” dataflow.
Each component specifies the steps in the algorithm and the data dependencies be-
tween those steps. These steps are combined into a single graph structure (called
a taskgraph). The taskgraph represents the computation to be performed in single
timestep integration, and the data dependencies between the various steps in the algo-
rithm. Graphs may specify numerous exchanges of data between components (fine-
grained coupling) or few (coarse-grained coupling), depending on the requirements
of the underlying algorithm. For example, the MPM-ICE fluid-structure algorithm
implemented in Uintah (referenced in Section 1.4) requires several points of data ex-
change in a single timestep to achieve the tight coupling between the fluid and solids.
This contrasts with multi-physics approaches that exchange boundary conditions at
fluid-solid interfaces. The taskgraph structure allows fine-grained interdependencies
to be expressed in an efficient manner.

The taskgraph is a directed acyclic graph of tasks, each of which produces some
output and consumes some input (which is in turn the output of some previous task).
These inputs and outputs are specified for each patch in a structured, possibly AMR,
grid. Associated with each task is a C++ method which is used to perform the actual
computation.

A taskgraph representation by itself works well for coupling of multiple compu-
tational algorithms, but presents challenges for achieving scalability. A taskgraph
that represents all communication in the problem would require time proportional to
the number of computational elements to create. Creating this on a single proces-
sor, or on all processors would eventually result in a bottleneck. Uintah addresses
this problem by introducing the concept of a “tensor product taskgraph”. Uintah
components specify tasks for the algorithmic steps only, which are independent of
problem size or number of processors. Each task in the taskgraph is then implicitly
repeated on a portion of patches in the decomposed domain. The resulting graph,
or tensor product taskgraph, is created collectively; each processor contains only the
tasks that it owns and those that it communicates with. The graph exists only as
a whole across all computational elements, resulting in a scalable representation of
the graph. Communication requirements between tasks are also specified implicitly
through a simple dependency algebra.
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Each execution of a taskgraph integrates a single timestep, or a single non-
linear iteration, or some other coarse algorithm step. A portion of the MPM
timestep graph is shown in Figure 1.3. Taskgraphs may be assembled recursively,
with a typical Uintah simulation containing one for time integration and one for
nonlinear integration. An AMR simulation may contain several more for imple-
menting time subcycling and refinement/coarsening operators on the AMR grid.
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Fig. 1.3 An example Uintah task graph for
MPM

The idea of the dataflow graph as
an organizing structure for execution
is well known. The SMARTS [34]
dataflow engine that underlies the
POOMA [2] toolkit shares similar goals
and philosophy with Uintah. The
SISAL language compilers [10] used
dataflow concepts at a much finer gran-
ularity to structure code generation
and execution. Dataflow is a sim-
ple, natural and efficient way of expos-
ing parallelism and managing compu-
tation, and is an intuitive way of rea-
soning about parallelism. What dis-
tinguishes implementations of dataflow
ideas is that each caters to a particu-
lar higher-level presentation. SMARTS
caters to POOMA’s C++ implementa-
tion and stylistic template-based presen-
tation. Uintah’s implementation sup-
ports dataflow (task) graphs) of C++ and
Fortran based mixed particle/grid algo-
rithms on a structured adaptive mesh.

Particle and Grid Support Tasks describe data requirements in terms of their com-
putations on Node, Cell and Face-centered quantities. A task that computes a cell-
centered quantity from the values on surrounding nodes would establish a requirement
for 1 layer of nodes around the cells at the border of a patch. This is termed “nodes
around cells” in Uintah terminology. Likewise, a task that computes a node-centered
quantity from the surrounding particles would require the particles that reside within
1 layer of cells at the patch boundary. The region of data which is required is termed
the “halo region”. Similarly, each task specifies the non-halo data that it will compute.
By defining the halo region in this way, one can specify the communication patterns
in a complex domain without resorting to an explicit definition of the communication
needed. These “computes & requires” lists for each task are collected to create the
full taskgraph. Subsequently, the specification of the halo region is combined with
the details of the patches in the domain to create the tensor product taskgraph. Data
dependencies are also specified between refinement levels in an AMR mesh using
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the same approach, with some added complexity. This can often result in complex
communication, but is still specified using a simple description of data dependencies.

Executing task programs Each component specifies a list of tasks to be performed
and the data dependencies between them. These tasks may also include dependencies
on quantities from other components. A scheduler component in Uintah sets up MPI
communication for data dependencies and then executes the tasks that have been
assigned to it. When the task completes, the infrastructure will send data to other
tasks that require that task’s output.

On a single processor, execution of the taskgraph is simple. The tasks are simply
executed in the topologically sorted order. This is valuable for debugging, since multi-
patch problems can be tested and debugged on a single processor. In most cases, if
the multi-patch problem passes the taskgraph analysis and executes correctly on a
single processor, then it will execute correctly in parallel.

In a multi-processor machine the execution process is more complex. There
are a number of ways to utilize MPI functionality to overlap communication and
computation. In Uintah’s current implementation we process each task in a topolog-
ically sorted order. For each task, the scheduler posts non-blocking receives (using
MPI Irecv) for each of the data dependencies. Subsequently, we call MPI Waitall to
wait for the data to be sent from neighboring processors. After all data has arrived,
we execute the task. When the task is finished, we call MPI Isend to initiate data
transfer to any dependent tasks. Periodic calls to MPI Waitsome for these posted
sends ensure that resources are cleaned up when the sends actually complete.

To accommodate software packages that were not written using the Uintah execu-
tion model, we allow tasks to be specially flagged as “using MPI”. These tasks will
be gang-scheduled on all processors simultaneously, and will be associated with all
of the patches assigned to each processor. In this fashion, Uintah applications can
use available MPI-based libraries, such as PETSc [3] and Hypre [9].

Infrastructure features The taskgraph representation in Uintah enables compiler-
like analysis of the computation and communication steps in a timestep. This analysis
is performed at runtime, since the combination of tasks required to compute the algo-
rithm may vary dramatically based on problem parameters. Through analysis of the
taskgraph, Uintah can automatically create checkpoints, perform load balancing and
eliminate redundant communication. This analysis phase, which we call “compiling”
the taskgraph, is what distinguishes Uintah from most other component-based multi-
physics simulations. The taskgraph is compiled when the grid changes, when the
nature of the algorithm changes, or when load imbalance is detected; basically when-
ever the structure of the communication may change. Uintah also has the ability to
modify the set of components in use during the course of the simulation. This is used
to transition between solution algorithms, such as a fully explicit or semi-implicit
formulation, triggered by conditions in the simulation.

Data output is scheduled by creating tasks in the taskgraph just like any other
component. Constraints specified with the task allow the load balancing component
to direct those tasks (and the associated data) to the processors where data I/O should
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Fig. 1.4 A pressure blast wave reflecting off of a solid boundary

occur. In typical simulations, each processor writes data independently for the por-
tions of the dataset which it owns. This requires no additional parallel communication
for output tasks. However, in some cases this may not be ideal. Uintah can also
accommodate situations where disks are physically attached to only a portion of the
nodes, or a parallel filesystem where I/O is more efficient when performed by only a
fraction of the total nodes.

Checkpointing is obtained by using these output tasks to save all of the data at
the end of a timestep. Data lifetime analysis ensures that only the data required by
subsequent iterations will be saved automatically. During a restart, the components
process the XML specification of the problem that was saved with the datasets,
and then Uintah creates input tasks that load data from the checkpoint files. If
necessary, data redistribution is performed automatically during the first execution
of the taskgraph. As a result, changing the number of processors when restarting is
possible.

1.3 AMR SUPPORT

Adaptive Mesh Refinement Many multi-physics simulations require a broad span
of space and time scales. Uintah’s primary target simulation scenario includes a
large scale fire (size of meters, time of minutes) combined with an explosion (size
of microns, time of microseconds). To efficiently and accurately capture this wide
range of time and length scales, the Uintah architecture has been has been designed
to support AMR in the style of Berger and Colella [6], with great initial success.
Figures 1.4 show a blast wave reflecting off of a solid boundary with an AMR mesh
using the explicit ICE algorithm and refinement in both space and time.

The construction of the Uintah AMR framework required two key pieces: multi-
level grid support and grid adaptivity. A multi-level grid consists of a coarse grid
with a series of finer levels. Each finer level is placed on top of the previous level
with a spacing that is equal to the coarse level spacing divided by the refinement ratio,
which is specified by the user. A finer level only exists in a subset of the domain of
the coarser level. The coarser level is used to create boundary conditions for the finer
level.
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Fig. 1.5 The Lockstep time integration model

The framework supports multi-level grids by controlling the inter-level communi-
cation and computation. Grid adaptivity is controlled through the use of refinement
flags. The simulation components generate a set of refinement flags which specify
the regions of the level that need more refinement. As the refinement flags change a
regridder uses them to produce a new grid with the necessary refinement.

Whenever the grid changes a series of steps must be taken prior to continuing the
simulation. First the patches must be distributed evenly across processors through a
process called load balancing. Second all patches must be populated with data either
by copying from the same level of the previous grid or by interpolating from a coarser
level of the previous grid. Finally the task graph must be recompiled. These steps
can take a significant amount of runtime [36, 28] and affect the overall scalability at
large numbers of processors.

Multi-Level Execution Cycle There are two styles of multi-level execution imple-
mented in Uintah: the Lockstep (typically used for implicit or semi-implicit solvers)
and the W-cycle (typically used for explicit formulations) time integration models.
The Lockstep model, as shown in Figure 1.5, advances all levels simultaneously.
After executing each timestep the coarsening and boundary conditions are applied.
The W-Cycle, as shown in Figure 1.6, uses larger timesteps on the coarser levels
than the finer levels. On the finer levels there are at least n subtimesteps on the finer
level for every subtimestep on the coarser level, where n is equal to the refinement
ratio. This provides the benefit of performing less computation on the coarser levels
but also requires an extra step of interpolating the boundary conditions after each
subtimestep. In both cycles at the end of each coarse level timestep the data on a
finer level is interpolated to the coarser levels ensuring that the data on the coarser
level reflects the accuracy of the finer level. In addition, the boundary conditions for
the finer level are defined by the coarser levels by interpolating the data on a coarse
level to the domain boundaries of the finer level [6]. These inter-level operations are
described in detail in Section 1.4.1.

Refinement Flags After the execution of a timestep the simulation runs a task that
marks cells that need refinement. The criteria for setting these flags is determined by
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the simulation component, and is typically determined by a gradient magnitude of a
particular quantity or other error metrics.

Regridding When using AMR the areas of the domain that need refinement can
change every timestep necessitating a full recomputation of the grid. A regrid occurs
whenever the simulation components produce flags that are outside of the currently
refined regions. Regridding creates a new grid over the refinement flags.

Regridding is a necessary step in AMR codes. The grid must move in order to fully
resolve moving features. A good regridder should produce large patches whenever
possible. If the regridder produces small patches the number of patches will be higher
than necessary and can cause significant overhead in other components leading to
large inefficiencies. However, it is also important that the regridder does not produce
too large of patches because large patches cannot be load balanced effectively. Thus
an ideal regridder should produce patches that are as large enough to keep the number
of patches small but small enough to be effectively load balanced.

A common algorithm used in AMR codes for regridding is the Berger-Rigoutsos
algorithm [5]. The Berger-Rigoutsos algorithm uses edge detection methods on the
refinement flags to determine decent areas to place patches. The patch sets produced
by the Berger-Rigoutsos algorithm contains a mix of both large and small patches.
Regions are covered by as large patches as possible and the edges of those regions are
covered by small patches producing tight covering of the refinement flags. In addition
the Berger-Rigoutsos algorithm can be run quickly in parallel [37, 13] making it an
ideal algorithm for regridding.

However, the current implementation of Uintah has two constraints on the types
of patches that can be produced that prevent direct usage of the Berger-Rigoutsos
algorithm. First, patch boundaries must be consistent; i.e., each face of the patch
can contain only coarse-fine boundaries or neighboring patches at the same level of
refinement, not a mixture of the two. Second, Uintah requires that all patches be
at least four cells in each direction. One way around the neighbor constraint is to
locate patches that violate the neighboring constraint and split them into two patches,
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(a) (b)

Fig. 1.7 The blue patches are invalid; in (a) they can be split by the yellow line to produce a
valid patch set but in (b) they cannot.

thus eliminating the constraint violation. Figure 1.7(a) shows an example of fixing a
constraint violation via splitting. Unfortunately splitting patches can produce patches
that violate Uintah’s size constraint as shown in Figure 1.7(b).

To make the Berger-Rigoutsos algorithm compatible with Uintah, a minimum
patch size of at least four cells in each dimension is specified. The minimum patch
size is used to coarsen the flag set by dividing every flag’s location by the minimum
patch size and rounding down producing a coarse flag set. The Berger-Rigoutsos
algorithm is then run on the coarse flag set producing a coarse patch set. Next the
patch set is searched for neighbor constraint violations and patches are split until the
neighbor constraints are met. An additional step is then taken in order to help facilitate
a decent load balance. Large patches do not load balance well thus splitting patches
larger than a specified threshold helps maintain load balance. The threshold used is
equal to the average number of cells per processor multiplied by some percentage.
We have found through experimentation that that a threshold of 6.25% works well.
Finally the coarse patches are projected onto the fine grid by multiplying the location
of patches by the minimum patch size producing a patch set that does not violate the
neighbor constraint or the size constraint.

1.4 LOAD BALANCING

A separate load balancer component is responsible for assigning each detailed task to
one processor. In patch-based AMR codes the load balance of the overall calculation
can significantly affect the performance. Cost models are derived from the size of
the patches, the type of physics, and in some cases the number of particles within
the patch. A load balancer component attempts to distribute work evenly while
minimizing communication by placing patches that communicate with each other
on the same processor. The taskgraph described above provides a mechanism for
analyzing the computation and communication within the computation to distribute
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work appropriately. One way to load balance effectively is by using this graph directly,
where the nodes of the graph are weighted by the amount of work a patch has and
the edges are weighted by the cost of the communication to other processors. Graph
algorithms or matrix solves are then used to determine an optimal patch distribution.
These methods do a decent job of distributing work evenly while also minimizing
communication but are often too slow to run often.
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Fig. 1.8 The scalability of the SFC curve generation
for multiple problem sizes

Another method that has
been shown to work well for
load balancing computations is
the use of space-filling curves
[8, 32, 31]. The curve is
used to create a linear ordering
of patches. Locality is main-
tained within this ordering by
the nature of the space-filling
curve. That is, patches that are
close together on the curve are
also close together in space and
are likely to communicate with
each other. Once the patches
are ordered according to the
space-filling curve they are as-
signed a weight according to
how the cost model. Then the
curve is split into segments by recursively splitting the curve into two equally weighted
segments until there is an equal number of curve segments as processors. Then each
segment is assigned to a processor.

With AMR space-filling curves are preferable to the graph-based and matrix-based
methods because the curve can be generated in O(N log N). In addition the curve
can be generated quickly in parallel using parallel sorting algorithms [27]. Figure 1.8
shows the scalability of the curve generation up to thousands of processors for various
problem sizes.

Data Migration After a new grid is created and load balanced the data must be
migrated to the owning processors. The data is migrated by creating a taskgraph
for the copying data from the old grid to the new grid. If a patch in the new grid is
covering a region that does not exist in the old grid then a refinement task is scheduled
that performs the interpolation from the coarser level to populate the data in the patch.
The next task is to copy data from the old grid. Any patches within the old grid that
overlap the new grid are copied to the new grid. The infrastructure handles copying
data between processors whenever needed.

Task Graph Compilation As discussed earlier, the taskgraph is responsible for
determining the order of task execution and communication that needs to occur
between them. This information changes whenever the grid changes, so the taskgraph
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needs to be recompiled. Compiling the task graph can take a significant amount time.
In the case of the W-cycle the compile time can be reduced by reusing redundant
sections of the task graph. Each subtimestep has the same data dependencies as the
previous subtimestep and thus only needs to be compiled once. This was done by
creating task-subgraphs for each level. Each level then executes it’s task-subgraph
multiple times. This dramatically reduces the compile time for the W-cycle.
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Fig. 1.9 The effect of dilation on scalability

Grid Reuse Changing the
grid and the corresponding
steps that follow is expensive
and does not scale as well as
the computation. Regridding
too often can greatly impact the
overall scalability and perfor-
mance. One way to reduce
the overhead associated with
changing the grid is to generate
grids that can be used for multi-
ple timesteps. This can be done
by predicting where refinement
will be needed and adding re-
finement before it is needed. In
Uintah this is done by dilating
the refinement flags prior to re-
gridding. The refinement flags are modified by applying a stencil that expands the
flags in all directions. The regridder then operates on the dilated refinement flags
producing a grid that is slightly larger than is needed but can be reused for multiple
timesteps. Prior to the dilation and regridding each timestep the undilated refinement
flags are compared to the grid. If the refinement flags are all contained within the
current grid regridding is not necessary.

Dilation can have a large impact on performance when using large numbers of
processors. The time to compute on the grid scales better than the time for changing
the grid. As the number of processors is increased the time to change the grid becomes
the dominant component preventing further scalability. By dilating the refinement
flags prior to regridding the time spent changing the grid can be significantly reduced
keeping the computation on the grid the dominant component. The amount of dilation
is controlled at runtime by measuring how much time is spent computing on the grid
versus how much time is spent changing the grid. If the percentage of time spent
changing the grid is not within a target range the dilation is either raised or lowered.
Figure 1.9 shows the scalability with and without dilation for an expanding blast
wave similar to the problem seen in Figure 1.4. In this simulation the regridder was
configured to produce more patches than would typically be used in order to simulate
the overhead due to patches that would be expected when running with larger numbers
of processors.
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1.5 AMR APPLIED TO A MULTI-MATERIAL EULERIAN CFD METHOD

Uintah contains four main simulation algorithms: 1) the Arches incompressible fire
simulation code, 2) the ICE [24] compressible (both explicit and semi-implicit ver-
sions), 3) the particle-based Material Point Method (MPM) for structural modeling,
and 4) a fluid-structure interaction method achieved by the integration of the MPM
and ICE components, referred to locally as MPM-ICE. In addition to these primary
algorithms, Uintah integrates numerous sub-components including equations of state,
constitutive models, reaction models, radiation models and so forth. Here we provide
a high-level overview of our approach to “full physics” simulations of fluid-structure
interactions involving large deformations and phase change. By “full physics” we
refer to problems involving strong coupling between the fluid and solid phases with a
full Navier-Stokes representation of fluid phase materials and the transient, nonlinear
response of solid phase materials, which may include chemical or phase transforma-
tion between the solid and fluid phases. Details of this approach, including the model
equations and a description of their solution can be found at [11].

Multi-material dynamics The methodology upon which our software is built is a
full “multi-material” approach in which each material is given a continuum descrip-
tion and defined over the computational domain. Although at any point in space the
material composition is uniquely defined, the multi-material approach adopts a sta-
tistical viewpoint whereby the material (either fluid or solid) resides with some finite
probability. To determine the probability of finding a particular material at a spec-
ified point in space, together with its current state (i.e., mass, momentum, energy),
multi-material model equations are used. These are similar to the traditional single
material Navier-Stokes equations, with the addition of two intermaterial exchange
terms. For example, the momentum equation has, in addition to the usual terms that
describe acceleration due to a pressure gradient and divergence of stress, a term that
governs the transfer of momentum between materials. This term is typically modeled
by a drag law, based on the relative velocities of two materials at a point. Similarly,
in the energy equation, an exchange term governs the transfer of enthalpy between
materials based on their relative temperatures. For cases involving the transfer of
mass between materials, such as a solid explosive decomposing into product gas, a
source/sink term is added to the conservation of mass equation. In addition, as mass
is converted from one material to another, it carries with it its momentum and en-
thalpy, and these appear as additional terms in the momentum and energy equations,
respectively. Finally, two additional equations are required due to the multi-material
nature of the equations. The first is an equation for the evolution of the specific
volume, which describes how it changes as a result of physical process, primarily
temperature and pressure change. The other is a multi-material equation of state,
which is a constraint equation that requires that the volume fractions of all materials
in a cell sum up to unity. This constraint is satisfied by adjusting the pressure and
specific volume in a cell in an iterative manner. This approach follows the ideas
previously presented by Kashiwa and colleagues [20, 21, 22, 24].
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These equations are solved using a cell-centered, finite volume version of the ICE
(for Implicit, Continuous-fluid, Eulerian) method [14], further developed by Kashiwa
and others at Los Alamos National Laboratory [23]. Our implementation of the ICE
technique invokes operator splitting in which the solution consists of a separate
Lagrangian phase where the physics of the conservation laws, including intermaterial
exchange, is computed, and an Eulerian phase, where the material state is transported
via advection to the surrounding cells. The method is fully compressible, allowing
wide generality in the types of scenarios that can be simulated.

Fluid-Structure Interaction using MPM-ICE The fluid-structure interaction capa-
bility is achieved by incorporating the Material Point Method (described briefly in the
following section) within the multi-material CFD formulation. In the multi-material
formulation, no distinction is made between solid or fluid phases. Where distinc-
tions do arise is in the computation of the material stress and material transport or
advection. In the former, the use of a particle description for the solid provides a
convenient location upon which to store the material deformation and any relevant
history variables required for say, a plasticity model. Regarding the latter, Eulerian
advection schemes are typically quite diffusive, and would lead to an unacceptable
smearing of a fluid-solid interface. Thus, performing advection by moving particles
according to the local velocity field eliminates this concern.

At the beginning of each timestep, the particle state is projected first to the
computational nodes, and then to the cell centers. This co-locates the solid and fluid
data, and allows the multi-material CFD solution to proceed unaware of the presence
of distinct phases. As stated above, the constitutive models for the solid materials
are evaluated at the particle locations, and the divergence of the stress at the particles
is computed at the cell centers. The Lagrangian phase of the CFD calculation is
completed, including exchange of mass, momentum and enthalpy. At this point
changes to the solid materials’ state are interpolated back to the particles, and their
state, including position, is updated. Fluid phase materials are advected using a
compatible advection scheme such as that described in [35]. Again, a full description
can be found in [11].

1.5.1 Structured AMR for ICE

In addition to solving the multi-material equations on each level there are several
basic operators or steps necessary to couple the solutions on the various levels. These
steps include:
• Refine: the initial projection of the coarse level data onto to the fine level.
• Refine coarse-fine interface: projection of the coarse level solution to the fine

level, only in the ghost cells at the coarse-fine interface.
• Coarsen: projection of the fine level solution onto the coarse level at the end

of the timestep.
• Refluxing: correction of the coarse level solution due to flux inconsistencies.
• Refinement criteria: flagging cells that should be refined.
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Tri−Linear/Tri−Quadratic Interpolation

Fig. 1.10 Tri-quadratic interpolation
stencil used during the projection of
coarse level data on to a fine level

Refine: When a new fine level patch is gen-
erated, data from the coarse level is projected
onto the new patch using either a tri-linear or tri-
quadratic interpolation. Figure 1.10 shows the
computational footprint or stencil used during
a tri-quadratic interpolation in one plane. The
dashed red lines show the edges of the fine level
ghost cells, along the coarse-fine interface. The
large open circles show the underlying coarse
level cells used during the projection of data to
the pink diamond. Note that multi-field CFD al-
gorithm requires one layer of ghost cells on all
patch sides that do not have an adjacent neigh-
bor. These ghost cells provide boundary condi-
tions for the fine level solution.

Refine coarse-fine interface: At the end of
each timestep the boundary conditions or ghost
cells on the finer levels are updated by perform-
ing both a spatial and a linear temporal interpolation. The temporal interpolation is
required during the W-cycle on all finer levels, shown as blue lines in Figure 1.6.
When the lock-step cycle is used there is no need for temporal interpolation. Spa-
tially, either a tri-linear or tri-quadratic interpolation method may be used. Details
on the quadratic interpolation method are described in [30].

Coarsen: At the end of each timestep the conserved quantities are conservatively
averaged from the fine to coarse levels using

QCoarseLevel =
1
Z

RefinementRatio∑
c=1

QFineLevel (1.1)

Fig. 1.11 Illustration of a flux mismatch at
the coarse-fine interface

Refluxing: As mentioned above, the so-
lution to the governing equations occurs
independently on each level. During a
timestep, at the coarse-fine interfaces, the
computed fluxes on the fine level may
not necessary equal the corresponding
coarse level fluxes. In Figure 1.11 the
length of the arrows indicate a mismatch.

To maintain conservation of the con-
served quantities, a correction, as de-
scribed in [6] is added to all coarse level
cells which are adjacent to the coarse-
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fine interfaces. For the W-cycle the fluxes of mass, momentum, energy and any
number of conserved scalars are corrected using

Qcorrection = QC
flux −

1
Z

subtimesteps∑
t=1

faces∑
f=1

QFluxF (1.2)

where superscripts C and F represent the coarse and fine levels, respectively. For
the lockstep execution cycle the correction is given by

Qcorrection = QC
flux −

1
Z

faces∑
f=1

QF
Flux (1.3)

Experience has shown that the most difficult part of computing the correction fluxes
lies in the bookkeeping associated with the summation terms in equations 1.2 and 1.3.
For each coarse level cell there are nx, ny, nz overlying fine level cells with faces
that overlap the coarse cell face. Keeping track of these faces and fluxes, on multiple
levels, in a highly adaptive 3D mesh, where new fine level patches are constantly
being generated, has proven to be difficult, see Figure 1.12.

Regridding Criteria: A cell on a coarser level is flagged to be refined whenever a user
defined threshold has been exceeded. Currently, for fluid calculations, the magnitude

Fig. 1.12 Simulation of an exploding container on a 3-level adaptive mesh. The solid lines
outline patches on the individual levels, red: level 0, green: level 1, yellow: level 2
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Fig. 1.13 Close up of a 3 level adaptive grid. The colored lines show the outline of the
individual patches, red: level 0, green: level 1, yellow: 2. The solid red squares show cells
that have been flagged for refinement

of the gradient: density, temperature, volume fraction, pressure, or a passive scalar
may be used. More sophisticated techniques for flagging cells are available, but have
not been implemented, an example is described in [1]. In Figure 1.13 the red squares
show cells that have exceeded a user specified threshold for the magnitude of the
gradient of the pressure and are flagged.

Pressure Field: There are two methods implemented for solving for the change in
pressure (∆P ) which is used to evolve the multi-material governing equations. The
explicit formulation, used for compressible calculations, uses the W-cycle where ∆P
is computed in a point-wise fashion on each of the individual levels, without inter-level
communication. The governing equations evolve on each of the levels independently
with inter-level communication only taking place at the end of a timestep or whenever
a new patch is generated. The price paid for this simplicity is the small timestep
that is required to guarantee stability. The timestep size is computed based on the
convective and acoustic velocities.

The semi-implicit technique, which is still being actively developed for multi-
level grids, utilizes the lockstep execution cycle. A Poisson equation for ∆P is first
solved on a composite grid and then the solution is projected onto the underlying
coarse level cells. Experience has shown that any mismatch in the pressure gradient
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Fig. 1.14 Graphical depiction of the steps in the MPM algorithm

at the coarse-fine interfaces will produce non-physical velocities, thereby creating
a feedback mechanism for polluting the pressure field in the subsequent timestep.
The potential benefit of this method is the larger timestep. In this case the timestep
required to remain stable is computed based on only the convective velocity.

1.5.2 MPM with AMR

Uintah contains a component for solid mechanics simulations known as the Material
Point Method (MPM)[33]. MPM is a particle based method that uses a (typically)
Cartesian mesh as a computational scratch-pad upon which gradients and spatial
integrals are computed. MPM is an attractive computational method in that the use
of particles simplifies initial discretization of geometries and eliminates problems of
mesh entanglement at large deformations (see, e.g.[7]), while the use of a Cartesian
grid allows the method to be quite scalable by eliminating the need for directly
computing particle-particle interactions. A graphical description of MPM is shown
in Figure 1.14. There, a small region of solid material, represented by four particles,
overlayed by a portion of grid is shown in panel (a). The particles, or material points,
carry minimally, mass, volume, velocity, temperature, and state of deformation. Panel
(b) reflects that this particle information is projected to the nodes of the overlying grid,
or scratch-pad. Based on the nodal velocity, a velocity gradient is computed at the
particles, and is used to update the state of deformation of the particle, and the particle
stress. Based on the internal force (divergence of the stress) and external forces, as
well as the mass, acceleration is computed at the nodes, as is an updated velocity.
This is shown in panel (c), where the computational nodes have been deformed based
on the new velocity and the current timestep size. Note that the deformation of the
grid is never explicitly performed. Panel (d) reflects that the changes to the field
quantities, specifically velocity and position in the case, are interpolated back to the
particles. Once the particle state has been updated, the grid is reset in preparation for
the next timestep (Panel (e)).

Development of multi-level MPM is an active area of research that is still in the
early stages. Ma, Lu and Komanduri [29] reported the first implementation, in which
they used the Structured Adaptive Mesh Application Interface (SAMRAI)[16] as a
vehicle to handle the multi-level grid information. While the Ma, et al. approach
makes a huge step towards realizing general purpose, multi-level MPM, it does so in a
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manner that is quite different from standard SAMR algorithms. The brief description
of their work, given below, will highlight some of these differences, and illustrate
some of the remaining challenges ahead.

0         2         4         6         8        10      12
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2

Fig. 1.15 Sample region of a multi-level MPM grid

A region of a simple 2-
level grid, populated with
one particle in each cell,
is shown in Figure 1.15.
Two of the nodes at the
coarse-fine interface, de-
noted by filled diamonds,
are highlighted for dis-
cussion. First consider
the node at (4,5). The
work of Ma describes a
treatment of these nodes,
which could be consid-
ered mid-side nodes on the
coarse mesh, using what
they term “zones of influ-
ence”. This refers to the
region around each node,
within which particles both contribute to nodal values, and receive contributions
from the nodal values. The zones of influence for the node at (4,5) and (8,4) are
highlighted. What these are meant to indicate is that the data values at fine level
nodes and particles depend on coarse level nodes and particles, and vice versa. This
is further complicated by the fact that interactions between particles and grid occur
multiple times each timestep (projection to grid, calculation of velocity gradient at
particles, calculation of divergence of particle stress to the nodes, update of particle
values from nodes).

The result of this is that the multi-level MPM algorithm behaves much more as if
it exists on a composite grid than on a traditional SAMR grid. For instance, there is
no coarse level solution in regions where a finer level exists. Additionally, dataflow
across the coarse-fine interface is much less hierarchical. That is, the solution on one
level depends equally on data contributions from both finer and coarser levels. This
loss of hierarchy has thus far also frustrated efforts at developing a “W-cycle” type
approach to temporal refinement. To date, no temporal refinement approaches have
been described in the literature.

Finally, the approach described in Ma, et al., did not address adaptivity, only a
static, multi-level solution. An adaptive technique would require further considera-
tions, including particle splitting and merging. Work by Lapenta and Brackbill[26]
provides a starting point for this task, although quantities such as history dependent
plasticity variables are not addressed there.

Given the significant challenges associated with a general adaptive Material Point
Method, its development within Uintah is at the early stages. The strategy of the
Uintah developers has been to maintain particles only at the finest level in the solution.
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In simulations only involving MPM, this strategy does not provide substantial time
savings, given that computational cost is most strongly a function of number of
particles, and only weakly depends on the number of computational cells/nodes.
Where this strategy does prove to be advantageous is in the fluid-structure interaction
simulations carried out within Uintah, in which MPM is incorporated within the
multi-material CFD code described in the previous section (see, e.g.[11]). For the
Eulerian CFD code, cost is entirely dependent upon number of computational cells,
so refining only in the vicinity of the solid objects allows for large regions of the
domain to be at lower resolutions. This strategy also makes sense from a physical
point of view, in that regions near the solid object generally demand the highest
resolution in order to capture the fluid-solid interaction dynamics. In addition, for
the types of simulations that Uintah was built to address, resolution requirements
within the solid are usually the most demanding, in order to capture phenomena such
as solid phase reactions and metal failure. Normal error cell flagging still occurs
within the rest of the domain, such that regions of the domain that contain only fluid
will be refined as well should they require it. Examples of success with this strategy
are provided in the next section.

1.6 RESULTS

Within the C-SAFE project, we utilize Uintah to perform simulations of both fires
and explosions using hundreds to a few thousand processors. One scenario of two
containers stored in close proximity is shown in Figure 1.16. In this simulation the
adaptive grid (not shown) was comprised of three levels, with a refinement ratio
of 4 in each direction. The results from this simulation are counterintuitive in that
the container with a smaller initial explosive charge (right) produced a more violent
explosion. This is due to the rapid release of energy that results from the structural
collapse of the explosive into the hollow bore.

Figure 1.19 shows another 2D simulation of one quarter of two steel (red) contain-
ers filled with burning explosive (blue). Symmetry boundary conditions are applied
on all sides. The containers and contents are preheated to the ignition temperature
at t=0. As the explosive decomposes, the containers are pressurized and break apart
shortly thereafter. Eventually, the container fragments collide in the center. This
simulation demonstrates how AMR allows us efficiently simulate arrays of explosive
devices, separated by a significant distance. For multiple containers in 3D, the cost
of such simulations would be prohibitive if the whole domain required the finest
resolution everywhere during the entire simulated time.

Figure 1.18 depicts a rigid 20 degree wedge, represented by MPM particles,
moving through initially still air. Contours indicate pressure, while the pink boxes
reflect regions of refinement in the 2 level solution. In addition to refinement near
the wedge, regions of large pressure gradient around the leading shock and trailing
expansion fan are also automatically refined. This simulation also served as an
early validation of ICE method and the fluid-structure interaction formulation, as the
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Fig. 1.16 Simulation of two exploding containers with different initial configurations of the
explosive. The left container was initially full of explosive while the right container had a
hollow core.
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Fig. 1.17 Temporal evolution of two steel containers initially filled with a high explosive at
a temperature above the threshold ignition temperature. The background contour plot shows
the magnitude of pressure and the particles are colored by mass. The solid green lines show
the outline of the fine level patches and the red lines correspond to the coarse level patches.
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Fig. 1.18 A 2D wedge traveling at Mach 2, contour plot of the pressure field. Results from
a single level and an 2 level simulation are shown, top: single level solution, middle: coarse
level pressure field, bottom: fine level pressure field

expected shock angle for this configuration is known, and compared very favorably
to the computed result.

Figure 1.20 shows slices of the temperature field, from a simulation of a JP8
jet flame, issuing at 50m/s from a 0.2m hole in the floor of the computational
domain. The grid consisted of 4 static levels with 1283 cells on each level and
the computational domain spanned 12.8m in each direction. This simulation was
performed on 600 processors.

One of the scientific questions that Uintah is currently being used to address is to
predict how the response of an explosive device that is heated by a jet fuel fire changes
with a variety of conditions. These include fire size, container location relative to
the fire, and the speed and direction of a cross-wind. A total of 12 simulations are
being performed to investigate this question. The current state of one of those cases
is shown in Figure ??. This simulation is being carried out on 500 processors of the
Atlas cluster at LLNL. The grid utilizes four levels of refinement with a refinement
ratio of 4, with the finest level at 1 mm. The figure shows a cut-away view of an
isosurface of the steel container (blue) which has partially ruptured. The density of
the products of reaction are volume rendered, and the void space inside the container
is where the remaining unburned explosive lies. It was not explicitly shown in this
view for the sake of clarity. As these simulations come to completion, data analysis
of fragment size and velocity will be used as an indicator of violence of explosion.
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Fig. 1.19 Temperature distribution of a JP8 jet flame on 4 static levels, 1283 cells per level,
(a) L-1: 12.8m3, (b) L-2: 6.4m3, (c) L-3: 3.2m3, (d) L-4: 1.6m3.

Fig. 1.20 Full adaptive 3D simulation of an explosive device subjected to a hydrocarbon fire,
shown just as the pressure is release through a rapture in the steel container. The view on the
left shows the outside of the container, while the view on the right shows a cross section of the
same data.
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Fig. 1.21 The scalability of AMR ICE

Figure 1.17 shows the scalability of Uintah running a 3 level 3D ICE problem
similar to the problem seen in Figure 1.4 on multiple architectures. Thunder is a Linux
cluster located at LLNL with 1024 quad processor Intel Xeon nodes, connected via
a Quadrics switch. Atlas is also Linux cluster located at LLNL with 1152 nodes
each with eight AMD Opteron processors, also connected via a Quadrics switch.
Red storm is an Opteron-based supercomputer located at Sandia with 12920 dual-
core CPUs, connected with a proprietary Cray interconnect. Although the code
does not scale perfectly for AMR problems, it still dramatically outperforms the
non-AMR equivalents. Figure ?? (left) illustrates another challenge – that as the
container expands, the number of refined cells increases consistently. However, the
performance gain is still substantial as indicated by the right side of Figure ?? as the
total number of cells over all levels is just over 1% of the number required by a single-
level grid. A non-AMR version of the explosion simulations shown in Figure ??
would impose unacceptable limitations on the domain size and grid resolution, or
would require nearly a two order of magnitude increase in computational resources.

1.7 CONCLUSIONS AND FUTURE WORK

We have presented a framework and application for using adaptive methods for com-
plex multi-physics simulations of explosive devices. This framework uses an explicit
representation of parallel computation and communication to enable integration of
parallelism across multiple simulation methods.

We have also discussed several simulations that are performed routinely using
this framework, including the heat-up, pressurization and consequent rupture of an
incendiary device. Using adaptive methods, we are able to perform simulations that
would otherwise be inaccurate or computationally intractable.
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Fig. 1.22 Left: Number of cells at each level of refinement for the exploding container
shown in Figure ??, shown just as the container begins to rupture, Right: Total number of
cells at all refinements levels, expressed as a percentage of the cells required for a non-adaptive
simulation.

In addition to the adaptive explosion simulations describe above, Uintah is a
general-purpose simulation capability that has been used for a wide range of appli-
cations. MPM has been used to simulate a penetrating wound in a comprehensive
cardiac/torso model [19, 17, 18], with the goal of understanding mechanics of wound-
ing in an effort to improve the chances of recovery from projectile wounds. It has also
been used to study biomechanical interactions of angiogenic microvessels with the
extracellular matrix on the microscale level, by developing and applying novel exper-
imental and computational techniques to study a 3D in-vitro angiogenesis model [12].
The Uintah fluid-structure interaction component (MPM-ICE), is being employed in
a study of phonation, or the production of sound, in human vocal folds. This inves-
tigation has determined the ability of Uintah to capture normal acoustical dynamics,
including movement of the vocal fold tissue, and will consider pathological laryngeal
conditions in the future. Uintah has also been used by collaborators at Los Alamos
National Laboratory to model the dynamic compaction of foams [4, 7], such as those
used to isolate nuclear weapons components from shock loading.

Achieving scalability and performance for these types of applications is an ongoing
battle. We are continuing to to evaluate scalability on larger number of processors,
and will reduce scaling bottlenecks that will appear when using these configurations.
Intertask communication is a currently a known bottleneck on large numbers of
processors. We aim to reduce this by using the taskgraph to transparently trade
off redundant computation with fine-grained communication. We also have a few
situations where extra data is sent, which may improve scalability for large processor
counts. Finally, we are exploring methods to reduce communication wait time by
dynamically reordering the execution of tasks as their MPI dependencies are satisfied
leading to more overlap of communication and computation.

This work was supported by the U.S. Department of Energy through the Center
for the Simulation of Accidental Fires and Explosions, under grant W-7405-ENG-48.
We thank each of the members of the interdisciplinary C-SAFE team at the University
of Utah for their contributions to the Uintah software.
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