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SUMMARY

A key aspect of the parallel partitioners of AMR codes based on meshes consisting of
regularly refined patches lies in the choice of a load balancing algorithm. One of the
current load balancing methods of choice is to use a space-filling curve. The need to
apply load balancing in parallel on possibly hundreds of thousands of processors has
led to the development of an algorithm which generates space-filling curves quickly in
parallel. The algorithm creates traversal order indices while each processor generates a
curve over a subset of the domain. The index is then used to perform a scalable parallel
merge operation to generate the final space-filling curve. Initial results have shown the
algorithm can generate curves quickly and scales well up to thousands of processors.
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Background and Related Work

The development of Adaptive Mesh Refinement (AMR) codes within the University of Utah’s
multiphysics simulation framework, Uintah [1, 2], made it necessary to find an appropriate load
balancing algorithm. The Uintah code uses regularly refined patches to implement adaptive
meshing. In such cases the load balancer has significant impact on scalability [3, 4]. Space-filling
curves, in particular the Hilbert curve [5], have been shown to be a good basis for dynamic
load balancers [6, 7, 8, 9].

Space-filling curves are fractal curves that uniformly fill multi-dimensional space. The curves
are generated using a base shape which determines the ordering of the curve through a coarse
grid. As the grid is refined the base shape is reapplied to the finer grids to create a refined

∗Correspondence to: School of Computing, 50 S Central Campus Dr. Rm. 3190, Salt Lake City, UT 84112
†E-mail: luitjens@cs.utah.edu
Contract/grant sponsor: Department of Energy ; contract/grant number: W-7405-ENG-48

Copyright c© 2006 John Wiley & Sons, Ltd.



2 J. LUITJENS

curve. The base shape may be rotated or flipped before being applied to refined portions of
the grid. As the curve is refined the area of the curve increases and in the limit of refinements,
the area of the curve is equal to the area of the domain in which it has been generated. The
curve provides a linear ordering through the higher dimensional space.

Space-filling curves have many properties that make them a good basis for load balancing.
For example, the Hilbert curve, creates an ordering which clusters points together such that
points that are close together on the curve are close together in the higher dimensional space.
In addition the Hilbert curve prevents jumps across the domain by always moving locally.
Finally space-filling curves can be created in O(N log N) time. Campbell describes a fast way
to form space-filling curves using state diagrams [6]. This method uses arrays to define states
called orientations. The orientation of a parent determines the order in which the curve visits
children and the orientation of those children. These state diagrams eliminate the need for
costly reflections and rotations by replacing them with a few array lookups.

One of the main design goals of Uintah is scalability, and this requires the load balancer
to scale up to a large number of processors. In order to scale up to hundreds of thousands of
processors, Uintah requires hundreds of thousands of patches. Forming a space-filling curve over
hundreds of thousands of patches would take a significant amount of time in serial. Generating
a space-filling curve in parallel is a non-trivial task. Others have attempted to form space-
filling curves in parallel by defining a comparison operator allowing for a parallel merge sort
design [10], but the operator was complicated and did not work for the Hilbert curve. We have
developed a new method which works for any space-filling curve. Our method uses a standard
integer comparison operator to compare points on the curve allowing us to implement a parallel
merge sort that scales well up to large numbers of processors and computes large curves quickly.

Our method creates the unique traversal order index for every point on the curve while
generating the curve on each processor. This index is saved and used for the merging operation.
The index is formed by recording the relative visitation order of the curve through quadrants
at every refinement level. The relative visitation orders are saved in a digit history where
the earlier refinement levels are stored to the left of later refinement levels. The histories are
equivalent to the unique traversal order index of the curve. These histories can be compared
using a standard integer comparison operator allowing curves to be merged easily. Initial results
using our parallel merge sort implementation to generate space-filling curves are promising and
have been shown to scale well up to thousands of processors.

Parallel Design

The parallel merge sort design presented in [10] was a promising approach to a parallel space-
filling curve algorithm but the limitations of the comparison operator, in particular the lack
of a comparison operator for the Hilbert curve, was a significant drawback. This method is
expanded in this paper by defining a general comparison operator that is defined for any space-
filling curve. Once such an operator is defined it is possible to implement a parallel merge sort
design [11, 12]. The general strategy is to arbitrarily partition points (cells, patches, or any
general work units) onto processors, generate a curve on each processor individually, and then
merge the curves. This strategy leads to an efficient algorithm that scales up to thousands of
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Figure 1. The relative visitation orders assigned to points for the first two refinement levels is shown
in the upper left corner of the quadrants. The following digit histories are assigned for the first two

refinement levels: {a:22, b:12, c:20, d:33}

processors and can calculate the space-filling curve for extremely large problem sizes in under
a second.

The comparison operator needs to be simple and run in constant time. This is accomplished
through the use of digit histories. The digit history stores information about how a point was
ordered by the space-filling curve. At every refinement level the relative visitation order of the
curve is saved on the right side of the history. This creates a list of digits where the left digits
represent the relative visitation order at the coarser refinement levels and the right digits
represent the relative visitation order at the finer refinement levels. In fact, these histories
are equivalent to the unique traversal order index of the curve. Figure 1 shows the histories
assigned for two points using two levels of refinement. If these histories are maintained in an
integer then an integer comparison operator can be used to compare two points on the curve.
If a general byte class is used to store the histories then a comparison operator can be easily
defined.

Calculation of the relative visitation order is done using an array lookup. The relative
visitation order is the inverse mapping of the order array presented in [6]. These mappings
take the quadrant of the child and map it to the order that the curve visits that quadrant
depending on the orientation of the parent. These mappings can be found in Table I.

These histories are created once during the sorting phase and saved for the merging phase.
In addition to trivially defining a comparison operator between points on the curve the digit
histories provide a second benefit of lowering communication. Typically the size of these
histories will be smaller then the location data of the points the curve is being generated
over. The size of each digit in the history is equal to the number of dimensions the curve is
being generated in. For example a curve being generated in 2D using floating point precision
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4 J. LUITJENS

Table I. The inverse arrays used to form the bit histories.

Gray Inverse 2D

0 1 3 2
2 3 1 0

Hilbert Inverse 2D

0 1 3 2
0 3 1 2
2 1 3 0
2 3 1 0

Gray Inverse 3D

0 1 3 2 7 6 4 5
6 7 5 4 1 0 2 3
2 3 1 0 5 4 6 7
4 5 7 6 3 2 0 1

Hilbert Inverse 3D

0 1 3 2 7 6 4 5
0 7 3 4 1 6 2 5
0 1 7 6 3 2 4 5
2 1 5 6 3 0 4 7
4 7 3 0 5 6 2 1
4 5 3 2 7 6 0 1
6 1 5 2 7 0 4 3
0 3 7 4 1 2 6 5
2 3 5 4 1 0 6 7
6 7 5 4 1 0 2 3
0 3 1 2 7 4 6 5
2 5 3 4 1 6 0 7
4 3 5 2 7 0 6 1
4 3 7 0 5 2 6 1
6 5 7 4 1 2 0 3
0 7 1 6 3 4 2 5
2 5 1 6 3 4 0 7
6 5 1 2 7 4 0 3
2 3 1 0 5 4 6 7
4 5 7 6 3 2 0 1
4 7 5 6 3 0 2 1
6 7 1 0 5 4 2 3
2 1 3 0 5 6 4 7
6 1 7 0 5 2 4 3

for location data would require 64 bits for location data. This allows for up to 32 refinement
levels before the size of the digit histories is greater than the location data.

Sorting Phase

The sorting phase of the algorithm generates a space-filling curve in serial on a subset of the
data on each processor individually. In addition this phase creates the digit histories used
in the merging phase. The algorithm used for this, defined in Algorithm 1, divides space
into quadrants and then places each point into its respective quadrant. The quadrants are
then ordered according to the space-filling curve. This order is determined by the order and
orientation arrays. Finally the algorithm is recursively applied to each quadrant that has
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PARALLEL SPACE-FILLING CURVE GENERATION 5

at least one point in it. The algorithm recurses until a desired resolution is met. Once the
resolution is met the history is saved with each point.

This resolution can be determined a priori if the size of the domain and the minimum
distance between any two points along each dimension is known. This information is typically
known but if not, it can either be computed or bounded easily. If too small a refinement
level is requested then the algorithm generates an approximate space-filling curve. In some
applications it may be advantageous to generate an approximate space-filling curve as only
approximate load balancing is required.

Algorithm 1 The Serial Sort Algorithm
function BinSort(list, N, r, History=0)
{1: Save Histories}
if r=0 then

for i = 0 to N do
SaveHistory(list[i],History)

end for
return

end if
{2: Bin each item in the list according to SFC}
for i = 0 to N do

Bin(list[i],bins)
end for
{3: Place bins back in original list}
j = 0
for each b in bins do

for i = 0 to sizeof(b) do
list[j]=b[i]
j = j + 1

end for
end for
{4: Call recursively on each sublist}
i = 0
for each b in bins do

if sizeof(b)>0 then
BinSort(list[i],sizeof(b),r-1,AddDigit(History,b) )

end if
i=i+sizeof(b)

end for
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6 J. LUITJENS

Merging Phase

The merging algorithms presented in [11, 12] were used to merge the curves. The merging is
accomplished through a series of merge-exchange operations. The merging takes place in two
sub-phases. A primary merge phase which mostly sorts the data and a cleanup phase which
guarantees the data is sorted. Since the merging phase is almost entirely parallel overhead
these sub-phases need to complete quickly and scale well.

Merge-Exchange

The merge-exchange operation pairs up two processors. Each processor sends its partner its
curve and then both processors merge the two curves. In order to merge the curves the front
point of each curve is compared to the other curve’s front point. The point with the lower
history is then moved into a new curve and the process is repeated.

The processor with the lower rank keeps the lower half of the merged curve and the processor
with the larger rank keeps the upper half of the merged curve. For the remainder of this paper
the lower ranked processor will be referred to as the lower processor and the higher ranked
processor will be referred to as the upper processor. The merge-exchange operation can be
shown to be equivalent to a compare and exchange operation on two numbers [13] proving any
sorting algorithm based on compare-exchanges also sorts when using merge-exchanges. The
merge-exchange operation is called repeatedly by the two merging phases making it vital that
this operation be highly optimized. A series of optimizations have been implemented in order
to make the merge-exchange operation efficient.

Optimizations

The first optimization checks if a merge-exchange is needed before this task is performed. To
do this the lower processor sends its maximum digit history to the upper processors and the
upper processor sends its minimum digit history to the lower processor. The two processors
then compare the min and the max. If the min is greater than the max no merge-exchange is
needed and the merge-exchange terminates.

The merge-exchange operation then enters into a sample phase. Each processor sends a
sample of its data to its partner. The samples are then merged and an upper bound on the
amount of data that needs to be sent is determined. This upper bound is then used to limit
the amount of data sent across the network.

Next the processors enter into the full merge-exchange operation. Each processor merges in
a different direction. The lower processor merges ascending and the upper processer merges
descending. Each processor terminates its merging when it has merged the same number of
elements with which it started. This halves the amount each processor has to merge.

Finally processors do not send their entire curve at one time. Instead the curve is broken
into segments called blocks. Each block is sent asynchronously. The lower processor sends its
blocks in descending order while the upper processor sends its blocks in ascending order. This
allows processors to merge a block while receiving the next block. If the block size is large
enough, all communication except for the first block can be hidden within the merging of the
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PARALLEL SPACE-FILLING CURVE GENERATION 7

previous block. Choosing a block size that is too small will prevent some communication from
being overlapped with every send and receive while choosing a block size that is to large will
only add additional overhead on the first block. Therefore it is best to overestimate the block
size rather than underestimate.

Primary Merging

The primary merge phase pairs up processors in a series of merge-exchanges. The purpose of
this phase is not to fully merge the curves but instead to perform merge-exchanges between
pairs of processors that will mostly merge the curves with minimal merge-exchanges. This
allows most of the merge-exchanges performed in the cleanup to terminate after the min-max
exchange.

Algorithm 2 was used for the primary merge phase. When the number of processors is a power
of two this algorithm reduces to preforming merge-exchanges on the edges of a hypercube. If
the number of processors is not a power of two, then some processors will remain idle at each
stage. This algorithm completes in O(log P ) merge-exchanges.

Algorithm 2 The Primary Merge Algorithm
enqueue(0,numprocs)
while queue is not empty do

dequeue(b,N)
if N > 1 then

for i = 0 to N
2 step 1 do

merge-exchange(b + i, b + i + N+1
2 )

end for
enqueue(b + N

2 , N+1
2 )

enqueue(b,N − N+1
2 )

end if
end while

Cleanup Merging

The purpose of the cleanup merging phase is to guarantee the curves are fully merged. The
cleanup phase potentially performs many merge-exchanges. However, the primary merge phase
reduces the number of merge-exchanges performed. The cleanup algorithm run on its own
would fully sort the data but would require too many merge-exchanges to be practical. Two
cleanup algorithms have been implemented: linear and Batcher’s.

Linear Cleanup

The linear cleanup method presented in [12] has been implemented. This function performs
merge-exchanges with processors one rank above or below the current processor until the
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8 J. LUITJENS

list is fully sorted. To determine if a list is fully sorted, an All-Reduce sum is performed
after performing a merge-exchange with both neighbors. All processors contribute a 1 or a 0
indicating if the merge-exchanges were needed. If the reduced sum is 0, the cleanup phase
terminates. The number of merge-exchanges required is equal to the maximum processor
distance of any point on the curve from the correct processor. The primary merge phase
usually places points close to the correct processor making this a good candidate for a cleanup
algorithm. However, as the number of processors grows the maximum distance grows in the
worst case with O(P). This suggests that the linear cleanup is only appropriate for a small
number of processors.

Batcher’s Cleanup

Batcher’s cleanup uses Batcher’s merging algorithm presented in [13]. This algorithm merges
the curves with log2 P+log P

2 merge-exchanges per processor. It has been shown that this is the
minimum number of merge-exchanges required to guarantee a fully merged curve [13].

Complexity Analysis

For this section the following definitions will be used:

P = number of processors
N = number of mesh points.

Serial

In order to simplify the analysis, Algorithm 1 may be split into 4 parts. Part 1 saves the
histories for each point. This occurs once per point and only on the last recursion making the
complexity for this part O(N). Part 2 places each point into the correct quadrant. The time
for determining in which quadrant a point is contained is constant making the complexity of
this part O(N). Reordering the quadrants according to the space-filling curve requires moving
each point to a new list making it O(N). Finally part 4 is the recursive call. The algorithm
recursively repeats r times where r is the number of refinement levels. Only parts two and
three are repeated during the recursion. This makes the complexity O(2Nr + N) = O(Nr).
For typical problems r is proportional to log N making the complexity for those problems
O(N log N).

Merge Phase

In the merge-exchange algorithm a processor needs to send and receive N
P elements in the

worst case. In addition each processor would need to make N
P comparisons and assignments.

This leaves the complexity as O(N
P ).

The primary-merge phase equates to performing merge-exchanges on the edges of a
hypercube making its complexity O(N

P log P ). The cleanup phase’s complexity depends on
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PARALLEL SPACE-FILLING CURVE GENERATION 9

Table II. Maximum and average merge-exchanges performed by the linear cleanup and the merge-
exchanges performed by the Batcher’s cleanup for various numbers of processors.

P ≈ Max Avg Batchers
2 0 0 1
4 1 0.33385 3
8 3 1.76734 6
16 9 5.10419 10
32 21 12.2835 15
64 46 27.6014 21
128 95 60.0266 28
256 192 128.477 36
512 397 272.944 45

which cleanup is used. Batcher’s performs log2 P+log P
2 merge-exchanges per processor making

the complexity O(N
P log2 P ). The linear cleanup performs two merge-exchanges and one All-

Reduce per iteration. The number of iterations is equal to the maximum distance any point is
from the correct processor. Table II shows the maximum distance and the average maximum
distance any two points are from the correct position for 1,000,000 random permutations sorted
using the primary merge algorithm; in addition, the number of merge-exchanges required by
Batcher’s has been included. This table shows that the worst case and the average case both
increase with O(P ). This makes the complexity for the linear cleanup equal to O(N +P log P ).
The linear cleanup should not be used for large numbers of processors. Table II shows that on
average the linear cleanup will perform more merge-exchanges than Batcher’s when P ≥ 64.

Results

The following timing results were computed on Thunder. Thunder is a linux cluster located at
Lawrence Livermore National Labs. It has 1024 nodes each with four 1.4 Ghz Intel Itanium2
processors per node. All timings were run using four processors per node. A space-filling curve
was generated over a uniform mesh in order to simplify refinement criteria as processors were
increased. Adaptive and unstructured meshes show similar results. The initial distribution of
the mesh points on processors was the natural order. For efficiency calculations the serial time
was recorded from the serial algorithm running on only one processor. This leads to a slight
decrease in efficiency because of a lack of interference from other processes on the same node.
All runs used the Batcher’s cleanup algorithm.
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Figure 2. Timings and efficiencies for various problem sizes(N) as the number of processors increases

Strong Scaling

Strong scaling increases the number of processors while holding the number of mesh points
constant. Ideal strong scaling will halve the runtime as the number of processors doubles.
Figure 2 shows the strong scaling timings and efficiencies for various problem sizes as the
number of processors increases. These graphs show that when the algorithm is scaling well it
is between 70%-80% efficient. The efficiency is fairly flat and then rapidly drops. This rapid
drop is due to the merging overhead becoming dominant. Almost the entire merging phase is
parallel overhead and the merging phase takes up a significant amount of time. As the problem
size is increased the algorithm scales to a larger number of processors.

Figure 3 shows the timings of the individual stages of the algorithm. These graphs show
that the serial time scales with the number of processors nearly perfectly, the primary merge
scales but not perfectly, and the cleanup does not scale until N is sufficiently large. Increasing
the problem size causes all of the stages to scale better. In addition the algorithm performs
one All-Gather at the beginning in order to determine the number of points on each processor.
The time for this operation has been included. The All-Gather acts as a synchronization point
causing its runtime to change as the problem size increases.

Weak Scaling

Weak scaling increases the number of processors while holding the number of mesh points per
processor constant. Ideally weak scaling will produce flat timing results. Figure 4 shows the
weak scaling and efficiency for various problem sizes as the number of processors increases.
The graphs show that the scaling is fairly flat but not perfect. The efficiency graph shows
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Figure 3. Timing of individual components of the algorithm using Batcher’s cleanup
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Figure 4. Timings and efficiencies for various problem sizes(N) as the number of processors increases

that the optimal number of elements per processor appears to be around 65536 for the lower
numbers of processors; however, this may change as the number of processors increases.

Looking at the individual stages of the algorithm shows what is preventing scaling. Figure
5 shows the weak scaling results for the individual stages. These graphs show that the serial
time and primary merging times are fairly flat, but the cleanup and All-Gather are not. This
suggests that in order to improve the algorithm’s scalability further the cleanup algorithm or
the merge-exchange operation would need to be improved and the All-Gather would need to
be eliminated.
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Figure 5. Timing of individual components of the algorithm using Batcher’s cleanup

Conclusions and Future Work

We have shown that efficient generation of space-filling curves is possible through the use of
digit histories. Digit histories have allowed us to use an integer comparison operator to merge
curves efficiently. By reformulating the problem as sorting we have been able to use many
existing algorithms. This has allowed us to generate curves on large numbers of processors
quickly. In order to push the scalability further, problems with the merging phase would need
to be addressed. The removal of the All-Gather would be a necessity. In addition the merge-
exchange operation would need to be made faster.

The following optimizations would greatly speedup the merge-exchange operation. First
instead of merging by comparing the first two points and then moving the lower point to the
new curve, a striding method could be adopted. The striding method would start by comparing
the front of both curves. The method would then successively compare points on the lower
curve against the front of the higher curve. A stride would be used to determine which point
on the lower curve to compare against the higher curve. At every successive comparison the
stride would be doubled. When a point on the lower curve is higher than the front of the
upper curve a memcopy would copy the lower curve from the beginning to the last successful
comparison point into the new curve. If the data was clustered on processors this optimization
would reduce the number of comparisons from O(N) to O(log N) and lower the constant on
the data movement. Many times data is initially laid out in a local fashion, for example a
natural order. This suggests that a lot of data will initially be clustered. In addition as the
merging continues data will cluster. An additional optimization would be to implement a fast
compression/decompression scheme. As the curves get sorted the significant digits of the curves
are the same. A compression algorithm could take advantage of this redundancy and greatly
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PARALLEL SPACE-FILLING CURVE GENERATION 13

reduce the amount of data that would need to be communicated. These two optimizations
could reduce the overall complexity of the merge-exchange operation from O(N

P ) to O( log N
P ).

The generation of the curve can be made incremental by taking advantage of the old curve.
For small changes in the mesh, new and modified mesh points would be added to the old curve
using binary insertion. For large changes a curve would be generated over new and modified
points and then the old and new curves would be merged. This would make the algorithm well
suited for adaptive mesh refinement.
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