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Abstract

This paper describes an adaptive implementation of a high order Discontinuous

Galerkin (DG) method for the solution of elastohydrodynamic lubrication (EHL)

point contact problems. These problems arise when modelling the thin lubricating

film between contacts which are under sufficiently high pressure that the elastic

deformation of the contacting elements cannot be neglected. The governing equa-

tions are highly nonlinear and include a second order partial differential equation

that is derived via the thin-film approximation. Furthermore, the problem features

a free boundary, which models where cavitation occurs, and this is automatically

captured as part of the solution process. The need for spatial adaptivity stems

from the highly variable length scales that are present in typical solutions. Results

are presented which demonstrate both the effectiveness and the limitations of the

proposed adaptive algorithm.
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1 Introduction

In order to minimize power loss and to prevent wear caused by friction lu-

bricants are used to separate machine components that would otherwise be

in contact. The behaviour of the lubricating film is of great importance in

determining its performance and has therefore been a topic of considerable

research over many years, from [28,5] through to the present day [17,18]. In

many cases, in particular when the pressure is sufficiently high compared to

the stiffness of the contacting surfaces, the elastic deformation of these sur-

faces cannot be ignored since it has a significant effect on the behaviour and

properties of the lubricant film. Such a situation is referred to as Elastohy-

drodynamic Lubrication (EHL). Examples of the occurrence of EHL include

cases where a very large force is applied over a very small surface area, such

as in journal bearings and gears [31], or cases where the contacting elements

are relatively easily deformed, such as in bio-mechanics [4]. In many of these

situations it is difficult to undertake reliable measurement through physical

experiments since, for example, the lubricant film may be very thin and the

pressure in the contact region may be extremely high (up to 3GPa) [20].
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Historically, two common models have been applied to describe lubricated

contact problems: line and point models. In both cases, dimensional reduction

of the problem is achieved via the application of a thin film approximation,

which allows the Navier-Stokes equations to be simplified to equations in-

volving just pressure and film thickness (known as the Reynolds and the film

thickness equations). In the case of a line contact further dimensional reduc-

tion is achieved by neglecting end effects and just modelling the cross-section

of the contact. In this paper, we are concerned with point-contact problems,

which we will model locally by the flow of a lubricating film between a plane

surface and a paraboloid (which may deform). One of the typical features of

EHL solutions is the existence of a sharp ridge of high pressure on the outflow

of the point contact. (For line contact problems this is referred to as a pressure

spike or the “Petrusevich spike” after the work of Petrusevich [28] who was

the first to compute numerical solutions for an EHL line contact problem.)

Up until very recently the most widely used techniques for the solution of EHL

problems have been based upon the use of low order finite difference methods

combined with multigrid techniques. Multigrid was first employed to accelerate

convergence by Lubrecht in 1986 [26]. Furthermore, for the fast calculation of

the elastic deformation Brandt and Lubrecht [2] developed a multilevel multi-

integration algorithm which significantly reduces the computational complex-

ity in approximating deformations at each point in the contact. Venner [34,33]

contributed further improvements on relaxation robustness. This combination

of finite difference discretizations and a multi-level solver combines both effi-

ciency and stability even when a very large number of degrees of freedom are

required. However the approach is somewhat inflexible since it does not accom-

modate high order or locally refined approximations very naturally, meaning

3



that very large numbers of degrees of freedom are typically required in order

to obtain accurate solutions [13,24,12]. In recent years therefore interest in

the use of finite element methods and more tightly coupled approaches has

increased, initially with work such as [6,19,8], and more recently using higher

order continuous elements [15,16].

In this paper we propose a new numerical technique for the solution of two-

dimensional, point contact, EHL problems based upon the use of a high order

Discontinuous Galerkin (DG) discretization combined with automatic adap-

tive refinement. The approach is a generalization and extension of the tech-

nique introduced by the authors in [24] for lower dimensional line contact

problems. In addition to generalizing the DG solution algorithm to two space

dimensions, including using of a penalty method [37] to handle the potentially

complex free boundary, this paper also demonstrates the importance of spatial

adaptivity. In particular, results are included that show the millions of degrees

of freedom required for two-dimensional multi-level finite difference approx-

imations (see [12]) can be reduced to just thousands of degrees of freedom

using adaptive DG.

In the following section the governing equations for the EHL point contact

are introduced and in Section 3 their DG discretization is discussed. Section 4

describes the solution of the resulting system of highly nonlinear algebraic

equations, including the use of p-multigrid techniques. Section 5 discusses

the spatial adaptivity in detail as the use of a discontinuous approximation

significantly simplifies the mesh refinement in two dimensions which is thus

fully exploited in the proposed algorithm. Section 6 provides an overview of

the whole solution procedure before the paper concludes with a description of

a number of computational examples, followed by a short discussion.

4



2 Governing Equations

The dimensionless mathematical model used in this work to describe isother-

mal EHL problems consists of three equations: the Reynolds equation, which

is derived from a thin-film approximation of the fluid flow; the film thick-

ness equation (based upon a linear elastic deformation model for the solid

contact elements), and a force balance equation [29,34]. The non-dimensional

steady-state Reynolds equation may be written in the following form:

−▽ ·(ǫ ▽ P ) + ▽ · (βρH) = 0, (1)

where β = (1, 0) for a model point contact (reflecting an assumed inflow of the

lubricant from the negative x-axis). Here P is the non-dimensional pressure,

which is the active variable, H is the non-dimensional film thickness and ρ is

the non-dimensional density of the lubricant. Further,

ǫ =
ρH3

ηλ
, (2)

where η is the viscosity of the lubricant and λ a dimensionless speed parameter,

which assumed constant for this steady-state model. Note that ǫ is small in

the contact region and relatively large in the non-contact region, which leads

to the fact that the diffusion term of the Reynolds equation (1) dominates

in the non-contact region and the convection term dominates in the contact

region. This has to be carefully considered when performing discretization and

relaxation.

The film thickness equation, which defines the contact geometry for a given

pressure solution, takes the following form:
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H(x, y) = H00 +
x2

2
+

y2

2
(3)

+
2

π2

∫ ∞

−∞

∫ ∞

−∞

P (x′, y
′

)
√

(x − x
′)2 + (y − y

′)2
dx′dy′.

This commonly used approximation, e.g. [2,12,26,33], is derived from the ana-

lytic solution to the linear elasticity problem on a semi-infinite domain, where

H00 is the central offset film thickness (a constant of integration), the parabolic

term represents the undeformed point contact geometry (assumed circular in

this case), and the global integral describes the elastic deformation itself.

The force balance equation is a conservation law for the applied load. For a

non-dimensional point contact, it is given by:

∫ ∞

−∞

∫ ∞

−∞
P (x, y) dxdy − 2π

3
= 0. (4)

In practice, the lubricant rheology is highly non-linear in pressure and so,

in this work, the following viscosity-pressure relationship of Roelands [34] is

assumed:

η(P ) = e
{

αp0

z
[−1+(1+

Pph
p0

)z ]}
, (5)

where z = 0.68 is the viscosity index, α = 2.165×10−8 is the pressure-viscosity

index, and p0 = 1.98× 108 is ambient pressure. The density model of Dowson

and Higginson (see [34]) is used to describe the compressibility of the lubricant:

ρ(P ) =
0.59 × 109 + 1.34Pph

0.59 × 109 + Pph

, (6)

where ph is the maximum Hertzian pressure which is a known constant for

any given loaded case. Whilst certainly not unique, these viscosity and density

models are widely used throughout the EHL literature [11,34].

All two dimensional EHL solutions can be characterized in terms of the di-
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mensionless point contact parameters W , U and G (or Moes dimensionless

parameters M and L) [34] where W is a dimensionless load parameter, U is

a dimensionless speed parameter and G is a material parameter. Given W , U

and G, M and L can be calculated as:

M = W (2U)−0.75, (7)

L = G(2U)0.25. (8)

Then ph in equations (5) and (6) and λ in equation (2) can be evaluated as

follows:

ph =
(3

2
M)

1

3 L

πα
, (9)

λ = (
128π3

3M4
)

1

3 . (10)

Note that equation (1) only defines the non-dimensional pressure, P , to within

an arbitrary constant so, without loss of generality, we are able to define the

vapour pressure of the lubricant to be zero (this is enforced through the up-

stream boundary condition). However, the solution of the Reynolds equation

allows the pressure in the outlet region to decrease without limit if the outlet

boundary is too far from the contact region. Consequently, the location of the

outlet boundary should be treated as free so as to ensure that P > 0, so cav-

itation does not occur, within the domain itself. These boundary constraints

may be expressed as:

P (Xboundary) = 0, and n̂ · ▽P (Xboundary) = 0, (11)

where n̂ is the unit normal to the boundary and X = (x, y) in 2d. The inlet

boundary should be located to approximate an infinite upstream boundary.
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3 High-Order Discontinuous Galerkin Discretization

This section describes the high-order DG discretization of the three governing

equations (1), (3) and (4).

3.1 The Reynolds Equation

Let Ph be a partition of the domain Ω into N rectangular elements Ωe (each

with boundary ∂Ωe). Moreover, let Γint = ∪Γef where Γef represents each

internal interface,

Γef = ∂Ωe ∩ ∂Ωf (12)

with e > f , and let n̂ be the unit normal pointing outward from Ωe. Finally

let ΓD be the boundary of Ω, which is taken to be a Dirichlet boundary where

P = g. Further let Γ− be the inflow part of the boundary, which is the part of

ΓD for which n̂ ·β < 0, where n̂ is the outward normal from the computational

domain. Here g is the solution on the Dirichlet boundary and for all problems

considered in this paper g = 0, which is reasonable so long as the upstream and

span-wise boundaries are sufficiently far from the contact region (see Figure 1

for an illustration of the finite computational domain).

The jump of a function v at point X on the element interface Γef is defined

to be

[v]ef (X) = v(X)|∂Ωe∩Γef
− v(X)|∂Ωf∩Γef

, e > f, (13)

and the average is given by

〈v(X)〉ef =
1

2
(v(X)|∂Ωe∩Γef

+ v(X)|∂Ωf∩Γef
). (14)
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Fig. 1. Computational domain used for the DG discretization of equations (1, 3, 4)

In each element, P is expressed in the following form:

P e(X) =
n(pe)
∑

i=1

ue
iN

e
i (X), (15)

where pe is the degree of the approximating polynomial, n(pe) is the number

of the basis functions required to achieve this order on each element, ue
i are

the unknown coefficients and N e
i (X) are the local finite element basis func-

tions which span a finite element space V . In this paper, hierarchical basis

functions are used, based on the definitions in [32]. Briefly, these consist of

“nodal modes”, “edge modes” and “internal modes”.

Following the approach of [1,27], a discrete form of the Reynolds equation

becomes:

L(P, v) = a(P, v) − l(P, v) = 0, ∀v ∈ V (16)

where

a(P, v) =
∑

Ωe∈Ph

(∫

Ωe

▽v · ǫ ▽ P dX

)

+
∫

Γint

([P ]〈(ǫ ▽ v) · n̂〉 − [v]〈(ǫ ▽ P ) · n̂〉) ds

+
∫

ΓD

(P (ǫ ▽ v) · n̂ − v(ǫ ▽ P ) · n̂) ds, (17)
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and

l(P, v) =
∑

Ωe∈Ph

(∫

Ωe

(▽v · β)ρH dX

)

−
∫

∂Ωe\Γ−

v(ρ(P−)H)(β · ñe) ds

−
∫

Γ−

vρ(g)H(β · n̂) ds +
∫

ΓD

(ǫ ▽ v) · n̂g ds. (18)

Note that these expressions imply the weak enforcement of the Dirichlet

boundary conditions P = g (where g ≡ 0 throughout this paper). Further-

more,

P− = lim
δ→0

P (X − δβ), for X ∈ Γint, (19)

ñe is the outward-pointing normal from Ωe and, on ΓD and n̂ is the outward

unit normal on ΓD. Equation (19 is based upon [1] and represents the imple-

mentation of a form of upwinding, through the choice of P−, when calculating

the numerical flux over element boundaries in (18). The numerical results pre-

sented later in this paper are consistent with other applications of such an

upwinded DG scheme, e.g. [1], in that it remains stable, at least for the low

to moderately-loaded cases that we consider here.

3.2 The Film Thickness Equation

For a given pressure distribution the film thickness may be calculated as fol-

lows:

H(x, y) = H00 +
x2

2
+

y2

2

+
2

π2

∫ Yupper

Ylower

∫ Xoutlet

Xinlet

P (x′, y
′

)
√

(x − x
′)2 + (y − y

′)2
dx′dy′

= H00 +
x2

2
+

y2

2
+

2

π2

N
∑

e=1

n(pe)
∑

i=1

Ke
i (x, y)ue

i , (20)
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where

Ke
i (x, y) =

∫

Ωe

N e
i (x

′

, y
′

)
√

(x − x
′)2 + (y − y

′)2
dx

′

dy
′

. (21)

Here Ke
i (x, y) is calculated using numerical quadrature. Special care must be

taken when (x, y) ∈ Ωe due to the singular nature of the integrand, and so

singular quadrature [7] should be used. Gaussian quadrature can be employed

elsewhere. Note that any error caused by the numerical quadrature when cal-

culating these kernels would affect the accuracy of the film thickness, which has

significant impact on the accuracy of the pressure through the convection term

in the Reynolds equation. Therefore, when using either singular quadrature or

Gaussian quadrature, Ke
i (x, y) needs to be calculated sufficiently accurately.

In this paper, adaptive quadrature is therefore used.

When using quadrature to evaluate the integrals over elements and element

boundaries in equations (17) and (18), the value of the film thickness needs to

be calculated at each quadrature point in each element and on each element

boundary. In order to do this, the values of Ke
i (x, y) must be evaluated at each

quadrature point. Note however that, for a given grid, a given set of basis func-

tions, and a given set of quadrature points, these kernels, Ke
i (x, y), need only

be evaluated once. This fact may be used to allow enormous efficiency gains

to be made in the solution procedure. Note however that a large amount of

memory is required to store the values of these kernels. If we have N elements

and M edges in the computational domain and m-point quadrature is used,

there will be (N ×m2 +M ×m)×∑N
e=1 n(pe) double precision values to store.
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3.3 The Force Balance Equation

The discrete form of the force balance equation is given by:

N
∑

e=1

∫

Ωe

n(pe)
∑

i=1

ue
iN

e
i (x, y) dxdy − 2π

3
= 0. (22)

Hence it is possible to define another kernel by

Ge
i =

∫

Ωe

N e
i (x, y) dxdy, (23)

to yield the following form:

N
∑

e=1

n(pe)
∑

i=1

Ge
iu

e
i −

2π

3
= 0. (24)

Again this kernel can be precomputed for a given grid and a given set of basis

functions.

3.4 Penalty Method

A major issue that must be addressed by any numerical method for the so-

lution of EHL problems is the treatment of the cavitation boundary. Recall

from Section 2 that the Reynolds equation is only valid in regions for which

it yields a non-negative pressure and the region in which it becomes zero is

unknown a priori. A variety of techniques have been proposed for addressing

this issue. In [36], for example, any non-positive pressures are simply set to

zero (however the resulting model is clearly dependent upon the choice of the

computational domain). More sophisticated (and accurate) approaches involve

adapting the position of the outflow boundary as the computation of the so-

lution values progresses [13,24]. In this paper, we use a penalty method that

is based upon the approach used in [17,25,37]. This significantly simplifies the
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treatment of the free boundary without appearing to lead to any significant

loss of accuracy. The consequence of introducing an exterior penalty term [37]

is to modify the discrete system (16) so that it becomes:

L(P, v) = a(P, v) +
1

δ

∫

Ω
P−v dX − l(P, v) = 0, ∀v ∈ V, (25)

where δ is an arbitrary small positive number (δ = 1.0×10−7 in the calculations

used in this paper) and

P− = min(P, 0). (26)

Note that the penalty term 1
δ

∫

Ω P−v dX is only effective when P < 0, in

which case it dominates the equation (25) since δ is very small. In this case,

the negative pressures are forced to be almost zero by the presence of the

penalty term in the modified weak form. The physical constraint that P ≥ 0

over the entire computational domain is then effectively satisfied automatically

(negative pressures of O(δ) may still be present however).

4 Solution of the Discrete System

For EHL problems, solution of the resulting discrete system is always a chal-

lenge because the Reynolds equation (1) is a highly nonlinear equation due

to ρ, H and η all depending on the active variable P . Furthermore, since the

convection term of the Reynolds equation (1) dominates in the contact region

and the diffusion term dominates elsewhere, any iterative method needs to be

robust and efficient in both regions. In this paper, a nonlinear smoother for

2d steady-state EHL problems is developed, which is then combined with a

multi-level algorithm based upon p-multigrid [9]. We begin this section with

a description of the single level solver and then extend this to incorporate
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p-multigrid.

4.1 Relaxation

Substituting the expression (15) into (16)-(19) and using the basis functions

as the test functions, the steady-state equation (25) can be written in the

general nonlinear form:

L(U) = A(U)U − b(U) = 0, (27)

where

U = (u1
1, . . . , u

1
n(p1); . . . ; u

N
1 , . . . , uN

n(pN )). (28)

Note that both A(U) and b(U) depend upon U . Since the entries of U are

ordered element by element, A(U) is a sparse block matrix with non-zero

blocks on the diagonal and non-zero off-diagonal blocks for block row e and

block column f whenever e and f are neighbours (since each element e is

connected with its neighbouring elements through the element boundaries,

see equation (17)).

A simple iterative procedure for solving this nonlinear algebraic system is to

use the following quasi-Newton relaxation:

U ← U −




ˆ∂L(U)

∂U





−1

L(U), (29)

where
ˆ∂L(U)

∂U
is an approximation to the true Jacobian ∂L(U)

∂U
:

∂L(U)

∂U
=

∂(A(U)U)

∂U
− ∂b(U)

∂U
≈ A(U) − ∂b(U)

∂U
. (30)

Note that ∂b(U)
∂U

is a full matrix which can itself be approximated by:
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∂b(U)

∂U
|I,J =

∂b(U)e
i

∂U
f
j

≈
∑

Ωe∈Ph





∫

Ωe

(▽v · β)ρ
∂H

∂U
f
j

dX





−
∫

∂Ωe\Γ−

v(ρ(P−)
∂H

∂U
f
j

+
∂ρ(P−)

∂U
f
j

H)(β · n̂e) ds

−
∫

Γ−

vρ(g)
∂H

∂U
f
j

(β · n̂) ds, (31)

where the Ith row corresponds to the row generated with the test function

v = N e
i (X) and the Jth column corresponds to the unknown U

f
j . Note that,

according to the discrete film thickness equation (20),

∂H(x, y)

∂U
f
j

= K
f
j (x, y), (32)

which can be precomputed. However, by (20), the film thickness depends heav-

ily on the local pressures and much less on the pressures far away. Thus, in

(32), K
f
j (x, y) is small when the position of element f is far away from the

position of X = (x, y). This provides useful information with which to make

a further simplification to the approximation of ∂b(U)
∂U

. In (31) we use the fol-

lowing approximations:

(1) ∂H(X)

∂U
f
j

= 0 where X ∈ e if f 6= e and f is not a neighbour of e.

(2) ∂H(X)

∂U
f
j

= 0 where X ∈ Γint if f is not a neighbour of Γint.

(3) ∂H(X)

∂U
f
j

= 0 where X ∈ ΓD if f is not a neighbour of ΓD.

(4) ∂H(X)

∂U
f
j

= K
f
j (X), otherwise.

Note that these approximations are of the simplest possible form and could

be improved by taking into account the distance of point X from element f ,

rather than simply neglecting all non-neighbouring contributions.

The above principles lead to an approximation of ∂b(U)
∂U

by a block sparse ma-
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trix with the same sparsity as A(U). As a result,
ˆ∂L(U)

∂U
in (29) is also a block

sparse matrix. An advantage of this simplification is that it is only necessary

to evaluate a relatively small number of the entries of ∂b(U)
∂U

instead of calcu-

lating all of them (of course this may have an impact of the performance of

the relaxation (29), especially for heavily loaded cases). Consequently, when

updating the unknown U in (29), the following linear system is solved numer-

ically rather than calculating
(

∂L(U)
∂U

)−1
precisely:

ˆ∂L(U)

∂U
Ucorrection = −L(U), (33)

where U is the current solution,
ˆ∂L(U)

∂U
is the approximation to ∂L(U)

∂U
and

Ucorrection is the correction value to U . There are many methods which can

be used to solve this linear system. In this work, at each iteration we use a

sparse GMRES implementation based upon [30], along with an under-relaxed

version of (29) to improve robustness:

U = U + C1Ucorrection, (34)

where C1 is an under-relaxation factor (in this paper C1 = 0.2).

In order to ensure that the force balance equation is satisfied, we update the

reference thickness H00 as follows:

H00 ← H00 − C2(
2π

3
−

N
∑

e=1

pe+1
∑

i=1

Ge
iu

e
i ), (35)

where C2 is an under-relaxation factor for H00 (C2 = 0.1 is used in this paper)

and Ge
i is defined in (23). Although this update is decoupled from the solution

of (27) in this work, it should also be possible to combine (35) with (27) to

form a single nonlinear system.
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4.2 P-multigrid

Although the iterative solver described above does yield a solution of the dis-

crete system of equations it often converges quite slowly. Conventional multi-

grid techniques are not appropriate for the acceleration of this convergence

since the use of high order DG means that very few mesh elements are required.

However, there is is a multi-level technique that is suitable for high-order DG

methods: p-multigrid [9]. Rather than using different spatial grids at differ-

ent levels, p-multigrid uses different polynomial orders but the same spatial

grid. The low frequency modes and the high frequency modes correspond to

the low-order components and the high-order components respectively. Conse-

quently the low-order restrictions serve as “coarse” levels. Both high frequency

errors and low frequency errors can be eliminated effectively by relaxing on

both “fine” and “coarse” levels. For convenience, a brief introduction to the

two-level full approximation scheme (FAS) is now provided.

Consider the following nonlinear system which results from a degree p FE

discretization of a PDE:

Lp(up) = fp, (36)

where up is the discrete solution vector for pth degree piecewise polynomial on

a given grid, Lp(up) is the associated nonlinear system and fp is a source term

(fp = 0 on the finest level). The discrete residual is defined by:

rp = fp − Lp(up). (37)

Let q < p and let uq denote the coefficients of a coarse level qth degree piecewise

polynomial approximation. The two-level correction scheme is given as follows:
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(1) Restrict the state and the residual to the coarse level:

u
q
0 = Ĩq

pu
p, (38)

rq = Iq
pr

p. (39)

(2) Solve the coarse grid problem:

Lq(uq) = f q = Lq(uq
0) + rq. (40)

(3) Interpolate the correction from the coarse level to the fine level and cor-

rect the fine level state:

ep = Ip
q (uq − u

q
0), (41)

up = up + ep. (42)

In the above Iq
p is the residual restriction operator and Ĩq

p is the state re-

striction operator (which need not necessarily be the same) whilst Ip
q is the

state prolongation operator. For the results described in this work we use a

hierarchical basis (see [32]) and have therefore taken

Ip
q =

















Iq

0

















and Iq
p =





Iq 0



 , (43)

where Iq is the q × q identity matrix. The definition of Ĩq
p is a little more

complex than that of Iq
p and is based upon the projection

∫

Ω
N

q
k

n(q)
∑

i=1

u
q
i N

q
i dΩ =

∫

Ω
N

q
k

n(p)
∑

j=1

u
p
jN

p
j dΩ for k = 1, ..., n(q) , (44)

where {N q
i } is the hierarchical basis (of dimension n(q)) for the polynomial

space of degree at most q and {Np
i } is the hierarchical basis (of dimension
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(a) △p = 1 (b) △p = 2

Fig. 2. Four level V-cycles for p-multigrid

n(p)) for the polynomial space of degree at most p. Full details may be found

in [23].

This two-level scheme is easily extended to a multi-level version by applying

the same scheme recursively to the solution of the coarse grid problem (40),

using an even lower polynomial degree than q. Two four level examples are

illustrated in Figure 2. In this figure △p represents the difference in order

between consecutive levels of approximation, with △p = 1 in Figure 2 (a) and

△p = 2 in Figure 2 (b). Unless otherwise stated, this latter scheme is used in

all examples in this paper since our numerical tests indicate that it is more

robust and efficient than other schemes considered. Note that our DG scheme

is not stable for p = 1, [1,27].

5 Adaptivity

Since the solutions of typical EHL problems exhibit sharp local features, such

as pressure spikes and rapid variations in the film thickness, some form of
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adaptivity is essential for an efficient solution method. In this section we de-

scribe an adaptive algorithm based upon local h-refinement and coarsening,

where the polynomial degree on each element is kept fixed. Of course it would

also be possible to adapt the polynomial degree on each element too but this

would significantly complicate the p-multigrid algorithm outlined in the pre-

vious section and would introduce issues associated with deciding between h-

and p-refinement (see, for example, [10,21,22]). Furthermore, since the solution

trial space is discontinuous over element interfaces, h-adaptivity is relatively

easy to implement: unlike for C0 finite elements which require continuity re-

strictions on element boundaries to be taken into account.

5.1 Adaptive Strategy

In [25], highly accurate one-dimensional solutions were obtained using an h-

adaptivity method based on the magnitude of the high-order components of

the solution on each element. In this paper, we extend this approach to the two-

dimensional problems considered here. For the hierarchical basis functions [32]

used in this paper, the high-order modes can be viewed as terms added to a

lower order solution in order to improve its accuracy. To illustrate this we

re-write equation (15), for the solution P e on an element e, as:

P e(X) =
n(pe−d)

∑

i=1

ue
iN

e
i (X) +

n(pe)
∑

i=n(pe−d)+1

ue
iN

e
i (X). (45)

Here the second sum contains only terms of the highest d polnomial orders,

whilst the first sum contains the terms of order at most pe − d. A simple error
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Fig. 3. H-adaptivity

indicator is provided by considering

Ee =

∥

∥

∥

∥

∥

∥

n(pe)
∑

i=n(pe−d)+1

ue
iN

e
i (X)

∥

∥

∥

∥

∥

∥

2

=

√

√

√

√

√

∫

Ωe





n(pe)
∑

i=n(pe−d)+1

ue
iN

e
i (X)





2

dX., (46)

where d = 1 or d = 2 are typically selected. The use of such an error indicator

leads to the following rules for local mesh adaptivity.

(1) Refine element E if EE > Tol1, where Tol1 is a given tolerance, by

splitting E into 4 equally sized smaller elements (see Figure 3 (a)).

(2) Remove edge k, which has two neighbouring elements e and f , if Ee <

Tol2 and Ef < Tol2, where Tol2 is a smaller tolerance than Tol1 (see

Figure 3 (b)).

By following this approach the quality of the numerical solution can be en-

sured by the h-adaptivity which can make all of the highest-order components

smaller than Tol1.
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5.2 Data Transfer

Once the grid is adjusted, the current solution on the original grid needs to

be transferred onto the new grid so that the computation may be continued

from the current estimate of the solution. The two-dimensional data transfer

between the new grid and the old grid includes two cases: transferring the

solution from one original element to four equally sized smaller elements, and

transferring the solution from two neighbouring smaller original elements to

one new larger element which is generated by agglomerating these two ele-

ments. Thus, two local transfer operators, Ic
f and If

c , are required.

First we consider a transfer operator If
c to transfer solution from E to e1, e2,

e3 and e4 (see Figure 3 (a)). This may be achieved through interpolation by

enforcing

∫

ek

PE(X)vdX =
∫

ek

P ek(X)vdX, ∀v ∈ {N ek

i (X), i = 1, 2, . . . , n(pek)}, (47)

for k = 1, 2, 3, 4. Clearly the Ic
f operator cannot generally be an interpolant

however it may be defined by enforcing the following weak form, which repre-

sents a local projection:

∫

E
PE(X)vdX =

∫

e+f
P e+f (X)v dX, ∀v ∈ {NE

i (X), i = 1, 2, . . . , n(pE)}.

(48)

Here PE(X) =
∑n(pE)

i=1 uE
i NE

i (X) is the pressure in E and P e+f (X) is the

pressure in e + f , where P e+f = P e =
∑n(pe)

i=1 ue
iN

e
i (X) when X ∈ e and

P e+f = P f =
∑n(pf )

i=1 u
f
i N

f
i (X) when X ∈ f .

It should be noted that when adaptivity, and the data transfer to the new grid

has taken place, it is also necessary to recompute the kernels in (21) for all ele-
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ments, Ωe, which have been introduced or modified by the adaptive procedure.

This may be an expensive operation when the adaptivity is extensive.

6 Overall Solution Procedure

Having introduced all of the components of the solution algorithm, this section

briefly describes how the p-multigrid may be combined with h-adaptivity to

provide the following overall solution procedure.

1 Give an initial grid and ensure that this grid covers the pressurized domain.

That is to say, the left boundary of the given grid is required to be far away

from the contact centre and the actual cavitation position should be inside

the given grid. Provide Tol1 and Tol2 for h-adaptivity.

2 Initialize the pressure on the given grid (for example, the Hertzian dry

contact pressure profile [34] is used in this paper). Give an initial guess for

H00.

3 Calculate the kernels Ke
i (see equation (21)) at all quadrature points in

element interiors and on element boundaries, and calculate the kernels Ge
i

(see equation (23)).

4 Perform 1 or 2 p-multigrid V-cycles on the current grid to update the so-

lution. On the initial grid, which is usually coarse, more V-cycles should

be undertaken to make the solution almost converge. Note that H00 is only

updated on the finest level.

5 Check if the grid needs to be adapted according to Tol1 and Tol2.

6 If the grid does need to be adapted: adapt the grid, transfer the current

pressure profile from the old grid onto the new grid, calculate the kernels

Ke
i and Ge

i related to the new elements, go to 4.
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7 Perform further p-multigrid V-cycles until the L2-norm of the numerical

residual is less than 10−10. Stop if Ee < Tol1 for each element, else go to 6.

7 Numerical Results

7.1 Lightly loaded EHL solutions

We begin this section by presenting representative results for three lightly

loaded test cases: (a) W = 0.2 × 10−7, U = 0.1 × 10−11 and G = 5000; (b)

W = 0.6 × 10−7, U = 0.15 × 10−11 and G = 5000; (c) W = 0.7 × 10−7,

U = 0.3 × 10−11 and G = 5000 (see (7)-(10)). There is nothing special about

these particular cases other than that they show solutions for a selection of

lightly-loaded EHL cases. For each case, the same initial guess is used: H00 = 0

with the piecewise bilinear interpolant of the Hertzian dry contact pressure

profile,

p(x, y) =























√
1 − x2 − y2 if |x2 + y2| < 1

0 otherwise

. (49)

This initial guess is shown in Figure 5 for a typical initial grid (see Figure 4).

Note that the initial pressure profile is not smooth, and discontinuities over

the element boundaries can be observed. Of course, a smoother initial guess

could be more suitable but this choice of initial data demonstrates that a good

initial guess is not generally required for these lightly-loaded cases.

For these results, values of d = 1, Tol1 = 0.001 and Tol2 = 0.00005 are used

for the h-adaptivity and polynomial degree 9 is used in each element. On the

initial grid, 10 V-cycles are performed to resolve an almost converged solution

prior to any h-adaptivity. After the first h-adaptivity, the quality of the current
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Fig. 4. Initial grid

Fig. 5. Initial pressure profile

solution is checked after every 2 V-cycles before repeated h-adaptivity until

the quality of the solution is satisfactory (Ee < Tol1 for each element e) and

fully converged (the L2-norm of the numerical residual is less than 10−10).
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Fig. 6. Final grid (a): W = 0.2 × 10−7, U = 0.1 × 10−11 and G = 5000

The final grids generated in these three cases are displayed in Figure 6, 8

and 10, where the mesh size around the pressure ridge is much smaller than

in other regions. The total number of elements required in each case is 48,

114 and 246 respectively. The fully converged pressure profiles for each of

these cases are displayed in Figures 7, 9 and 11 respectively (note that use

of DG with p = 9 corresponds to 57 degrees of freedom on each element).

In each case a smooth pressure profile is obtained and the pressure ridge,

which characterizes point contact EHL problems, is accurately captured. To

obtain similar resolution using existing finite difference or continuous finite

element approaches requires much larger numbers of degrees of freedom (see,

for example, [34,11,12] or [14,16] respectively).

For all three of these cases, P increases smoothly from the inflow boundary

(x = −4.0) to the contact centre (x = 0, y = 0) along the central line y = 0.

The pressure then drops a little before rising steeply to the top of the pressure

ridge. In the short distance between the top of the pressure ridge and the
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Fig. 7. Converged pressure profile (a): W = 0.2 × 10−7, U = 0.1 × 10−11 and

G = 5000
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Fig. 8. Final grid (b): W = 0.6 × 10−7, U = 0.15 × 10−11 and G = 5000
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Fig. 9. Converged pressure profile (b): W = 0.6 × 10−7, U = 0.15 × 10−11 and

G = 5000
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Fig. 10. Final grid (c): W = 0.7 × 10−7, U = 0.3 × 10−11 and G = 5000
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Fig. 11. Converged pressure profile (c): W = 0.7 × 10−7, U = 0.3 × 10−11 and

G = 5000

cavitation boundary, where P becomes zero, the pressure decreases rapidly.

It should be noted however that the shapes of these three pressure ridges are

significantly different. In Figure 7 (the lightest load), the maximum pressure

is located on the central line y = 0 and P decreases in both the x and y

directions from the top of the pressure ridge. In Figures 9 and 11 however,

the maximum pressure is not on the central line (and so, due to symmetry,

there are in fact two maxima). In Figure 9, for example, the pressure at the

top of the ridge increases significantly from the central line when moving in

the y and −y directions, before decreasing rapidly to zero. These solutions

are reproducible for different choices of p, d, Tol1 and Tol2 (with different

numbers of elements in the final grids of course). Consequently, we have also

been able to demonstrate that the adaptive high order DG method can yield

accurate solutions to very challenging EHL problems using remarkably few
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degrees of freedom ((a) 48× 57, (b) 114× 57 and (c) 246× 57). Furthermore,

the approach behaves in a stable manner.

7.2 More heavily loaded cases

The three cases shown above consider loading up to pH=343MPa. For many

industrial scenarios requiring EHL modelling the loading exceeds this, despite

the overall solutions still resembling those for case (c). In this section we

present two more heavily loaded cases, and discuss some of the issues that

affect the computation of accurate solutions. These cases are (d) W = 1.63×

10−7, U = 0.818×10−11 and G = 4972; (e) W = 4.63×10−7, U = 0.818×10−11

and G = 4972, which have significantly higher W and U values than cases (a)

to (c). The maximum Hertzian pressure for these cases is 450MPa and 637MPa

respectively. Case (d) is equivalent to the M=20, L=10 test case used in [11]

and is almost identical that used by Venner and Lubrecht [35].

In order to get convergence of the solver on these higher loaded cases we have

found it necessary to use continuation solutions from lighter loaded cases as

an initial guess. This method is common for accelerating convergence in many

EHL cases, e.g. [13]. An important consideration when using continuation is

that the initial grid should not be too refined to match the pressure ridge since

the increase in pressure will significantly affect its location. It is also necessary

to reduce the relaxation parameters used in order to improve the robustness

of the solver.

The solutions presented in this section use p = 7 polynomials giving 38 un-

knowns per element. The adaptivity strategy used is exactly the same as that
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Fig. 12. Final grid (d): W = 1.63 × 10−7, U = 0.818 × 10−11 and G = 4972

described for the lightly loaded cases. The final meshes for cases (d) and (e) are

shown in Figures 12 and 14. They contain 292 and 232 elements respectively.

The fully converged pressure solutions are shown in Figures 13 and 15. It

can be clearly seen that as the cases get more heavily loaded, more resolution

is needed around the whole outflow side of the pressure bump, and also in the

inlet region.

For these heavily loaded cases it does seem that convergence becomes much

harder to achieve. This seems to mainly be caused by the difficulties of ac-

curately resolving the pressure ridge formed against the back of the main

pressure bump using the high order polynomials chosen. This is demonstrated

for cases (d) and (e) in Figure 16. In can be seen how, as the load gets heav-
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Fig. 13. Converged pressure profile (d): W = 1.63 × 10−7, U = 0.818 × 10−11 and

G = 4972

ier, the pressure ridge gets narrower and hence harder to resolve. This also

contributes to the jaggedness of the top of the pressure ridge in the visualisza-

tions shown in Figures 13 and 15. In these cases the elements which partially

contain the ridge have a “waviness” effect evident away from the ridge in what

should be an area of smooth solution variation.

7.3 Efficiency and robustness

The numerical results above show that accurate solutions can be obtained, at

least for light to moderate loads, using a relatively small number of degrees of
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Fig. 14. Final grid (e): W = 4.63 × 10−7, U = 0.818 × 10−11 and G = 4972

freedom. In particular, the typical pressure ridges that occur in these lightly

loaded cases can be precisely resolved. For more highly loaded cases it is likely

that the approach would be enhanced by the capability of applying adaptivity

in the polynomial degree as well as the element size (i.e. full h-p-adaptivity).

This is because the high order polynomials are less well suited to capturing

extremely narrow pressure ridges than lower order polynomials would be on

very fine meshes. Hence the ideal finite element representation would have

high order elements almost everywhere but lower order elements in the precise

vicinity of the narrow pressure ridge.

The cost of the method, in terms of both memory and computation time, is

dominated by the evaluation of the film thickness, (20) and (21). This is made
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Fig. 15. Converged pressure profile (e): W = 4.63 × 10−7, U = 0.818 × 10−11 and

G = 4972

Fig. 16. Zoom of the pressure ridge for cases (d), left, and (e), right.
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tractable due to the precomputation of the kernel functions (21) at quadrature

points, however the computation of these kernels is still relatively expensive

compared to the overall solution time, especially when mesh adaptivity is used

due to the need to recompute kernels after each mesh adaptation. For example,

for the lightly loaded case (b) above, involving 6498 degrees of freedom, it costs

62098 seconds to obtain the fully converged solution of which 51150 seconds

are spent on the calculation of these kernels. An alternative approach, that

may be worthy of consideration therefore, could be to use a fixed mesh that

is chosen in advance using our a priori knowledge of the qualitative pressure

profiles. Note that, as currently implemented, our solution time for case (b) is

comparable to that required to solve a similar problem to a similar accuracy

(on a 16385 × 16385 finite difference grid for example) using a state-of-the-

art lower order scheme, [12]. However one would be unlikely to use such a

fine finite difference grid for a problem with this load in practice. Hence,

whilst the DG approach requires substantially less memory (even allowing

for the precomputation of the kernel functions), the finite difference solver is

applicable with lower resolution and has been shown to extend much more

effectively to highly loaded cases than the DG approach used here. Of course,

there have been many years of development to improve the efficiency of lower

order implementations whereas our DG implementation is a new development

for this problem and is therefore likely to benefit from further research.

It may be observed that in the presentation of the algorithm described above

there are a number of parameters that must be selected. It is approproate

therefore to give some consideration to the choice of these parameters and

to the sensitivity (or otherwise) of the computed results to such parameter

values. The first parameter that we consider is Tol1, which is used in order to
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Table 1

Comparison of Pressure Peak Position and Peak Pressure

Tol1 Number of Elements Peak Pressure Peak Position

0.025 26 1.333 (0.576,0.000)

0.005 34 1.324 (0.578,0.000)

0.001 48 1.322 (0.579,0.000)

0.0002 89 1.320 (0.578,0.000)

control the local h-refinement. In addition to the value of Tol1 = 0.001 that

is used above, the loaded case (a) is also solved using three other tolerances:

Tol1 = 0.025, Tol1 = 0.005 and Tol1 = 0.0002 respectively. Table 1 shows a

detailed comparison of the peak pressures and the peak positions when using

these different Tol1 values. It is apparent that no significant difference can be

observed when Tol1 < 0.005 and so one may conclude that Tol1 = 0.001 is

sufficiently cautious to ensure an accurate solution and that the results are

not sensitive to a variation in this parameter once it is sufficiently small.

For the loaded case (a), another numerical test is performed to assess the

sensitivity of the solution to the choice of the polynomial degree p. Here we

use different orders (p = 3, 5, 7, 9) on the same grid, which is generated using

the h-adaptivity when p = 9. The comparison of the pressure peak profiles

along Y = 0 is shown in Figure 17. When p = 3, significant discontinuities

can be observed. With p = 5 the discontinuities become smaller, but may

still be observed. When p >= 7, the pressure ridges are much smoother and

no significant difference can be observed between the results. Finally, Table 2

illustrates that the peak pressure value and position is only accurately repre-
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Table 2

Comparison of Pressure Peak Position and Peak Pressure

p Peak Pressure Peak Position

3 1.156 (0.578,±0.009)

5 1.317 (0.583,±0.004)

7 1.321 (0.581,0.000)

9 1.322 (0.580,0.000)

Fig. 17. Comparison of the pressure peak profiles along Y = 0 on the same grid

with different orders

sented for p >= 7 on this particular grid. Of course, these sensitivity tests are

reported here for one of the lightly loaded cases. For the more heavily loaded

cases discussed in cases (d) and (e) the best choice of parameters to ensure

both accuracy and robust convergence is less clear.
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8 Discussion

In this paper a high-order finite element scheme, based upon the Discontin-

uous Galerkin method, has been successfully applied to a selection of two-

dimensional EHL contact problems. This is the first time that the feasibility

of the DG approach has been demonstrated for such problems and it suc-

cessfully extends the previous one-dimensional work of [24]. In order for the

approach to be of practical value it is clear that it must be computationally

competitive when contrasted with existing solution methods based upon lower

order schemes (as in [12,34,36] for example) or based upon continuous finite

elements (e.g. [8,14,15]. In order to facilitate this a suitable p-multigrid solver

has been developed, which incorporates a robust smoother in both the con-

tact and the non-contact regions. Furthermore, in order to capture all details

of the EHL solutions, particularly the pressure ridge, an h-adaptivity method

has been implemented with refinement and coarsening controlled via a flexible

error indicator function. In the examples included in this paper this function

is based upon the significance of the highest-order contributions to the DG

solution however alternative controls are also possible, and have been imple-

mented, based upon the jumps in the DG solution for example [23]. It should

be acknowledged however that, even with these enhancements to the solution

strategy the CPU requirements of our initial implementation are very substan-

tial compared to more traditional methods. It is also important to acknowledge

that, as presented here, the high order DG approach has not performed well

for highly loaded cases. It has not been possible to obtain converged solutions

for higher loaded cases than those reported here, and even in the moderately

loaded cases (d) and (e) the solutions obtained are not smooth across the
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pressure ridge.

There are a number of possibilities for enhancing the performance, both in

terms of speed and robustness, that will need to be investigated further if the

DG approach is to be widely applicable to the solution of these problems.

For example, in this work we have adopted the relatively straightforward ap-

proach of selecting a polynomial degree a priori and then adding and deleting

degrees of freedom via the use of h-adaptivity. Clearly, an hp-adaptive ap-

proach, [21], offers significantly greater versatility however an effective and

reliable technique is required for selecting which type of refinement or coars-

ening is required at any given point in time and space. If such a technique

can be found however the hp-adaptive approach offers substantial further ef-

ficiency gains. Additional efficiency benefits may also be obtained by success-

fully parallelizing the method, since the high order DG is well suited to parallel

implementation [3], and the computation of each of the kernels is independent

of all others. Indeed, the kernel evaluations is by some way the most expensive

component of the solution process.

Further improvements might be possible by enhancing the quasi-Newton itera-

tion that lies at the heart of the solution process. For example, the approxima-

tion to the Jacobian matrix could be improved significantly for highly-loaded

problems and/or in regions of local h-refinement. It should also be possible to

couple equations (35) and (27) to form a single nonlinear system. An alterna-

tive direction in which to take this work would be to drop the integral form

(3) for the film thickness altogether and to follow the approach of [14] by com-

puting a finite element approximation to the elastic deflection and coupling

this to the DG discretization of the Reynolds equation within one over-arching

nonlinear system. Given the significant advantages that have been reported
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for this fully-coupled approach, [14,16,17], this seems a particularly attrac-

tive option. A final generalization of the software that is also highlighted here

for future consideration is the solution of transient point contact problems,

involving variable loads or roughness in the contacting elements.
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