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Abstract

Higher order discontinuous Galerkin methods offer the potential to solve both steady-
state and transient problems efficiently and accurately. In this paper an introduction
is provided to both elastohydrodynamic lubrication and the discontinuous Galerkin
method before going on to describe the application of this method to the solution of
typical problems, both steady-state and transient, that arise in elastohydrodynamic lu-
brication. In particular, it is demonstrated that the combination of high order elements
and a simple spatial adaptive scheme can yield highly accurate numerical results using
only hundreds of computational degrees of freedom.

Keywords: elastohydrodynamic lubrication, finite elements, discontinuous Galerkin,
mesh adaptivity.

1 Introduction
Friction is an essential force that occurs in all aspects of our everyday life, allowing us
to walk or making cars both run and stop for example. However, sometimes friction is
not welcome: it can cause power loss in engines or reduce the lifetime of contacting
elements (due to wear). In these situations, it is desirable that frictional forces should
be minimised. The most common way to reduce friction and prevent wear is through
lubrication, where lubricants are used to separate contacting surfaces, allowing the
efficiency of components to be significantly enhanced and the lifetime of machine
elements to be dramatically extended.

Since lubrication is such an effective way to reduce power loss and prevent wear,
and since the behaviour of the lubricant film between contacting elements is of great
importance in determining its performance, understanding this behaviour is of great
interest to researchers. In many cases, the film thickness is determined exclusively by
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Figure 1: A schematic of hydrodynamic (left) and elastohydrodynamic (right) lubri-
cation between two cylindrical surfaces.

the shapes of the contacting surfaces. This situation is called hydrodynamic lubrica-
tion, which is illustrated on the left of Figure 1 where the lubricant flows from left
to right. However, when the pressure is sufficiently high, compared to the stiffness
of the running surfaces, the elastic deformation of the contacting surfaces cannot be
ignored, and this can heavily affect the shape of the lubricant film. The lubrication of
such, more complicated, situations is referred to as Elastohydrodynamic Lubrication
(EHL), which is shown on the right of Figure 1.

The EHL problem is not only characterised by the interaction between the film
thickness and the elastic deformation. At such high pressures, the lubricant viscosity
also depends heavily on pressure and the lubricant is compressible. A very interesting
feature of the flow is a steep pressure spike that appears in the outlet region at high
loads. The precise loading configuration affects both the shape and the position of the
spike which can be very sharp indeed, although it is always smooth. Another impor-
tant characteristic element of EHL is the outlet free boundary (or cavitation position)
where the pressure of the lubricant becomes equal to the vapour pressure (convention-
ally taken to be zero). All of these features significantly increase the complexity of
EHL problems compared to hydrodynamic lubrication problems. For a typical EHL
contact problem, the desired information includes the pressure profile, the film thick-
ness profile and the cavitation position.

In order to undertake theoretical analysis of EHL behaviour a common model prob-
lem that is considered is a contact between a paraboloid and a flat surface. According
to the dimension of the contact, these problems are divided into two types: the line
contact problem (1d) and the point contact problem (2d). Figure 2 shows the reduced
geometry employed in the these two theoretical analyses, where: R, Rx and Ry are
the radii of curvature; h(x) and h(x, y) are the film thickness, and; U1 and U2 are the
velocities of the upper and the lower surfaces respectively. Throughout the rest of this
paper we will only consider line contact problems for simplicity, however all of the
techniques described can be extended naturally to point contacts.
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Figure 2: A schematic of line (left) and point (right) contacts.

In the following section further details are given concerning the nature of line con-
tact problems, along with a brief description of their history and computational tech-
niques that have been used to solve them numerically. Section 3 then introduces the
discontinuous Galerkin method and illustrates how it may be applied to solve steady-
state line contact EHL problems using mesh adaptivity. Section 4 then generalises
these ideas to the solution of transient problems and the paper concludes with a short
discussion of the work presented and how it may be further extended.

2 Background

2.1 Governing Equations
Due to the enormous variation in the magnitude of the key quantities within EHL mod-
els (up to O(109) Pa for the pressure and down to O(10−8) metres for the film thick-
ness) it is necessary to consider non-dimensionalised systems of equations for the pur-
poses of numerical simulation. In this section we define a typical non-dimensionalised
model, further details of which may be found in [38] for example.

The first equation that we define is known as the Reynold’s equation, which takes
the following form:

∂

∂X
(ε

∂P

∂X
)−

∂(ρH)

∂X
−

∂(ρH)

∂T
= 0, (1)

where

ε =
ρ̄H3

ηλ
, (2)

P (X) and H(X) are the dimensionless pressure and film thickness respectively, ρ(P )
and η(P ) are the dimensionless density and viscosity, and λ is a dimensionless speed
parameter.
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The second equation is known as the film thickness equation, and this is given by:

H(X) = H00 +
X2

2
−

1

π

∫ ∞

−∞

ln |X −X
′

|P (X
′

) dX
′

, (3)

where H00 is the dimensionless central offset film thickness and the integral describes
the elastic deformation. Finally, a force balance equation is required:

∫ ∞

−∞

P (X) dX −
π

2
= 0. (4)

The precise form used for the viscosity and density varies between models but for
this paper we assume the following dimensionless forms (originally proposed in [34]
and [8] respectively):

η(P ) = e
{

αP0
z

[−1+(1+
PPh
P0

)z ]} and ρ̄(P ) =
0.59× 109 + 1.34PPh

0.59× 109 + PPh

. (5)

Here, α, P0, Ph and z are given constants: see [38], for example, for further details.
Note that the form of equations (5) means that the value of ε in (2) can vary enor-
mously, from very small to very large, in different parts of the computational domain.
This means that in some regions equation (2) is convection-dominated and in others it
is diffusion-dominated, which is a significant factor that must be accounted for by any
numerical scheme that is applied.

For physical reasons, all pressures should be larger than or equal to the vapour
pressure of the lubricant (taken to be zero for simplicity). This is not accounted for
in the Reynolds equation, hence, in the outlet region, the calculated solution may
have negative pressures. Consequently the Reynolds equation is only valid in the
pressurised region and, the cavitation position, Xoutlet, is therefore treated as a free
boundary. Furthermore, in order to ensure that the model domain is finite the inlet
boundary is fixed at a position Xinlet, that is sufficiently far from the contact region
not to affect the nature of the flow. With this finite domain the associated boundary
conditions are:

P (Xinlet) = 0, P (Xoutlet) = 0 and ∂P

∂X
(Xoutlet) = 0. (6)

2.2 Numerical Methods
The first numerical solution of the line contact problem, which simultaneously sat-
isfied both the Reynolds equation and the film thickness equation, was obtained as
long ago as 1951 by Petrusevich [32]. In this work a second maximum in the pres-
sure profile was first observed, which now is referred to as “the Petrusevich spike” or
“the pressure spike”, and a corresponding dip in the film thickness was also obtained.
These are regarded as the two major features of EHL solutions, which are not present
when the contacting surfaces are presumed to be rigid. Figure 3 shows an illustration
of a typical pressure spike.

4



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

-5 -4 -3 -2 -1  0  1  2

P

X

241 points
481 points
961 points

1921 points
3941 points

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0.7  0.72  0.74  0.76  0.78  0.8

P

X

241 points
481 points
961 points

1921 points
3941 points

Figure 3: Typical finite difference results showing the full pressure profile (left) and
details of the pressure spike (right).

Since the pioneering work of Petrusevich a wide variety of numerical methods
have been applied to EHL problems. In 1959, Dowson and Higginson [7] intro-
duced the inverse method which is mainly suitable for highly loaded cases. Evans
and Snidle [13, 14] later extended this approach to point contact problems. Okamura
applied the Newton-Raphson algorithm [30], and further improvements were made
by Houpert and Hamrock [20] and Chang [6]. Another standard forward algorithm,
Gauss-Seidel relaxation, was used by Hamrock and Dowson [16, 17] for both line
contact and point contact problems. Unfortunately, both the Newton-Raphson and the
Gauss-Seidel relaxation schemes are not particularly stable due to the extreme nonlin-
earity of EHL problems, particularly for highly loaded cases. To improve the stability,
Evans [9] coupled the Reynolds equation and the film thickness equation together and
solved for the pressure and the thickness simultaneously. To improve the efficiency, a
so-called differential deflection method [12] was then introduced.

Over the past twenty years or so the most common approach that has been devel-
oped for the solution of EHL problems is based upon a combination of finite differ-
ences and multigrid. The multigrid method was first introduced for EHL problems by
Lubrecht in 1986 [26] and, for the fast calculation of the elastic deformation Brandt
and Lubrecht [2] developed a multilevel multi-integration (MLMI) algorithm which
significantly reduces the computational complexity in approximating deformations at
each point in the contact using (3). Figure 3 shows typical finite difference (FD) so-
lutions computed on a range of grids. Finite element methods have only been used to
a limited extent for the compressible EHL problems being considered here (although
they have been applied more widely to the solution of incompressible EHL models,
e.g. [37, 10, 29, 40, 27, 18, 19]). This is because some form of stabilisation is required
in the compressible case (easily achieved via upwinding in FD schemes): for example,
the solution is observed to oscillate in the contact region in [21] when a continuous
quadratic finite element method (FEM) is used to discretise the Reynolds equation.

In the following sections we present a new FEM approach to EHL problems, based
upon the discontinuous Galerkin method. This provides a means of combining the
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advantages of high order approximation afforded by the FEM with the advantages of
stability that have historically motivated the use of the FD method.

3 Discontinuous Galerkin for Steady-State Problems

3.1 Motivation
The original Discontinuous Galerkin (DG) method was introduced in 1973 by Reed
and Hill [33] for solving a hyperbolic neutron transport equation. Indeed, most of
the early work on DG methods was restricted to purely hyperbolic problems, for ex-
ample [23, 31, 35, 3, 4, 5]. In 1998 a new DG method was introduced by Baumann
and Oden [28, 1] that extended DG in a natural manner to second order convection-
diffusion problems. Over each element boundary, both solution values and fluxes may
be discontinuous. The continuity requirements over inter-element boundaries, and the
boundary conditions, are imposed in a weak form. This treatment of inter-element
boundaries prevents the appearance and spreading of numerical oscillations. For dif-
fusion problems, this method was proved to be stable for polynomial basis functions
of degree ≥ 3 and the L2-rate of convergence found to be O(hp+1) for p odd and
O(hp) for p even. In convection-dominated cases, no artificial diffusion is required
to improve the stability, which allows the order of accuracy to grow linearly with the
order of the basis functions (assuming the underlying solution is smooth). So this is
a high-order scheme which is applicable to both convection-dominated problems and
diffusion-dominated problems. This property makes it an ideal candidate to be applied
to equation (1) which can be both convection- and diffusion-dominated in different re-
gions of the domain.

A further attraction of this DG method is the ease with which mesh adaptivity
may be implemented. Since the solution is discontinuous over element interfaces, h-
adaptivity can be easily performed without the restrictions imposed by the continuity
requirements of the continuous FEM. Furthermore, the order of the approximating
polynomial does not have to be the same for different elements. Hence, the imple-
mentation of p-adaptivity is very straightforward and natural. Of course, we can also
adapt the grid concurrently with adjusting the polynomial degree of elements: this
approach is generally referred to as h-p-adaptivity. In this particular paper only the
use of h-adaptivity will be described.

3.2 Discretisation Details
The Reynolds Equation

When seeking steady-state EHL solutions the time-dependent term in the Reynolds
equation (1) may be neglected, to leave

∂

∂X
(ε

∂P

∂X
)−

∂(ρH)

∂X
= 0. (7)
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Let Ωh be a partition of the domain Ω = [Xinlet, Xoutlet] into N elements. Let
Γint = ∪Γef denote internal interfaces between elements, where Γef is the grid point
separating elements e and f . We define the jump of a function v on the element inter-
face Γef

[v(x)]ef = lim
x→Γef ,x∈e

v(x)− lim
x→Γef ,x∈f

v(x), e > f, (8)

and the average

〈v(x)〉ef =
1

2

(

lim
x→Γef ,x∈e

v(x) + lim
x→Γef ,x∈f

v(x)

)

. (9)

In each element e, P is approximated in the following form:

P e(X) =

pe+1
∑

i=1

ue
iN

e
i (X), N e

i (X) ∈ V (10)

where pe is the order of the approximating polynomial, ue
i are the unknown coefficients

and N e
i (X) are the local finite element basis functions which belong to a finite element

space V . In this paper, a family of hierarchical basis functions are used, which was
introduced in [36]. In the reference element the following basis functions are defined:

N1(ξ) =
1− ξ

2
; N2(ξ) =

1 + ξ

2
; Ni(ξ) = φi−1(ξ), i = 3, 4, . . . , p + 1 (11)

where p is the polynomial degree of the elements and ξ ∈ [−1, +1]. Here φj is defined
in terms of the Legendre polynomial Pj−1:

φj(ξ) =

√

2j − 1

2

∫ ξ

−1

Pj−1(t) dt, j = 2, 3, . . . (12)

The basis functions N1, N2 are called nodal shape functions or external modes. The
basis functions Ni (i = 3, 4, . . . , p + 1) are called internal shape functions or internal
modes, sometimes: bubble modes. These basis functions are well suited for computer
implementation of p-adaptivity because it is easy for us to enhance the accuracy of the
solution by adding more hierarchical basis functions on some elements or to reduce
the accuracy by dropping several highest order basis functions as appropriate. Some
important properties of Legendre polynomials are listed in [36]. In particular, we have:

φj(ξ) =
1

√

(2(2j − 1))
(Pj(ξ)− Pj−2(ξ)). (13)

With the above formulae, it is easy to evaluate the internal basis functions. Figure 4
depicts the first 6 basis functions in the reference element.

Combining the above notation, the one-dimensional steady-state Reynolds equation
(7) can be discretised into the following form:

L(P, v) = a(P, v)− l(P, v) = 0, ∀v ∈ V, (14)
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Figure 4: One-dimensional basis functions on the reference element.

where

a(P, v) =
∑

e∈Ωh

(
∫

e

ε
∂P

∂X

∂v

∂X
dX
)

+
∑

Γint

(

[v]〈

(

ε
∂P

∂X

)

〉 − [P ]〈

(

ε
∂v

∂X

)

〉

)

+

(

vε
∂P

∂X

)

|Xinlet
−

(

vε
∂P

∂X

)

|Xoutlet
−

(

Pε
∂v

∂X

)

|Xinlet
+

(

Pε
∂v

∂X

)

|Xoutlet
,

(15)

and

l(P, v) =
∑

e∈Ωh

(
∫

e

ρH
∂v

∂X
dx
)

+
∑

Γint

[v]〈ρ(P−)H〉

+ (ρHv) |Xinlet
− (ρHv) |Xoutlet

−

(

ginletε
∂v

∂X

)

|Xinlet
+

(

goutletε
∂v

∂X

)

|Xoutlet
.

(16)

In the above equations,

P− = lim
σ→0

P (x− σ), for x ∈ Γint. (17)

This provides sufficient upwinding to ensure a stable solution [1]. Note that in equa-
tion (15) [v]〈ε ∂P

∂X
〉 is nonzero after the integration by parts since v is discontinuous over

each element boundary. The continuity condition of P over inter-element boundaries
is implemented by requiring

∑

Γint

[P ]〈

(

ε
∂v

∂X

)

〉 = 0, (18)
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see equation (15). Dirichlet boundary conditions are also imposed in a weak form:

(P − ginlet)〈

(

ε
∂v

∂X

)

〉 = 0 and (goutlet − P )〈

(

ε
∂v

∂X

)

〉 = 0, (19)

see equation (16). (Note that for this problem, (6) implies that ginlet = goutlet = 0.)

The Film Thickness Equation

For a given pressure distribution the film thickness (3) may be calculated as follows:

H(X) = H00 +
X2

2
−

1

π

∫ Xoutlet

Xinlet

ln |X −X
′

|P (X
′

) dX
′ (20)

= H00 +
X2

2
−

1

π

∑

e∈Ωh

∫

e

ln |X −X
′

|P (X
′

) dX
′

= H00 +
X2

2
−

1

π

∑

e∈Ωh

∫

e

ln |X −X
′

|

pe+1
∑

i=1

ue
iN

e
i (X

′

) dX
′

= H00 +
X2

2
−

1

π

∑

e∈Ωh

pe+1
∑

i=1

∫

e

ln |X −X
′

|N e
i (X

′

) dX
′

ue
i

= H00 +
X2

2
−

1

π

∑

e∈Ωh

pe+1
∑

i=1

Ke
i (X)ue

i ,

where the kernel values Ke
i (X) are defined by:

Ke
i (X) =

∫

e

ln |X −X
′

|N e
i (X

′

) dX
′

. (21)

Here Ke
i (X) may be calculated numerically. When X is outside of e, m-point Gaus-

sian quadrature is used however when X ∈ e, singular quadrature must be employed
(see, for example [11]) since ln |X −X

′

| has a weak singularity at X
′

= X .
In order to evaluate the integrals in equation (15) and (16), it is necessary to cal-

culate the values of the film thickness at the quadrature points X j
f , j = 1, 2 . . . , m

(m is the number of the quadrature points in each element f ) and at each element
boundary Xk, k = 1, 2, . . . , N + 1. Therefore, the kernels at the quadrature points,
Ke

i (X
j
f), and at the element boundaries, Ke

i (Xk), are required. From (21), it can be
seen that Ke

i (X) depends only on the structure of the grid that is used and upon the
basis functions. Hence, once the grid and the basis functions are fixed, K e

i (X
j
f ) and

Ke
i (Xk) can be precomputed for maximum efficiency.
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The Force Balance Equation

The force balance equation (4) is discretised according to:

∑

e∈Ωh

∫

e

pe+1
∑

i=1

ue
iN

e
i (X) dX −

π

2
= 0. (22)

By introducing another kernel KKe
i :

KKe
i =

∫

e

N e
i (X) dX, (23)

the discrete force balance equation can be rewritten as:

∑

e∈Ωh

pe+1
∑

i=1

KKe
i u

e
i −

π

2
= 0. (24)

This kernel can also be precomputed, using Gaussian quadrature, for given a grid and
basis functions.

3.3 Solution Method
Before discussing procedures for solving the discrete system of nonlinear algebraic
equations derived above one further issue must be addressed. As already noted, the
problem specified in subsection 2.1 is a free boundary problem, with the cavitation
point Xoutlet to be determined. One way of dealing with this free boundary is through
the use of a penalty method, such as that applied in [40] for an incompressible EHL
problem. By introducing an exterior penalty term, the following nonlinear system will
be solved instead of (14):

L(P, v) = a(P, v) +
1

δ

∑

e∈Ωh

∫

e

P−v dX− l(P, v) = 0, (25)

where δ is an arbitrary positive number and

P− = min(P, 0). (26)

Note that the penalty term 1
δ

∑

e∈Ωh

∫

e
P−v dX is not effective where P ≥ 0. In the

outlet region however, the penalty term dominates the equation (25) when P < 0,
provided that the δ is small enough. In this case, the negative pressures are forced to
be zero by the penalty term in the weak form. Consequently, the condition P ≥ 0
is satisfied over the entire computational domain and the cavitation position can be
recovered from this solution if it is required.

Now, based upon (10) and (25) the discrete Reynolds equation may be written in
the general form:

L(U) = A(U)U − b(U) = 0, (27)
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where
U = (u1

1, . . . , u
1
p1+1; . . . ; u

N
1 , . . . , uN

pN+1) (28)

are the unknown pressure coefficients. Note that both A(U) and b(U) depend on U .
Since the entries of U are ordered element-by-element (see (28)), A(U) is a block-
tridiagonal matrix and the size of the each block is determined by the degree of the
basis functions on the corresponding elements.

In order to solve this nonlinear algebraic system the following iteration is proposed:

U ← U +

(

∂L

∂U

)−1

R, (29)

where R is the numerical residual of the discrete Reynolds equation and ∂L
∂U

is approx-
imated by:

∂L

∂U
=

∂A(U)U

∂U
−

∂b(U)

∂U
(30)

≈ A(U)−
∂b(U)

∂U
. (31)

Numerical experiments indicate that (31) provides a sufficiently robust smoother. Fur-
thermore, the efficiency of this iteration may be improved significantly by approximat-
ing ∂b(U)

∂U
in (31) by a block tridiagonal matrix which has the same sparsity pattern as

A(U). The justification for this comes from noting that in (16) the dependency on
pressure is implicitly through the film thickness term H and that, by (20), H depends
more strongly on the nearby pressures than those further away. Consequently, ∂L

∂U

in (29) is approximated by a block tridiagonal matrix, which makes this matrix both
cheap to compute and cheap to invert. In practise some under-relaxation may also be
incorporated in (29):

U ← U + C1

(

∂L

∂U

)−1

R. (32)

Once a converged pressure solution is obtained for the discrete Reynolds equation,
based upon an initial guess for H00 in (20), this unknown reference thickness must
also be updated. This update is based upon the defect in the force balance equation
(24):

H00 ← H00 − C2(
π

2
−

N
∑

e=1

pe+1
∑

i=1

KKe
i u

e
i ), (33)

where C2 is an under-relaxation factor for H00. With this new value of H00 the discrete
Reynolds equation must be resolved and this iteration process repeated until H00 is
converged.

A final ingredient that is required for an efficient solution scheme is the incorpo-
ration of mesh adaptivity. Here an automatic h-adaptive scheme is briefly described,
allowing all of the features of EHL solutions to be captured with only a small number
of elements. The underlying mechanism that is used to drive the adaptivity is based
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Figure 5: An illustration of refinement and coarsening.

upon an assumption that when the local mesh size is sufficiently small the components
of the two highest degree basis functions, in the representation of the approximate so-
lution, will be very small. The basic idea is as follows.

1. Suppose that the solution on an element e is such that |ue
pe+1| < Tol1 and |ue

pe| <
Tol1 (see (10)), where Tol1 is a given tolerance, then refine this element by
splitting it into two equally spaced smaller elements. See the upper case in
Fig 5 for an illustration of two elements being split in this manner.

2. Alternatively suppose that two neighbouring elements, e and f say, can be ag-
glomorated to form one larger element, E. Then if the interpolated solution
on this new element is such that |uE

pE+1| < Tol2 and |uE
pE | < Tol2, where

Tol2 < Tol1 is also a given tolerance, then accept this coarsened element. See
the lower case in Fig 5.

This simple h-adaptive algorithm has been incorporated into the solution procedure
for the results that appear in the following subsection.

3.4 Computational Results
We conclude this section with a selection of typical numerical results that demonstrate
the ability of the proposed DG method to capture all details of an EHL solution, even
when the applied load is sufficiently large to cause a significant elastic deformation
and a very sharp pressure spike. Similar results are also presented by the authors in
[24], where comparison is made against finite difference solutions computed on very
fine meshes in order to demonstrate the accuracy of the DG results obtained.

Figure 6 shows the pressure profile computed for a typical highly loaded case using
elements of degree 12. In fact this case uses the same non-dimensional loading pa-
rameters as in [24] although the results here have been computed with higher degree
elements (elements of degree 8 and 10 are used in [24] however those results are not
reproduced here since they are almost identical and would be indistinguishable if plot-
ted on the same graph). A history of the h-adaptivity in the region around the pressure
spike, using elements of degree 12, is shown in Fig 7. These calculations were made
using values of 0.0001 and 0.00005 for Tol1 and Tol2 respectively.
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Figure 6: The pressure profile obtained for a typical line contact (see [24]) using
polynomials of degree 12.

4 Discontinuous Galerkin for Transient Problems

4.1 Time-Dependent EHL Problems
The results presented in the previous section applied to steady-state EHL line contact
problems. In many situations however transient features are important and may not
be neglected. Typical examples include problems with variable loads, with reversal
of the lubricant flow direction, or with non-smooth contacts (see [15] for a full dis-
cussion). In this paper we restrict attention to the latter class of transient problem,
involving roughness in the contact between two moving surfaces. This is generally
referred to as a micro-EHL contact problem [22, 39] and, for theoretical analysis, arti-
ficial roughness models (such as indentation or waviness) [39] are usually adopted. In
some situations, real roughness has also been handled using numerical methods [22].
Numerical results show that the roughness can strongly affect the pressure distribution
and the film thickness profile and that the transient solutions are often significantly dif-
ferent from their steady-state counterparts. It follows that transient analysis is of great
importance if we are to be able to approach reliable numerical predictions of the real
behaviour of lubricants.

The non-dimensional equations for the line contact have already been introduced
for the transient case: equations (1) to (6). In the case of a non-smooth contact how-
ever we modify equation (3) slightly, replacing it by

H(X, T ) = H00(T ) +
X2

2
−R(X, T )−

1

π

∫ ∞

−∞

ln |X −X
′

|P (X
′

, T ) dX
′

, (34)

where R(X, T ) describes the surface roughness as a perturbation to the parabolic
profile. Here we adopt a very similar dimensionless model of roughness to that used
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Figure 7: The adaptivity history in the region of the pressure spike.
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in [39] and [25]. Specifically, we take

R(X, T ) = α10−40(X−Xd)2 cos(4π(X −Xd)), (35)

where α = −0.04 is the amplitude of a smooth dent in the parabolic surface and Xd

is the position of the centre of the dent at time T . This is given by

Xd = Xs + 2
u2

us

T, (36)

where Xs denotes the position of the dent at T = 0, u2 is the velocity of the indented
upper surface and us is the sum velocity of the indented upper surface and the flat
lower surface. In this example we set u2

us
= 0.25, hence some sliding behaviour is

implied. The same loading conditions are used as in [39] and [25].

4.2 Application of the Discontinuous Galerkin Method
Recall from subsection 3.3 that the DG discretisation of the steady-state Reynolds
equation using the penalty formulation leads to the nonlinear algebraic system (27)
where the unknown pressure degrees of freedom in (10) are ordered as in (28). Note
however that the transient form of the Reynolds equation (1) contains an additional
∂(ρH)

∂T
compared to the steady-state equation (7). Consequently, using the Crank-

Nicolson method [22] and the DG spatial discretisation (25), the transient Reynolds
equation is discretised to be:

−
∑

e∈Ωh

(
∫

e

ρHvdx
)T

+
∑

e∈Ωh

(
∫

e

ρHvdx
)T+4T

+ θ4TL(P, v)T + (1− θ)4TL(P, v)T+4T = 0, ∀v ∈ V, (37)

where θ = 0.5. The above equation allows for a single time step to be taken from T to
T +4T and the superscripts are used to denote the time level at which the different
terms are to be evaluated. Reorganising this equation, so that all of the unknown terms
at time T +4T are grouped together, yields the following discrete form:

∑

e∈Ωh

(
∫

e

ρHvdx
)T+4T

+ (1− θ)4TL(P, v)T+4T =

∑

e∈Ωh

(
∫

e

ρHvdx
)T

− θ4TL(P, v)T . (38)

To simplify the notation further, using (10), we rewrite the above system as:

RT+4T = C(UT+4T ) + (1− θ)4TL(UT+4T )− C(UT ) + θ4TL(UT ) = 0, (39)

where L is exactly as in (27), C(UT+4T ) has components
(∫

e
ρHN e

i dx
)T+4T , C(UT )

has components
(∫

e
ρHN e

i dx
)T and

UT+4T = ((u1
1)

T+4T , . . . , (u1
p1+1)

T+4T ; . . . ; (uN
1 )T+4T , . . . , (uN

pN+1)
T+4T ) (40)
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are the unknown pressure coefficients at the new time level. At each time step, U T+4T

must be obtained from (39) based on the known values of U T at the previous step. It is
assumed that an initial pressure profile (and therefore the values of U T when T = 0)
is given.

4.3 Solution Method
Similar to the nonlinear smoother introduced for the steady-state problems, the fol-
lowing relaxation method is used to define an iterative solver for (39) at each time
step:

UT+4T ← UT+4T +

(

∂
(

C(UT+4T ) + (1− θ)4TL(UT+4T )
)

∂UT+4T

)−1

RT+4T , (41)

where RT+4T is the current numerical residual and UT+4T is initialised to be equal to
UT . According to equation (31), the Jacobian, ∂L(UT+4T )

∂UT+4T , may be approximated by:

∂L(UT+4T )

∂UT+4T
≈ A(UT+4T )−

∂b(UT+4T )

∂UT+4T
. (42)

Furthermore ∂b(UT+4T )/∂UT+4T may itself be approximated by a full matrix:

∂b(UT+4T )

∂UT+4T
I,J

=

[

∂b(U)e
i

∂Uf
j

]T+4T

(43)

=

[

∑

e∈Ωh

(

∫

e

ρ
∂He(X)

∂Uf
j

∂v

∂X
dX
)]T+4T

+

[

∑

Γint

[v]〈ρ(P−)
∂H

∂Uf
j

+
∂ρ(P−)

∂Uf
j

H〉

]T+4T

+

[(

ρ
∂H

∂Uf
j

v

)

|Xinlet

]T+4T

−

[(

ρ
∂H

∂Uf
j

v

)

|Xoutlet

]T+4T

,

where the Ith row corresponds to the row generated with the test function v = N e
i (X)

and the J th column corresponds to the unknown U f
j . Since C(UT+4T ) has compo-

nents
(∫

e
ρHN e

i dx
)T+4T , which involve the film thickness H , ∂C(UT+4T )/∂UT+4T

can also be approximated using a full matrix:

∂C(UT+4T )

∂UT+4T
I,J

=

[

∂C(U)e
i

∂Uf
j

]T+4T

(44)

=

[

∑

e∈Ωh

(

∫

e

(ρ
∂He(X)

∂Uf
j

v +
∂ρ

∂Uf
j

Hv) dx
)]T+4T

.
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A simple h-adaptivity algorithm was introduced in section 3, based upon the con-
tributions of the highest order hierarchical basis functions on each element. The same
adaptive procedure may be applied for the transient problem provided a small number
of additional features are implemented. The initial mesh for each time step should
be taken to be the final mesh for the previous time step and the adaptivity should
be based upon the local smoothness of the solution U T+4T computed via the update
(41). When mesh adaptivity takes place it is important that both U T and UT+4T are
transfered to the new mesh (using interpolation for local refinement and some form
of restriction for local coarsening) before continuing with the existing time step. The
overall solution procedure is therefore as follows.

1. At the start, the dent is located far from the contact region. The steady-state
solution at T = 0 is calculated. Then for each time step, repeat 2-5 below.

2. Choose uT+4T = uT as initial guess.

3. Update uT+4T by using (41) repeatedly (typically with an under-relaxation pa-
rameter included) until convergence to an intermediate tolerance.

4. Check if the grid needs to be updated. If yes, go to step 3 after generating the
new grid according to the h-adaptivity method discussed above and transferring
both uT+4T and uT onto the new grid.

5. Update uT+4T by using (41) repeatedly (with the same under-relaxation param-
eter included) until convergence to a final tolerance.

Note that it is necessary to check the degree of smoothness for both uT+4T and uT on
the local trial element when determining whether to coarsen the local mesh. The local
mesh is coarsened only if both of the local solutions at T and T +4T are sufficiently
smooth.

4.4 Computational Results
As with the steady-state results, we present here computations based upon the use of
polynomials of degree 12 on each element. The problem solved is that defined in
subsection 4.1, and the results are presented in the form of a sequence of pressure
and film-thickness profiles at different times as the dent in the upper surface passes
through the contact. Figure 8 shows solutions for Xd equal to −0.95, −0.8, −0.6 and
−0.55, whilst Figure 9 shows solutions for Xd equal to −0.4, −0.15, 0.15, 0.6, 0.75,
0.8, 0.85 and 0.95.

In order to see some more of the detail of the micro-EHL contact, that the high
order DG scheme is able to capture using less than forty elements, Figure 10 provides
some close-ups of the pressure profile for selected values of Xd (equal to−0.55, 0.75,
0.8 and 0.85). In [25] it is shown that a finite difference scheme, using a similar
number of degrees of freedom, is unable to capture this level of detail in the solution.
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Figure 8: Computed solutions to the transient problem for Xd equal to −0.95, −0.8,
−0.6 and −0.55.

5 Discussion
This paper has provided an introduction to the use of the discontinuous Galerkin
method for the solution of both steady-state and time-dependent elastohydrodynamic
lubrication problems. The method is ideally suited for discretising the Reynolds
equation which is convection-dominated in some parts of the solution domain and
diffusion-dominated in others. Results presented demonstrate that typical EHL pres-
sure profiles, incorporating a sharp spike at the outflow of the contact and detailed
micro-EHL features, may be obtained in one space dimension using only hundreds
of degrees of freedom provided that a suitable adaptive strategy is used. The exten-
sion to point contacts in two space dimensions is straightforward but requires more
computational work and a more complicated mesh adaptivity procedure.

Further research work is required in order to optimise the efficiency of the DG
algorithm for this class of problem. In particular, the film-thickness calculation (20)-
(21), requires significant memory to store all of the kernal values (especially in 2-d)
and does not make use of multilevel techniques (such as MLMI, [2]) for maximum
efficiency. Further improvements to the nonlinear solver for the discrete Reynolds
equation are also possible and early experiments with p-multigrid methods are very
promising. Overall, the DG approach appears to offer significant potential.
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Figure 9: Computed solutions to the transient problem for Xd equal to −0.4, −0.15,
0.15, 0.6, 0.75, 0.8, 0.85 and 0.95.
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