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Abstract

This paper presents a new numerical method to solve transient line contact

elastohydrodynamic lubrication (EHL) problems. A high-order Discontinuous

Galerkin finite element method is used for the spatial discretization and the stan-

dard Crank-Nicolson method is employed to approximate the time derivative. An

h-adaptivity method is used for grid adaptation with the time-stepping, and the

penalty method is employed to handle the cavitation condition. The roughness

model employed here is a simple indentation which is located on the upper surface.

Numerical results are presented comparing the Discontinuous Galerkin method to

standard finite difference techniques. It is shown that micro-EHL features are cap-

tured with far fewer degrees of freedom than when using low-order finite difference

methods.
∗Corresponding author: School of Computing, University of Leeds, UK
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Notation
b Half-width Hertzian contact

G dimensionless materials parameter

H dimensionless film thickness

P dimensionless pressure

ph maximum Hertzian pressure

p0 ambient pressure

R Reduced radius of curvature

R dimensionless deviations from the smooth profile

T dimensionless time

us sum velocity, us = u1 + u2

u1 velocity of lower (smooth) surface

u2 velocity of upper surface

u vector of finite element unknowns

U dimensionless speed parameter

U1 dimensionless velocity of lower (smooth) surface

U2 dimensionless velocity of upper surface

W dimensionless load parameter

X dimensionless coordinate

Xd dimensionless location of surface feature

Xs dimensionless location of surface feature at T = 0

z viscosity index

α pressure viscosity index

∆T dimensionless time increment

η dimensionless viscosity

η0 viscosity at ambient pressure

λ dimensionless speed parameter

ρ dimensionless density
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1 Introduction

Elastohydrodynamic Lubrication (EHL) problems have been studied for many years

and many numerical methods have been introduced to solve them [1]-[8]. However,

most of these methods are based around low order schemes and much of the algorith-

mic development behind them has focused on obtaining accuracy through the use of

large numbers of discretization points by improving the efficiency and stability of the

solvers used. In this work, improved accuracy is sought through the use of a higher

order spatial representation of the solution. With this in mind, a relatively recent nu-

merical method, Discontinuous Galerkin (DG) finite elements [9], was introduced by

the authors in [10] to solve steady-state EHL problems. This method was shown to

produce highly accurate numerical solutions with relatively few degrees of freedom.

In this paper, the high order DG method is generalised to solve transient line contact

problems, combined with the Crank-Nicolson time discretization [11]. The resulting

numerical simulations capture far greater detail in the pressure profile than has been

previously observed with such a small number of degrees of freedom.

This paper is organised as follows. In this section, a brief introduction to numerical

methods for EHL problems is given. Section 2 begins from the governing equations for

a non-dimensionalized 1D transient EHL problem. A description of the high order DG

spatial discretization and Crank-Nicolson time-stepping follows. In order to reduce the

computational expense, a spatial adaptivity method is also introduced in this section.

Numerical results are given in Section 3. Finally, the main conclusions of the paper are

summarised in Section 4.

1.1 EHL Problems

In order to reduce the power loss caused by friction, a lubricant is used to separate

the contacting elements in most modern machines. An important effect that often

occurs during this separation is elastohydrodynamic lubrication. EHL problems are
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characterised by the significant elastic deformation of the contacting surfaces and the

dramatic increase in the viscosity of the lubricant with increasing pressure [12].

After several significant breakthroughs [1]-[8], EHL contact problems for perfectly

smooth surfaces are now relatively well understood. In 1951, Petrusevich [12] obtained

the first numerical solution of the steady-state line contact problem containing all of the

main features of EHL solutions. In his results, the second maximum in the pressure

profile was first obtained, which now is referred to as “the Petrusevich spike” or “the

pressure spike”, and a corresponding dip in film thickness was also observed. With

more robust numerical methods [1]-[8], more accurate numerical solutions of steady-

state EHL contact problems have been presented. Consequently, precise solutions for

a wide range of loaded cases can be obtained using numerical methods.

However, in practice, the contacting surfaces will not be perfectly smooth. As a

result, the roughness on the surfaces should be taken into account. Furthermore, a tran-

sient analysis is required since the roughness in the contact will vary due to the moving

surfaces. This is generally referred to as a micro-EHL contact problem [11, 13]. For

theoretical analysis, artificial roughness models (such as indentation or waviness) [13]

are usually adopted. In some situations, real roughness can also be handled using nu-

merical methods [11]. Numerical results show that the roughness can strongly affect

the pressure distribution and the film thickness profile and that the transient solutions

might therefore be significantly different from their steady state counterparts. It follows

that transient analysis is of great importance in order to be able to approach reliable nu-

merical predictions of the real behaviour of the lubricant.

1.2 Numerical Methods for EHL

A significant breakthrough that has possibly done more than any other to improve the

efficiency and robustness of EHL solvers in recent years is the application of the multi-

grid method. This is able to accelerate the convergence of solution algorithms signif-
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icantly because it is effective at eliminating both high-frequency and low-frequency

error components by using a sequence of grids. Multigrid was first applied to EHL

problems by Lubrecht et al. in 1986 [6], combined with Gauss-Seidel relaxation. Fur-

thermore, a multilevel multi-integration algorithm was developed for the fast calcula-

tion of the film thickness [1, 7]. Venner [7, 8] and Nurgat [14] each introduced new

relaxation methods which makes the multigrid method more robust. Both methods can

handle a large range of loaded cases and make it possible to obtain accurate numerical

solutions by using many grid points. Since the multilevel techniques can significantly

accelerate the computation, it is also possible to obtain transient solutions in a relatively

short time [13].

Prior to the wide spread use of multilevel solvers a popular approach for the sta-

ble solution of highly loaded problems was the inverse method [2]-[4]. The Reynolds

equation is used to calculate the film thickness from a given pressure profile, which is

then updated based on the difference between this thickness and that calculated from

the film thickness equation. It turns out however that the inverse method is only suit-

able for highly loaded cases and is not sufficiently robust to solve a wide range of

EHL problems. Furthermore, the application of the inverse method to rough contact

problems is challenging since the inverse pressure is calculated based on the differ-

ence between the hydrodynamic film thickness and the elastic film thickness which

is not sensitive to any local change in pressure. Another well-known method is the

Newton-Raphson approach in which the Reynolds equation is linearised and the re-

sulting Jacobian matrix, which consists of the derivatives of all discrete equations with

respect to all variables, is used to update the solution. One significant advantage is that

a converged solution is obtained quickly. However a good initial guess is required and

the implementation of the cavitation condition is rather complex. Based on this, a cou-

pled method [15, 16] was introduced to improve the relaxation robustness. Instead of

calculating the film thickness and the pressure in separate stages, the discrete Reynolds

5



equation and the discrete film thickness equation are coupled into one discrete system

and both the pressure and the film thickness are treated as active variables and up-

dated simultaneously. In order to simplify the resulting discrete system, the differential

deflection method [17] was introduced to relate the pressure and the deflection in an

alternative differential form.

For all of the above mentioned relaxation methods, the most widely used spatial

discretization is the finite difference (FD) method. As an alternative, the continuous

spatial finite element method has also been successfully applied to solve incompress-

ible EHL problems [18]-[24]. However, experiences of applying traditional continuous

finite element methods to the compressible Reynolds equation, especially with higher

than first order elements [16], have tended to yield unphysical oscillatory pressure pro-

files in the contact region. In the following section a discontinuous finite element dis-

cretization is introduced in order to overcome this difficulty.

2 High Order DG for EHL

The key features of an EHL solution can be captured using the numerical methods

previously discussed, such as: the low pressure inlet region; a rapid rise in pressure

through the centre of the contact, typically reaching the giga-Pascal range; a cavitation

boundary in the outflow; and, a sharp pressure spike past the centre of the contact,

towards the outflow. It has been shown that if this spike is not resolved sufficiently ac-

curately then the calculated friction can be inaccurate [25]. However, all of the widely

used numerical algorithms are low order schemes. Consequently the only available op-

tion to improve accuracy is to increase the number of grid points, which increases the

computational expense. As an alternative to these low order methods, a high order DG

method has been introduced to solve steady-state EHL line contact problems in [10].

Numerical experiments show that this method is stable across a wide range of loads

and permits accurate solutions using a relatively small number of degrees of freedom,
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provided suitable grids are used.

In this paper, this high order DG method is extended to the solution of transient

line contact problems. An automatic h-adaptivity method is introduced to improve the

accuracy, and a penalty method, first introduced by Wu [24], is employed to handle the

cavitation boundary. The accuracy of this high order DG method allows very detailed

features of the transient line contact problem considered to be captured and these are

reported in Section 3.

2.1 Governing Equations

In [7] a dimensionless mathematical model of an isothermal EHL line contact problem

is presented. This consists of three equations: the Reynolds equation, the film thickness

equation and the force balance equation. The Reynolds equation reads:

∂

∂X

(

ε
∂P

∂X

)

−
∂(ρH)

∂X
−

∂(ρH)

∂T
= 0, (1)

where ε = ρH3

ηλ
, P (X) and H(X) are the unknown pressure and film thickness, ρ(P )

and η(P ) are the density and viscosity, and λ is a dimensionless speed parameter.

The elasticity and the roughness are included through the film thickness equation

which defines the contact geometry for a given pressure solution:

H(X, T ) = H00(T ) +
X2

2
−R(X, T )−

1

π

∫ ∞

−∞

ln |X −X
′

|P (X
′

, T ) dX
′

, (2)

where H00 is the central offset film thickness and the integral describes the elastic

deformation. R(X, T ) describes the surface roughness. In this work the same dimen-

sionless model of the roughness is adopted as was used by Venner in [13]:

R(X, T ) = α10−10((X−Xd))2 cos(2π(X −Xd)), (3)
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where α = −0.11 is the amplitude. At time T , the position of the centre of the dent

Xd is given by:

Xd = Xs + 2
u2

us

T, (4)

where Xs denotes the position of the dent at T = 0 and u2 and us are the velocity

of the upper surface, which is indented, and the sum velocity respectively. For all of

the calculations described in this paper u2

us
= 0.25, hence some sliding behaviour is

implied.

The force balance equation is a conservation law for the applied load, given by:

∫ ∞

−∞

P (X) dX −
π

2
= 0. (5)

The lubricant rheology is also highly non-linear in pressure. In this work the viscosity-

pressure relationship of Roelands [7] has been used:

η(P ) = e
{

αp0
z

[−1+(1+
P ph
p0

)z ]}
, (6)

where z = 0.6 is the viscosity index, α = 2.165 × 10−8 is the pressure viscosity

index, and p0 = 1.98 × 108 is ambient pressure. The density model of Dowson and

Higginson(see [7]) is used to describe the compressibility of the lubricant:

ρ(P ) =
0.59× 109 + 1.34Pph

0.59× 109 + Pph

, (7)

where ph is the maximum Hertzian pressure.

For physical reasons, all pressures should be larger than or equal to the vapour

pressure of the lubricant (zero). However, the Reynolds equation allows the pressure in

the outlet region to decrease without limit if the outlet boundary Xoutlet is far enough

from the contact region. Consequently, the outlet boundary is therefore treated as a free
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boundary. The boundary conditions are:

P (Xinlet) = 0, P (Xoutlet) = 0 and dP

dX
(Xoutlet) = 0, (8)

where Xinlet denotes the inlet boundary position, located far enough from the contact

region to approximate an infinite upstream boundary.

2.2 Spatial Discretization

Let Ωh be a partition of the domain Ω = [Xinlet, Xoutlet] into N elements. Let

Γint = ∪Γef denote internal interfaces between elements, where Γef is the grid point

separating elements e and f . The jump of a function v on the element interface Γef is

defined as:

[v]ef (x) = lim
x→Γef ,x∈e

v − lim
x→Γef ,x∈f

v, e > f, (9)

and the average

〈v(x)〉ef =
1

2

(

lim
x→Γef ,x∈e

v + lim
x→Γef ,x∈f

v

)

. (10)

In each element e, P is approximated in the following form:

P e(X) =

pe+1
∑

i=1

ue
i N

e
i (X), Ne

i (X) ∈ V (11)

where pe is the order of the approximating polynomial, ue
i are the unknown coeffi-

cients and N e
i (X) are the local finite element basis functions which belong to a finite

element space V . As discussed in [10], the steady-state 1D Reynolds equation can be

discretized into the following form using Oden’s DG scheme [9]:

L(P, v) = a(P, v) − l(P, v) = 0, ∀v ∈ V, (12)
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where

a(P, v) =
∑

e∈Ωh

(
∫

e

ε
∂P

∂X

∂v

∂X
dX
)

+
∑

Γint

(

[v]

〈(

ε
∂P

∂X

)〉

− [P ]

〈(

ε
∂v

∂X

)〉)

+

(

vε
∂P

∂X

)∣

∣

∣

∣

Xinlet

−

(

vε
∂P

∂X

)∣

∣

∣

∣

Xoutlet

−

(

Pε
∂v

∂X

)∣

∣

∣

∣

Xinlet

+

(

Pε
∂v

∂X

)∣

∣

∣

∣

Xoutlet

,

(13)

and

l(P, v) =
∑

e∈Ωh

(
∫

e

ρH
∂v

∂X
dx
)

+
∑

Γint

[v]〈ρ(P−)H〉

+(ρHv) |Xinlet
−(ρHv) |Xoutlet

−

(

ginletε
∂v

∂X

)∣

∣

∣

∣

Xinlet

+

(

goutletε
∂v

∂X

)∣

∣

∣

∣

Xoutlet

.

(14)

In the above equations,

P− = lim
σ→0

P (x− σ), for x ∈ Γint. (15)

This provides sufficient upwinding to ensure a stable solution [9].

As discussed in [10], for a given pressure distribution the film thickness may be

calculated as follows:

H(X, T ) = H00(T ) +
X2

2
−R(X, T )−

1

π

N
∑

e=1

pe+1
∑

i=1

Ke
i (X)ue

i (T ), (16)

where the Ke
i (X) are defined by:

Ke
i (X) =

∫

e

ln |X −X
′

|Ne
i (X

′

) dX
′

. (17)

Here Ke
i (X) is estimated using numerical integration: for X ∈ e singular quadra-

ture [26] is employed since ln |X −X
′

| has a weak singularity at X
′

= X ; elsewhere
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Gaussian quadrature is satisfactory.

The force balance equation is discretized according to:

N
∑

e=1

∫

e

pe+1
∑

i=1

ue
i (T )Ne

i (X) dX −
π

2
= 0. (18)

2.3 Penalty Method

A grid-moving method has been used by the authors to capture the cavitation position

in [10] for line contact problems, which can give a very accurate cavitation position.

However, it slows down the convergence since it is necessary to keep moving the grid

to find the cavitation position, and the accuracy of the initial guess of the cavitation po-

sition can strongly affect the convergence speed. In this work, the Penalty method [24]

is employed to handle the cavitation condition, which significantly simplifies the treat-

ment of the free boundary, which is of course transient for time dependent problems.

The Penalty method was introduced by Wu [24] in 1986 and was successfully ap-

plied to the nonlinear EHL Reynolds-Hertz problem to handle the free boundary. In-

stead of finding the exact cavitation position [10], the penalty method treats the cav-

itation condition weakly, which simplifies the numerical scheme. By introducing an

exterior penalty term, the following nonlinear system should now be solved instead of

(12):

L(P, v) = a(P, v) +
1

δ
〈P−, v〉 − l(P, v) = 0, (19)

where δ is an arbitrary positive number (δ = 1.0× 10−7 here),

P− = min(P, 0) and 〈P−, v〉 =
∑

e∈Ωh

(
∫

e

P−v dx
)

. (20)

Note that the penalty term 1
δ
〈P−, v〉 has no effect where P ≥ 0. However, in the

outlet region, where P < 0, the penalty term dominates equation (19), provided that

δ is sufficiently small. In this case, the negative pressures are forced to be zero by
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the presence of the penalty term in this modified weak form. From an implementation

point of view, the only modification required is to take account of the penalty term

when discretizing the Reynolds equation. The physical constraint that P ≥ 0 over the

entire computational domain is then satisfied automatically and the cavitation position

is located at the least value of X for which P (X) = 0.

Using (11), the steady-state equation (19) can be written in the general nonlinear

form [10]:

L(u) = A(u)u− b(u) = 0, (21)

where

u = (u1
1, . . . , u

1
p1+1; . . . ; u

N
1 , . . . , uN

pN+1). (22)

2.4 Temporal Discretization

Using the Crank-Nicolson method [11] and the DG spatial discretization (19), the 1D

transient Reynolds equation is discretized to be:

−
∑

e∈Ωh

(
∫

e

ρHvdx
)T

+
∑

e∈Ωh

(
∫

e

ρHvdx
)T+∆T

+ θ∆TL(P, v)T + (1− θ)∆TL(P, v)T+∆T = 0, ∀v ∈ V, (23)

where θ = 0.5 here. Reorganising the above equations, yields the following discrete

form:

∑

e∈Ωh

(
∫

e

ρHvdx
)T+∆T

+ (1− θ)∆TL(P, v)T+∆T =

∑

e∈Ωh

(
∫

e

ρHvdx
)T

− θ∆TL(P, v)T . (24)
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To simplify the notation, using (11), the above system is rewritten as:

R
T+∆T = C(uT+∆T )+(1− θ)∆TL(uT+∆T )−C(uT )+ θ∆TL(uT ) = 0, (25)

where L is given by (21), C(uT+∆T ) has components
(∫

e
ρHNe

i dx
)T+∆T , C(uT )

has components
(∫

e
ρHNe

i dx
)T , and

u
T+∆T = ((u1

1)
T+∆T , . . . , (u1

p1+1)
T+∆T ; . . . ; (uN

1 )T+∆T , . . . , (uN
pN+1)

T+∆T )

(26)

are the unknown pressure coefficients. Similar to the nonlinear smoother introduced

in [10], the following relaxation method is used for the iterative solver at each time

step in this paper:

u
T+∆T ← u

T+∆T +

(

∂
(

C(uT+∆T ) + (1− θ)∆TL(uT+∆T )
)

∂uT+∆T

)−1

R
T+∆T ,

(27)

where R
T+∆T is the numerical residual and the Jacobian, ∂L(uT+∆T )

∂uT+∆T , is approxi-

mated by:
∂L(uT+∆T )

∂uT+∆T
≈ A(uT+∆T )−

∂b(uT+∆T )

∂uT+∆T
. (28)

Both ∂C(uT+∆T )
∂uT+∆T and ∂b(uT+∆T )

∂uT+∆T are full since the film thickness at any position de-

pends on all pressures.

2.5 Adaptivity

The finite element functions, N e
i , used in this work are the hierarchical basis functions

described in [27]. Specifically, in the reference element (−1 ≤ ξ ≤ 1) the basis

functions are defined as follows:

N1(ξ) =
1− ξ

2
; N2(ξ) =

1 + ξ

2
; Ni(ξ) = φi−1(ξ), i = 3, 4, . . . , p + 1 (29)
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where p is the polynomial degree of the elements and φj is defined in terms of the

Legendre polynomial Pj−1:

φj(ξ) =

√

2j − 1

2

∫ ξ

−1

Pj−1(t) dt, j = 2, 3, . . . (30)

The basis functions N1 and N2 are called nodal shape functions or external modes.

The basis functions Ni, i = 3, 4, . . . , p + 1 are called internal shape functions or inter-

nal bubble modes. The bubble modes can be viewed as corrections to the nodal shape

functions, which can improve the accuracy of the solution on the current element. Nu-

merical experiments suggest that the high order coefficients ue
i , corresponding to the

higher order basis functions, are usually very small when an accurate, converged so-

lution is obtained. When the local order of the basis functions is not high enough, or

the local mesh is not fine enough, these high order coefficients are relatively large and

the resulting solution is not sufficiently accurate. Based on this property of the basis

functions, an h-adaptivity method has been implemented, through which the grid is ad-

justed during the computation to ensure the accuracy of the solution at every time step.

Note that in this work the same order is used over the entire domain, however more

generality is easily possible.

The basic principle behind the adaptivity is summarised as follows:

1. Refine any element on which the solution has too large a contribution from the

highest order basis functions. A small tolerance Tolrefine is chosen such that

if either of the last two high order coefficients (ue
pe and ue

pe+1) is greater than

Tolrefine, then the element e is divided into two equally sized smaller elements.

2. Agglomerate two neighbouring elements to be a larger one if the local solution

is sufficiently smooth. Here, each pair of neighbouring elements (for example e

and e+1), are agglomerated into a larger trial element E, and the local solution is

interpolated onto the trial element. If the both of the coefficients uE
pE and uE

pE+1
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are less than another tolerance Tolcoarsen < Tolrefine, take E as the new local

mesh element to replace e and e + 1.

Figure 1 shows a schematic of the refinement and coarsening operations. Note that in

principle it is possible to constrain the mesh adaptivity to ensure that no two neigh-

bouring elements differ in size by more than a predetermined ratio. This has not been

found to be necessary for the one-dimensional examples reported in this work however

it is a relatively straightforward constraint to impose. When undertaking refinement it

is necessary to check the size of neighbouring elements and also mark them for refine-

ment if they are too large. Similarly, when coarsening a mesh it is necessary to begin

with the smallest elements and check that their neighbours are not too small to prevent

the constraint from being violated: if the neighbours are too small then the coarsening

is not undertaken.

2.6 Overall Solution Procedure

A sequence of numerical solutions at different time steps are calculated as follows.

1. At the start, the dent is located far from the contact region. The steady state

solution at T = 0 is used as the initial solution. Then for each time step, repeat

2–5 below.

2. Choose u
T+∆T = u

T as initial guess.

3. Update u
T+∆T by using (27) repeatedly until convergence to an intermediate

tolerance.

4. Check if the grid needs to be adapted. If yes, go to step 3 after generating the

new grid according to the h-adaptivity method discussed above and transferring

both u
T+∆T and u

T onto the new grid.

5. Update u
T+∆T by using (27) repeatedly until convergence to a final tolerance.
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Note that it is necessary to check the degree of smoothness for both uT+∆T and

uT on the local trial element when determining whether to coarsen the local mesh.

The local mesh is coarsened only if both of the local solutions at T and T + ∆T are

sufficiently smooth.

3 Numerical Results

Note that a comparison of the DG method against standard finite difference results, with

very fine computational grids, is presented for steady-state problems in [10]. Hence

such a comparison is not repeated here. Instead, the focus is on the solution of a

challenging transient model problem using the DG scheme and demonstrate that it is

capable of resolving details of the solution that are not so easily captured by a more

traditional finite difference scheme with a similar number of degrees of freedom.

In this section, the new numerical scheme for compressible EHL is therefore used

to investigate the influence of a dent on the upper surface on the pressure and the

film thickness under certain conditions. In standard Dowson and Higginson notation

the case solved here is specified by the non-dimensional quantities, U = 0.15−11,

W = 0.4× 10−4, G = 4942 (see [7]). The computational domain is [−5.0, 1.5]. The

roughness model used is given by (3).

When T = 0, where Xd = −2.0 (relatively far from the contact centre), the pres-

sure and film thickness, depicted on the left in Figure 2, are quite similar to the steady-

state solution of the smooth contact. A detailed view of the pressure spike captured by

DG and FD is shown on the right in Figure 2. Note that the FD solutions for which the

grid points are equally spaced converge toward the DG solution (pe = 8 everywhere,

37 elements and 333 unknowns in total) with increasing number of grid points. Indeed,

it is seen that the DG method resolves the pressure spike more accurately than FD, as

in [10]. Furthermore, when the DG method is applied with even higher degree approx-

imating polynomials (e.g. pe = 10) the steady-state initial solution that is obtained is
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virtually identical to that shown in Figure 2, suggesting that pe = 8 provides sufficient

accuracy for this problem.

Figure 3 shows a sequence of solutions with the dent moving. Note that in Fig-

ure 3(b) a new pressure spike is captured (at approximately X = −0.9), which is

caused by the roughness. This becomes sharper and then begins to disappear in Fig-

ure 3(c). After the dent passes the contact centre, this spike grows up again (see Fig-

ure 3(d) and 3(e)). When the dent centre arrives at the “Petrusevich Spike” region,

the combination of the roughness and the film thickness dip produces a much sharper

pressure spike (see Figure 3(f)).

At each time step, the number of the elements remains no more than 60 since h-

adaptivity is employed. Since pe = 8 everywhere the total number of degrees of

freedom never exceeds 540. It should be noted however that the time step has to be

quite small (∆T = 0.001 when the pressure profile is relatively smooth and ∆T =

0.0001 when the sharp spike appears and small elements are required to resolve it).

Other DG simulations have been carried out using different time steps and different

order basis functions and in each case, provided that pe is sufficiently large and the

time step is sufficiently small, the qualitative features of the solution are unchanged. In

particular, the pressure spike that is caused by the roughness is evident in all of these

simulations and does not appear to be a numerical artifact.

In order to further illustrate the potential of this method, results are also included

when computed using the standard multilevel finite difference scheme [5, 7] on a mod-

erately sized grid of 1025 points. Figure 4 shows the history of the pressure spike

caused by the roughness, which has not been captured by the multilevel FD method.

Note that there is no spike in Figure 4 (a) when Xd = −0.9, but the roughness has

significantly affected the pressure profile. From Figure 4(b) to (f), the spike has been

clearly captured by the DG method and completely missed by the FD method. It should

be noted that elsewhere in the domain there is good agreement between the two solu-
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tions.

It is important to note that the implications of this additional accuracy in the DG

scheme are that useful quantities, such as friction [25], can be computed with greater

accuracy at relatively low resolution. The friction is given by:

F =

∫ Xoutlet

Xinlet

−m1
dP

dX

H

2
+ m2

η

H
(U2 − U1) dX, (31)

where m1 = phb2

R
and m2 = η0R

b
. Table 1 shows a comparison of this non-dimensional

friction calculated from the DG solutions and the FD solutions. At times in the simula-

tion where the micro-EHL spike is apparent, the solution computed by the FD scheme,

which misses the spike, is up to 20% different from the DG solution. This is due to

both the significant discrepancy in dP
dX

in the rolling term and the large difference in η

(which depends exponentially on P , see Equation (6)) in the sliding term of the friction

equation (31).

4 Conclusions

A high order DG method introduced by the authors for the solution of steady-state

problems in [10] has been extended to solve transient line contact EHL problems. Here,

the efficiency of the implementation of the DG solver has not been considered, through

the potential use of multilevel multi-integration for example, [1, 7]. The work presented

in this paper should therefore be viewed as provisional results which are indicative of

the potential of the DG method for transient EHL problems rather than a well-tuned

algorithm and implementation.

Through the high accuracy of the DG method and its flexibility in adaptivity, it is

shown that additional details of the solution may be captured, compared to the tradi-

tional finite difference method. Particularly, due to the roughness profile, a micro-EHL

pressure spike has been captured in addition to the well-known “Petrusevich Spike”
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using less than 540 degrees of freedom.

The employment of the penalty method makes it simple to handle the cavitation

condition. Note that the DG approach may also be applied in conjunction with other

numerical schemes for treating the free boundary, e.g. [10], or possibly even with fun-

damentally different numerical approaches, such as the coupled method [15, 16]. One

particular advantage of the penalty method, used to treat the free boundary here, is that

it extends naturally to point contact problems in two dimensions. Currently work is in

progress on the solution of point contact problems, using p-multigrid [28] to accelerate

the convergence. In this case, the calculation of the elastic deformation is far more

expensive than in 1D, hence some form of fast multilevel multi-integration must be im-

plemented. The use of adaptive time-stepping [29] will also be essential for transient

point contact problems.
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Figure 1: H-adaptivity
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Figure 2: Non-dimensional pressure and film thickness when Xd = -2.0
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Figure 3: Non-dimensional pressure and film thickness obtained using the DG method
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Figure 4: Comparison of the fine details of the pressure computed via the new Discon-
tinuous Galerkin method and using the standard multilevel finite difference solver on a
mesh of 1025 points
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Xd -2.0 -0.9 -0.6 -0.3 0.3 0.6 0.9
DG -97.96 -166.3 -219.7 -126.7 -135.1 -136.6 -127.2
FD -92.07 -161.5 -206.6 -108.0 -106.9 -118.1 -109.7

Table 1: Comparison of non-dimensional friction at particular times
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