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High Order Discontinuous Galerkin Method for
Elastohydrodynamic Lubrication Line Contact Problems
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SUMMARY

In this paper a high order Discontinuous Galerkin method is used to solve steady-state isothermal
line contact elastohydrodynamic lubrication problems. This method is found to be stable across a
wide range of loads and is shown to permit accurate solutions using just a small number of degrees
of freedom provided suitable grids are used. A comparison is made between results obtained using
this proposed method and those from a very large finite difference calculation in order to demonstrate
excellent accuracy for a typical highly loaded test problem. Copyright c© 2000 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

In most complex mechanical systems lubricants are used to reduce friction and protect moving
parts against wear. In many cases, the geometry of the contacting elements determines the
shape of the lubricant film. However, in the cases of concentrated contacts such as journal
bearings and gears, the contacting elements deform elastically defining the film thickness:
this is known as elastohydrodynamic lubrication (EHL). Numerical solutions of EHL are very
important for industry in the design and evaluation of both lubricants and components. These
cases require the simultaneous solution of both pressure and film thickness, along with the
behaviour of the lubricant under these extreme conditions.

The key features of an EHL solution are the low pressure inlet region; a rapid rise in
pressure through the centre of the contact, typically reaching the giga-Pascal range; a cavitation
boundary in the outflow; and, a sharp pressure spike passed the centre of the contact, towards
the outflow. It has been shown that if this spike is not resolved sufficiently well then the
calculated friction can be inaccurate [1].

The finite difference (FD) method is perhaps the most widely used numerical solution
method. Stability through wide ranges of operating conditions has been attained through
use of the different FD techniques in the low and high pressure regions, as shown by Venner [2]
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and Nurgat et al. [3]. In order to accelerate convergence the multigrid method was first
employed by Lubrecht in 1986 [4]. For the fast calculation of the elastic deformation Brandt and
Lubrecht [5] developed a multilevel multi-integration algorithm which significantly reduces the
computational complexity in approximating deformations at each point in the contact. Based
on the above achievements, FD combined with multigrid [2, 6, 7] has become the most popular
method for EHL problems since it is both efficient and stable.

Other techniques for EHL are also used. The inverse method of [8], which is mainly suitable
for highly loaded cases, updates the pressure profile from film thickness rather than the
other way around. The coupled method of [9, 10] calculates the pressure and film thickness
simultaneously instead of iterating between them and can be applied with either FD or
FE (finite element) discretizations. The FE method has also been successfully used to solve
incompressible EHL contact problems by a number of authors, e.g. [11, 12, 13]. For compressible
EHL contact problems, upwinding is necessary in order to ensure stability. For example, in [9],
oscillations are observed in the central region in highly loaded cases when using a traditional
quadratic finite element method to discretize the problem

In recent years the Discontinuous Galerkin (DG) method has become a popular choice for
solving convection-dominated partial differential equations [14, 15, 16]. Since discontinuity is
allowed over element interfaces, we get the opportunity to stablize the high-order method
by defining an appropriate numerical flux. DG can easily handle irregular meshes and the
degree of the approximating polynomial can be easily changed from one element to another.
In this paper, high-order DG is used to solve smooth EHL line contact problems. Our numerical
experiments show that this approach can give very accurate solutions with only a small number
of unknowns: for example results obtained using less than 200 unknowns are shown to be
comparable to FD results obtained using over half a million equally spaced points.

2. GOVERNING EQUATIONS

The mathematical model of line contact EHL problems typically consists of three equations,
shown here using the usual non-dimensionalization, described fully in [6]. The Reynolds
equation reads

d

dX

(

ε
dP

dX

)

−
d(ρH)

dX
= 0, (1)

where ε = ρH3

ηλ
, P and H are the unknown pressure and film thickness, ρ and η are the density

and viscosity, and λ is a dimensionless speed parameter. (The lubricant rheology is highly non-
linear in pressure: in this work we have used the viscosity-pressure relationship of Roelands [17]
and density model of Dowson and Higgison [18].) The elasticity is included through the film
thickness equation which defines the contact geometry for a given pressure solution:

H(X) = H00 +
X2

2
−

1

π

∫ ∞

−∞

ln |X −X ′|P (X ′) dX ′. (2)

The force balance equation is a conservation law for the applied load, given by:
∫ ∞

−∞

P (X) dX −
π

2
= 0. (3)
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For physical reasons, all pressures should be larger than or equal to the vapour pressure of the
lubricant (zero). This is not accounted for in the Reynolds equation, hence, in the outlet region,
the calculated solution may have negative pressures. Consequently the Reynolds equation is
only valid in the pressurized region and, the cavitation position, Xcav, is therefore treated as
a free boundary. The boundary conditions are:

P (Xin) = 0, P (Xcav) = 0 and
dP

dX
(Xcav) = 0, (4)

where Xin denotes the inlet boundary position, located far enough from the contact region to
approximate an infinite boundary.

3. DISCONTINUOUS GALERKIN DISCRETIZATION

This section demonstrates the application of the DG method for the discretization of the above
equations.

3.1. The Reynolds Equation

The Reynolds equation can be written in the following general form in both the 1D (considered
here) and 2D cases:

−O · (εOP ) + O · (βρH) = 0, (5)

where β = 1 in 1D and β = (1, 0) in 2D. Let Ph be a partition of the domain Ω into N elements
Ωe. On each internal interface Γint = ∂Ωe ∩ ∂Ωf with e > f we have the normal ne pointing
from Ωe to Ωf . Let ΓD be the Dirichlet boundary where P = g and Γ− be the inflow part
of the boundary. Here g is the solution on the Dirichlet boundary and for EHL line contact
problems g = 0. We define the jump of a function v on the element interface Γef

[v]ef (x) = v|∂Ωe∩Γef
− v|∂Ωf∩Γef

, e > f, (6)

and the average

〈v(x)〉ef =
1

2
(v|∂Ωe∩Γef

+ v|∂Ωf∩Γef
). (7)

Following the approach of [14] and [15], a discrete form of the Reynolds equation becomes:

a(P, v) = l(P, v), (8)

where

a(P, v) =
∑

Ωe∈Ph

(
∫

Ωe

Ov · εOP dx

)

+

∫

Γint

([P ]〈(εOv) · n〉 − [v]〈(εOP ) · n〉) ds

+

∫

ΓD

(P (εOv) · n− v(εOP ) · n) ds, (9)

and

l(P, v) =
∑

Ωe∈Ph

(
∫

Ωe

(Ov · β)ρH dx

)

−

∫

∂Ωe\Γ−

v(ρ(P−)H)(β · ne) ds

−

∫

Γ−

vρ(g)H(β · n) ds +

∫

ΓD

(εOv) · ng ds. (10)
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In the above equations,
P− = lim

δ→0
P (x− δβ), for x ∈ Γint (11)

and n is the outer unit normal and n = ne on Γint.
In each element, P is expressed in the following form:

P e =

pe
+1

∑

i=1

ue
i N

e
i , (12)

where pe is the order of the approximating polynomial, ue
i are the unknown coefficients and

Ne
i are the local basis functions. The discontinuous basis functions used here are described

in [19]. Note that in (10) upwinding is easily implemented by picking the left value ρ(P −)
when calculating the numerical flux (see the third term in (10)).

3.2. The Film Thickness Equation

For a given pressure distribution the film thickness may be calculated as follows:

H(X) = H00 +
X2

2
−

1

π

∫ Xcav

Xin

ln |X −X
′

|P (X
′

) dX
′

(13a)

= H00 +
X2

2
−

1

π

N
∑

e=1

∫

Ωe

ln |X −X
′

|P (X
′

) dX
′

(13b)

= H00 +
X2

2
−

1

π

N
∑

e=1

∫

Ωe

ln |X −X
′

|

pe
+1

∑

i=1

ue
i N

e
i (X

′

) dX
′

(13c)

= H00 +
X2

2
−

1

π

N
∑

e=1

pe
+1

∑

i=1

∫

Ωe

ln |X −X
′

|Ne
i (X

′

) dX
′

ue
i (13d)

= H00 +
X2

2
−

1

π

N
∑

e=1

pe
+1

∑

i=1

Ke
i (X)ue

i , (13e)

where the Ke
i (X) are defined by:

Ke
i (X) =

∫

Ωe

ln |X −X
′

|Ne
i (X

′

) dX
′

. (14)

Here Ke
i (X) is calculated using numerical integration: for X ∈ e singular quadrature is

employed since ln |X −X
′

| has a weak singularity at X
′

= X ; elsewhere Gaussian quadrature
is satisfactory.

3.3. The Force Balance Equation

The force balance equation is discretized according to:

N
∑

e=1

∫

Ωe

pe
+1

∑

i=1

ue
i N

e
i (X) dX −

π

2
= 0. (15)
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4. SOLUTION PROCEDURE

This section describes a simple solution procedure that may be used on a given mesh and with
a given choice of the polynomial degree on each element.

The underlying relaxation scheme assumes that if Xcav is given then the discrete form of (8),
along with the first two conditions in (4), may be written in the general form:

L(U) = A(U)U − b(U) = 0, (16)

where U = (u1
1, . . . , u

1
p1+1

; . . . ; uN
1 , . . . , uN

pN+1
) are the unknown pressure coefficients. Note that

both A(U) and b(U) depend on U . The pressure is relaxed according to:

U ← U +

(

∂L

∂U

)−1

R, (17)

where R is the residual of the discrete Reynolds equation and ∂L
∂U

is approximated by:

∂L

∂U
≈ A(U)−

∂b(U)

∂U
(18)

which is a full matrix since H(X) has a global pressure integral.
The cavitation position, Xcav, must be chosen so as to impose the third condition in (4).

This is achieved by moving the entire grid according to the current value of dP
dX

(Xcav): if
dP
dX

> 0 the grid is moved left and if dP
dX

< 0 the grid is moved right. The displacement, dx, is
defined by:

dx = −δ
dP

dX
(Xcav) , (19)

where δ is a small positive constant.
The above ingredients are used within the following overall solution procedure.

(i) Start with an initial choice of Xcav and an initial pressure distribution.
(ii) Relax H00 using the error in equation (15), as explained in [6] for example.
(iii) Compute the thickness profile H(X) from (13e).
(iv) Update the pressure distribution by repeating (18) until convergence.
(v) Update the cavitation position according to the value of dP

dX
(Xcav).

(vi) Return to step (ii) until the converged solution with dP
dX

(Xcav) = 0 is obtained.

5. NUMERICAL RESULTS

In this section we demonstrate the potential of the DG method by comparing solutions for a
high load test problem against those obtained using a standard multi-level, multi-integration
FD algorithm. It is shown in [1] that in order to fully resolve the pressure spike up to half a
million FD grid-points may be required. Here we compare our DG results against increasing
resolutions of FD grids. For the DG solution 16 elements are used (not of equal size) and the
polynomial degree is either 10 (in the pressure spike region) or 8 (elsewhere).

Figure 1 shows the pressure profile computed for a typical highly loaded case. The entire
contact is shown in the left graph whilst a detailed view of the position of the pressure spike
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Figure 1. Pressure distributions obtained using DG and FD methods across the entire contact, left,
and around the pressure spike, right

Method Unknowns Peak Pressure Peak Position Free Boundary Position
FD 4097 0.8212 0.9069 1.0693
FD 8193 0.8566 0.9084 1.0701
FD 16385 0.8810 0.9092 1.0704
FD 65537 0.9095 0.9066 1.0705
FD 131073 0.9138 0.9097 1.0707
FD 262145 0.9158 0.9097 1.0706
FD 524289 0.9164 0.9097 1.0706

DG FE 168 0.9169 0.9097 1.0707

Table I. Comparsion of Pressure Peak Position and Free Boundary Values

is shown on the right. The key features of interest are the peak value of pressure, its position
and the point at which the free boundary occurs. These values are shown in Table 1. It is clear
from these results that the DG solution is closest to the half million point FD results.

Note that solution efficiency is not considered in this communication. The FD calculations
would obviously benefit from the use of locally refined meshes, such as used in [1, 20], whilst the
DG method could certainly be implemented with a more efficient solution algorithm (based
upon p-multigrid, [21] for example). What has been demonstrated however is that the DG
approach can deliver very high accuracy using only a small number of degrees of freedom.

6. DISCUSSION

In this paper a high order DG algorithm is used to solve the EHL line contact problem for
the first time and, unlike for traditional (continuous) FE methods, stability is easily obtained
through the use of a simple upwinding step. Our numerical results show that, when suitable
grids are used, highly accurate solutions may be obtained with very few degrees of freedom,
thus illustrating the exciting potential of this approach for the solution of EHL problems.
Other results of similar quality have been obtained under different loading conditions and
using different solution algorithms (e.g. the penalty method described in [22]).
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For the results obtained in this paper a very crude adaptive strategy was used to select
the mesh and the local polynomial degree. Currently we are investigating more sophisticated
h-p-refinement strategies for this method. We are also in the process of developing a multigrid
version of the solution algorithm based upon the p-multigrid method, described in [21] for
example, and will also consider 2-d point contact cases.
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