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Abstract. Characterizing the geometric conformation of object com-
plexes requires the description of certain geometric features. These fea-
tures are most intuitive and provide locality if each is at a restricted range
of scale. Thus a complete representation of a geometric entity, such as an
object, includes descriptions at multiple scale levels, each describing a
residue from the information provided at the larger scales. We have been
developing a methodology using medial representations for 3D geometric
entities. In this framework, we represent these entities at the following
natural discrete scale levels: a whole object complex, individual objects,
various object parts and sections, and fine boundary details. This has
been proven to be a robust representation of the geometry scale space.
It is particularly useful for probabilistic characterization that describes
both the common geometry of a population of object complexes and the
variation of instances within the population. Using our medial represen-
tation, we build Markov random field (MRF) models on the geometry
scale space based on the statistics of shape residue across scales and
between neighboring geometric entities at the level of locality given by
its scale. In this paper, we present how to design MRF models on two
scale levels, namely boundary displacement and object sections. This ap-
proach can be applied to various applications in medical image analysis
such as image segmentation and object discrimination into classes.

1 Introduction

Analysis of the geometric conformation of complexes of one or more objects plays
an important role in many computer vision and image analysis applications. For
instance, geometric information can be incorporated as priors to guide image
segmentation. By imposing geometric constraints on the interpretation of data,
one obtains more reliable results, as opposed to making decisions based only on
image intensity information. As another example, object discrimination usually
involves characterizing and comparing classes that differ in their geometric con-
formation, e.g., their volume or their shape. In order to effectively work with the
geometry of objects, one needs an efficient and accurate way of describing them.

The geometric conformation of a group of one or objects is usually represented
by certain geometric features. These features are most intuitive and provide
locality if each is at a restricted range of scale. To describe an object complex



at a coarse level, the relative poses of each object may be most informative. On
the other hand, to characterize an individual object, one needs to go to a finer
scale level and describe different sections, and each section needs to describe
its fine boundary details. A complete representation should be able to provide
geometric information on all relevant scales. As such, each geometric entity can
be regarded as an element in the geometry scale-space.

The classical scale-space theory is concerned with analysis of image intensity
structure across scales. The most basic scale-space is generated by local Gaus-
sian diffusions [1, 2]. When applied to an image, this diffusion process provides
descriptions of the image at different scale levels. The procedure is equivalent
to solving a linear partial differential equation (PDE) with initial values. Many
other classes of scale-spaces have been proposed, including those generated by
various non-linear PDE’s and morphological operations [3, 4], as well as spatio-
temporal scale-spaces [5]. The idea has also been applied to shape analysis, where
objects are deformed in a geometrically consistent manner such that a multi-scale
description of objects is attained. The generic behaviors of surface evolution were
studied using singularity theory [6–8]. In [9], a general “scale-based geometry”
framework is proposed. Examples of multi-scale shape representation include
description by singularities [10, 11] and by geometric invariants [12].

The non-linear scale spaces have been used in an attempt to reflect a notion
of locality, i.e., locally relevant distance, to the spatial summaries computed by
diffusion. In our study of geometric entities such as objects and boundaries, lo-
cality must be taken relative to the components of which an entity is formed.
Thus an object complex must be described with respect to the distances between
neighboring objects, and an object must be described with respect to the dis-
tances between the natural sections making up the object. Therefore, instead of
treating scale as a continuous parameter as in the powerful PDE theory, we use
discrete object-based scale levels. We follow the practice of making scale spaces
from discrete levels and residues between levels used in the wavelet approaches
[13, 14]. Thus we describe the changes in geometry across scales rather than geo-
metric features prominent at all scales. To do so, we choose geometric primitives
at each level to describe the residue from the geometric information provided
at the next larger scale level. This yields a successive refinement of representa-
tions, which enables us to focus on the most relevant and localized geometric
information at any particular scale level.

As just discussed, at any given scale level there is a notion of neighbors, i.e.,
nearby geometric entities at that scale: nearby objects, nearby object sections,
etc. Neighbors at a larger scale level are typically more distant than neighbors
at a smaller scale level. The neighbor relation realizes the notion of locality. This
view allows a hierarchical, multi-scale description of geometric entities, in which
a primitive at one scale level is seen relative both to the next larger scale level
and relative to its neighbors at that scale level.

We can effect such a viewpoint by seeing object complexes or objects as
members of a population of examples in the real world with fixed topology. The
reason is that essentially, shape is an attribute of a class of entities. Take the



shape of liver as an example. Globally all livers have the same general geometric
conformation; yet on finer scales the geometry varies significantly from one to
another. In deciding the topology of the representation of livers, we need to take
into account the common geometry as well as the variations among different in-
stances, so that both of these pieces of information can be effectively described.
The fixed topology enables establishing fixed correspondences across the pop-
ulation between entities at a scale level and between scale levels. What differs
between members of the population is the quantitative, geometric parameters
and not qualitative properties of structure or topology.

We have realized this methodology by describing 3D geometric entities using
medial representations combined with boundary displacements, which together
form a representation called m-reps [15, 16]. In this framework, geometric entities
are explicitly represented at discrete locations at the following discrete scale
levels: a whole object complex, individual objects, different object parts and
sections, and boundary points. Computing the fixed topology from a population
in this framework is achieved using the method of Styner [17], not discussed
further here.

In this medial framework, at each scale level the geometry is represented by
the configuration of certain geometric primitives that are most descriptive at
that level. For example, an object as a whole is described by a global similarity
transformation, whereas different sections of the object are characterized via
more local transformations. This differs from the traditional scale-space in that
different primitives are used at different scales in the representation.

One describes a population of geometric entities by using probabilistic mod-
els. For instance, 2D curve models were proposed in [18, 19]. For 3D objects,
principal component analysis on surface points [20, 21] and spherical harmonic
descriptors [22] have been studied extensively. In these models, a probability
measure is put on the space of all possible deformations from a common tem-
plate. The parameters of the distribution can be estimated and learned from a
training data set.

The relationships between adjacent scale levels and the neighbor relationships
at each scale level in our framework makes Markov random fields (MRF) the
natural probabilistic approach. Given the configuration at each scale level, the
geometric residue information at the next smaller scale level is described by
the corresponding geometric primitives and incorporated into an MRF model.
In this approach there are a small number of parameters to be estimated at
each location within each scale level, so accurate parameter estimation can be
achieved with limited numbers of training cases. In this paper, we discuss how
to design MRF models on two scale levels, namely the boundary displacement
level and the object section level.

In what follows, we first briefly describe our m-reps representation mecha-
nism in section 2. The details of the Markov random field models are presented
in sections 3 - 5. Section 6 shows some statistics on the geometric residues of
hippocampi. We finish with some concluding remarks in section 7.



2 Multi-scale Shape Representation by M-reps

Two basic types of geometric object representation are boundary-based and
medial-based models. Boundary-based methods describe an object by a mesh of
boundary points or landmarks. While this is an intuitive and direct way of rep-
resentation, it is not easy to use it to describe deformations such as elongation,
bending, and widening. These kinds of geometric information is more easily de-
scribed by medial-based methods, where an object is represented by one or more
medial manifolds, from which the boundary of the object can be determined.

Most existing medial representations derive the medial structure from the
boundary of an object [23, 11]. They are sensitive to noise and small pertur-
bations on the boundary. This instability essentially results from the fact that
the boundary includes geometric information at multiple scales. To obtain more
stable descriptions, it is crucial to build medial representations in a multi-scale
fashion, including a boundary displacement component.

In our framework, called m-reps, we start from a medial representation which
implies a boundary. An object is described implicitly as a set of continuous
medial manifolds, which can be sampled at different scales to yield discrete
representations. Each sample point is called a medial atom (see Fig. 1(a)). It is
a 4-tuple m = (x,R, r, θ) consisting of

– a translation x ∈ R3, specifying the position of the medial point; we can
consider this translation in units of the medial width, r;

– a rotation R ∈ SO(3), describing a local orthonormal frame given by (n,b,b⊥),
where n is the normal to the medial manifold, b is in the tangent plane along
the direction of the fastest narrowing of the implied boundary sections, and
b⊥ = n× b;

– a magnification scalar r ∈ R+, the local width, defined as the distance from
the medial point to the implied boundary points;

– a 2D rotation angle θ ∈ [0,
π

2
], called the object angle, which determines the

angulation of the implied boundary sections relative to b.

Each of these 4 elements is a member of an algebraic group, a property that will
be of importance later in the paper.

The two implied boundary points, y0 and y1, with relative surface normals
n0,n1, are given by

n0 = cos(θ)b− sin(θ)n, n1 = cos(θ)b + sin(θ)n,

y0 = x + rn0, y1 = x + rn1.

An m-rep figure is a quadrilateral mesh of medial atoms, with spacing deter-
mined through the analysis of the training population, as described in [17]. It
describes a slab-like object or object part. Each atom describes a through-section
of the object, and 4-adjacency in the mesh determines the neighbor relationship.
A single figure object is shown in Fig. 1(b). Given an m-rep figure, a smooth
boundary surface is generated by a subdivision surface algorithm [24] that in-
terpolates the boundary positions and normals implied by each atom.



(a) (b) (c)

Fig. 1: M-reps. (a) A medial atom with a cross-section of the boundary surface it
implies; (b) A single figure m-rep model of a kidney and its boundary surface; (c) A
two-figure m-rep liver model.

In general, objects are represented by a linked figural model, together with
boundary displacements. The main section of the object is represented by a
main figure, and different branches, protrusions or indentations are modelled by
various subfigures. The relationship among the figures can be described by a
tree structure. Fig. 1(c) illustrates a two-figure m-rep model. Finally, an object
complex can be described by the relative configurations of different objects.

Being a representation that contains a medial component, m-reps have the
ability of representing solid 3D regions and their boundaries simultaneously. This
can be exploited to describe inter-figure and inter-object relations. The m-rep
representation of an object complex is obtained by describing the geometry at
a hierarchy of scales. Each scale level describes the residue of geometric infor-
mation provided at the next larger scale by specifying the appropriate residue
transformation of the corresponding geometric primitives. A brief summary of
this mechanism is given in Table 1.

Scale Level Geometric Entity Primitive Residue Transformation

1 Object complex Object complex pose Similarity

2 Object Object pose Similarity

3 Figure
Main figure and
subfigure poses

Main figure and
subfigure transformations

4 Medial atom Atom configuration Atom transformation

5 Boundary vertex Vertex position
Displacement along

medially implied normal

Table 1: The scale levels of m-reps, with primitives and transformations at each scale.



As one goes from the object complex level to the atom level, a successively
refined boundary representation can be derived. At each level each entity has
neighbors of the same entity type. At the finest scale level, each boundary point
has boundary position neighbors and moves along the medially implied normal
direction to “fine tune” the description. There is a boundary tolerance associated
with each scale level. At larger scales, the tolerance is higher, so details are
ignored and global features are revealed; at smaller scales, the description focuses
on refinements of the larger scales to describe more local geometric features.

The m-rep framework defines a geometry scale-space with a discrete scale pa-
rameter, allowing local geometric features at different scale levels to be explicitly
described. Furthermore, the medial structure provides a multi-scale intrinsic co-
ordinate system which is extremely well suited for statistical analysis of shapes,
because correspondence among a population can be established systematically.

3 Probabilistic M-reps Models

3.1 Markov Random Fields

Given that any model has a fixed topology, we require a probability distribution
on the space of geometric variables, i.e., real-valued random variables character-
izing the primitives. These variables specify an element of the algebraic group of
operations applicable to that primitive. The total number of such random vari-
ables is usually of very high dimension. The MRF approach handles this problem
by characterizing geometric information through local interactions among geo-
metric primitives at various scale levels.

An MRF model is defined with respect to a dependency graph G = (V, E),
which is a simply connected graph. Each vertex v ∈ V corresponds to a random
variable Xv in the model. The set of vertices that are connected to v via an edge
in E is called the neighborhood of v, and is denoted by N (v). The completely
connected subgraphs of G (including singletons) are called the cliques of G. A
model P is said to be an MRF with respect to G if

Prob
(
Xv

∣∣ all other random variables
)

= Prob
(
Xv

∣∣{Xu : u ∈ N (v)}
)
,

where Prob(·|·) denotes conditional probability. P is said to be a Gibbs distri-
bution with respect to G if the joint probability density of {Xv} has the form

pΘ({Xv : v ∈ V }) =
1

Z(Θ)
exp{−

∑

C∈C
AC(XC ;Θ)}, (1)

where C is the set of cliques of G, XC = {Xv : v ∈ C}, Θ is a set of parameters, Z
is a normalizing constant. Each AC ≥ 0 is called a potential function and depends
only on those random variables whose indices are in C. The Hammersley-Clifford
Theorem [26] establishes the equivalence between MRF’s and Gibbs distributions
with respect to the same dependency graph G. This allows one to specify an MRF
by specifying the potentials in the corresponding Gibbs form.



The main advantage of the MRF approach is that the probability density
to be estimated is specified by a relatively small number of parameters. These
parameters can thus be efficiently learned from a training data set. One way of
estimating them is to seek the parameter values that maximize the likelihood of
the data. These estimates are called the maximum likelihood (ML) estimates. In
general this is done via stochastic sampling algorithms, such as Markov Chain
Monte Carlo (MCMC) methods [26].

3.2 Markov Random Field M-reps Models

In the Markov random field approach for our framework, the neighbor relations
are between scale levels and among neighbors at any scale level. Suppose there are
l scale levels indexed by 1, 2, . . . , l, with scale 1 being the coarsest. Let zk denote
the collection of geometric primitives at scale level k. At each scale level k, every
primitive zk

j has a value implied by a corresponding primitive at the previous
larger scale, which is called the parent primitive of zk

j and denoted by P(zk
j ). For

example, at the figure level, each figure implies the medial atom primitives that
make it up, with position, orientations, etc. relative to the figural geometry as
in the mean of the training population. Let ∆zk

j denote the inter-scale residual
giving the difference between zk

j and P(zk
j ), where differences are taken with

respect to the group operations defining the primitive, e.g., translation, rotation,
magnification, and object angulation for a medial atom. Let ∆zk = {∆zk

j }. At
each scale level we describe local features by residual geometric information from
the previous larger level by ∆zk with the Markov assumption

Prob
(
zk|{z1, . . . , zk−1}

)
= Prob(zk|zk−1) = Prob(∆zk), for k > 1.

In doing so, we are describing the inter-scale-level relationship via the residuals
and assuming that residuals at one scale are independent of those at other scales.

(i, j) (i, j+1)

(i-1, j)

(i, j+1)

(i+1, j)

(a) (b)

Fig. 2: The 4-neighbor structure for quad-mesh. (a) A typical node has 4 neighbors.
(b) The cliques of the quad-mesh.

The residual probability distributions {Pk(∆zk)} are defined as MRF models,
with respect to the canonical neighborhood structure induced by the natural
spatial relationship among primitives. For example, at the object level, where



the primitives are objects, the neighbors of an object are its adjacent objects.
At the atom level, the primitives are medial atoms. The canonical neighborhood
structure is the 4-adjacency graph induced by the quad-mesh structure, as shown
in Fig. 2(a), since we sample the medial manifold by a quadrilateral array of
atoms. The cliques of this dependency graph are single vertices and pairs of
vertices that are connected by a horizontal or vertical edge in the quad-mesh
(see Fig. 2(b)). If another sampling mesh, e.g. triangular mesh, is used, then
appropriate canonical neighborhood structure can be induced similarly.

By the Hammersley-Clifford Theorem, the density of the MRF model Pk can
be written in Gibbs form

pk({∆zk}) ∝ exp{−
∑

C∈ C
AC(∆zk

C)},

where C is the set of cliques, and ∆zk
C = {∆zk

j : j ∈ C}. Our goal is to design
these MRF models so that they can be specified by a relatively small number of
parameters. Two sets of details need to be given:

– in defining ∆zk
j , i.e., representing residual geometric information by primi-

tives;
– in defining the potentials AC , i.e., the form of the probability distribution

and the means of estimating the parameters.

In the next two sections, we discuss these issues on two scale levels within the
m-reps framework, namely the boundary level and the medial atom level.

4 MRF Models for Boundary Displacement

4.1 Model Description

For any m-rep figure, the medial manifold implies a 3D surface, which is repre-
sented by a dense set of boundary points. These are the geometric primitives at
the boundary level. The medial manifold is parameterized by a u-v coordinate
system, which induces a (u, v, t) coordinate system on the implied boundary.
For each boundary point, (u, v) is the coordinate of the corresponding medial
point, and t specifies where on the cross section the point lies. These coordinates
provide correspondence between boundary points on different objects. Moreover,
the description of each point includes a radius r, which is the distance between
the point and the corresponding medial point, and a surface normal vector at
that point.

At the boundary level, each medially implied boundary point is displaced
along its normal vector to obtain a finer scale description. The displacement is
measured in the unit of local radius. If the absolute amount of movement of the
j-th point is dj , then by describing distance in multiples of object width, so as to
maintain magnification invariance, we define the displacement of that point to
be the dimensionless variable wj = dj/rj . This variable describes displacement
as a member of the 1-dimensional group R. The displacement field w = {wj} on



the medially implied boundary points is the residual geometric information at
this scale level. The boundary surface is determined by the medial representation
together with the displacement field.

Currently we use a quad-mesh to sample the boundary, thus the canonical
neighborhood structure is the 4-adjacency structure. With respect to this graph,
we define Markov random field model at the boundary level on the displacement
field w. The density has Gibbs form

p(w) =
1
Z

exp
{
−

∑

i

Ai(wi)−
∑

<i,j>

Bij(wi, wj)
}

, (2)

with respect to Lebesgue measure, where < i, j > denotes that points i and j
are neighbors. We assume that the distribution on w is a zero-mean Gaussian
distribution, with the particular density form

pq(w) =
1

Z(q1, q2)
exp

{
− q1

2

n∑

i=1

siw
2
i −

q2

2

∑

<i,j>

si + sj

2

(ri + rj

2
)2

‖xi − xj‖2 (wi − wj)2
}

=
1

Z(q1, q2)
exp

{
− q1

2

n∑

i=1

siw
2
i −

q2

2

∑

<i,j>

bij(wi − wj)2
}

, (3)

where q1, q2 are positive parameters, Z(q1, q2) is a constant depending on q1 and
q2, n is the number of points, ri, si, and xi are respectively the radius, surface
area, and position associated with the i-th medially implied boundary point.
The exponent above is a discrete approximation of the energy function

−q1

2

∫

S

d2(x)
r2(x)

dx− q2

2

∫

S
‖∇d(x)‖2dx,

where d(x), r(x) are the absolute displacement and radius at point x, respec-
tively. Notice that

pq(wi|{wj , j 6= i}) ∝ exp
{
− q1

2
siw

2
i −

q2

∑
<i,j> bij

2
(
wi−

∑

<i,j>

bij∑
<i,j> bij

wj

)2
}

This can be interpreted as putting a penalty on the amount of wi as well as the
difference between the displacement of point i and a weighted average of those
of the neighboring points.

Different sections of the boundary can be modelled by the same MRF model
(3) with different parameter values, which reflect the variation of boundary ge-
ometry in various sections.

4.2 Parameter Estimation

We now discuss how to estimate the parameters q1 and q2 in (3). Rewrite (3) as

pq(w) =
1

Z(q1, q2)
exp

{− 1
2
wT Σ−1w

}
. (4)



Here Σ is the covariance matrix, and Σ−1 = q1D + q2B, where D is an n × n
diagonal matrix and B is an n× n symmetric, sparse matrix. The entries of D
and B are determined by {si} and {bij}. The normalizing constant is

Z(q1, q2) = (2π)
n
2 | det(q1D + q2B)|− 1

2 .

Since

|det(q1D + q2B)| = | det(D)| · | det(q1I + q2D− 1
2 BD− 1

2 )| =
n∏

i=1

si

n∏

i=1

(q1 + q2λi),

where λi, i = 1, . . . , n are the eigenvalues of D− 1
2 BD− 1

2 , we have

log Z(q1, q2) =
n

2
log(2π)− 1

2
| det(q1D + q2B)|

=
n

2
log(2π)− 1

2

n∑

i=1

log(si)− 1
2

n∑

i=1

log(q1 + q2λi).

Given a training data set, we seek the maximum likelihood estimates of q1, q2.
Suppose there are M independent samples {ŵ1, ŵ2, . . . , ŵM}, with

ŵi ∼ N
(
0, (q1Di + q2Bi)−1

)
, i = 1, 2, . . . , M,

where {Di,Bi} have the same structure as D,B. The likelihood function is

L(q1, q2) = −
M∑

i=1

log
(
p(i)

q (ŵi)
)

= −
M∑

i=1

(
log Z(i) +

1
2
ŵT

i (q1Di + q2Bi)ŵi

)
.

Using the Cauchy-Schwartz inequality, we can show that the Hessian matrix
∇2L is negative semi-definite. Therefore, the maximum of L occurs at (q∗1 , q∗2)
such that ∇L(q∗1 , q∗2) = 0, which yields

M∑

i=1

n∑

j=1

1

q∗1 + q∗2λ
(i)
j

=
M∑

i=1

ŵT
i Diŵi, (5a)

M∑

i=1

n∑

j=1

λ
(i)
j

q∗1 + q∗2λ
(i)
j

=
M∑

i=1

ŵT
i Biŵi, (5b)

where {λ(i)
j } are the eigenvalues of D− 1

2
i BiD

− 1
2

i . The above equations are solved
numerically.

5 Markov Random Field Models for Object Sections

5.1 The MRF Model

The primitives at the atom level are medial atoms, which describe sections of
an object. For simplicity we only consider single-figure objects. Let {Ai} denote



the set of atoms of a figure at the atom scale level. At the previous larger scale,
the figural scale, the object is described by another set of medial atoms {Mi},
which are the parent primitives of {Ai}. The residue geometric information at
the atom level is described by the differences between {Ai} and {Mi}.

As discussed in section 2, each medial atom Ai is characterized by a 4-tuple
(xi,Ri, ri, θi). Suppose that Mi = (x̃i, R̃i, r̃i, θ̃i) is the corresponding parent
atom at the previous scale level. We define the atom residue to be

∆Ai = (
xi − x̃i

r̃i
, R̃−1

i Ri,
ri

r̃i
, θi − θ̃i) = (∆xi,∆Ri,∆ri,∆θi).

It is an element of the product space G = R3 × SO(3) × R+ × SO(2). Each
component of ∆Ai can be regarded as an element of the corresponding group.
Let dE(·, ·) be the Euclidean distance on R3, dR(·, ·) be the Riemannian distance
on SO(3). The corresponding norms are denoted by ‖·‖E and ‖·‖R. The distance
dA between two atom residues is defined to be

dA(∆Ai,∆Aj) =√
d2

E(∆xi,∆xj) + d 2
R(∆Ri,∆Rj) + | ln(∆ri/∆rj)|2 + |∆θi −∆θj |2. (6)

The corresponding norm is denoted by ‖ · ‖A.
We now describe the MRF model for atom residues with respect to the canon-

ical 4-neighbor structure. The joint probability on the atom residues has a density
of the Gibbs form

p
({∆Ai}

) ∝ exp
{
−

∑

i

fi(∆Ai)−
∑

<i,j>

gij

(
∆Ai,∆Aj

)}
. (7)

This density is with respect to the Haar measure on G. We choose the potentials
fi and gij to be quadratic functions. In particular,

fi(∆Ai) =
σi

2
d 2

A(∆Ai, E) =
σi

2
‖∆Ai‖2A,

where E = (0, I, 1, 0), and

gij

(
∆Ai,∆Aj

)
=

τij

2d 2
A(Mi,Mj)

d 2
A

(
∆Ai,∆Aj

)
,

for neighboring pairs of medial atoms. The full probability density is

p
({∆Ai}

) ∝ exp
{
−

∑

i

σi

2

(
‖∆xi‖2E + ‖∆Ri‖ 2

R + | ln(∆ri)|2 + |∆θi|2
)

−
∑

<i,j>

τij

2d 2
A(Mi,Mj)

(
‖∆xi −∆xj‖2E + ‖(∆Ri)−1∆Rj‖2R

+ | ln(∆ri)− ln(∆rj)|2 + |∆θi −∆θj |2
)}

.

(8)



The conditional distribution of ∆Ai given the rest of the residues has density

p(∆Ai|∆A{j 6=i}) ∝ exp
{
− σi

2
‖∆Ai‖2A −

∑

<i,j>

τij

2d2
A(Mi,Mj)

d 2
A

(
∆Ai,∆Aj

)}
.

This model has an intuitive interpretation which is similar to the boundary
displacement model (3). More precisely, the first term in the exponent penalizes
the difference between Ai and its parent Mi, whereas the second term penalizes
∆Ai from being different to a weighted average of residues of the neighboring
atoms, given the configurations of {∆Aj : j 6= i}. Neighbors that are closer in
the ‖ · ‖A metric have higher weights.

5.2 Discussion

Given a training data set, the parameters {σi, τij} of the probability model (8)
can be estimated using the maximum likelihood method. Since the space G of
atom residues is not Euclidean, even though the potentials are quadratic, the
distribution is not Gaussian. The maximum likelihood estimates of the parame-
ters in this case are obtained by Markov Chain Monte Carlo methods. However,
this is a computationally expensive procedure.

Here we present an alternative model whose parameters are easier to esti-
mate. We start by noticing that the Riemannian distance between two rotations
∆R1 and ∆R2 is given by ‖Log(∆R−1

1 ∆R2)‖F , where ‖ · ‖F is the Frobenius
matrix norm, and for R ∈ SO(3),

Log(R) =

{
0, if θ = 0;

θ

2 sin θ
(R−RT ), if θ 6= 0.

Here θ satisfies tr(R) = 1 + 2 cos θ and |θ| < π. When ∆R1, ∆R2 are close
to identity, as in the case for atom residues, their Riemannian distance can be
approximated by ‖Log(∆R2) − Log(∆R1)‖F . Now, define an invertible map L
by

L : ∆A =
(
∆x, ∆R,∆r,∆θ

)
∈ G 7→ ∆L =

(
∆x, log(∆R), ln(∆r),∆θ

)
∈ g.

Then we can approximate the distance dA defined in (6) on G, the space of atom
residues, by the distance dg on the linear space g:

d2
A(∆A1,∆A2) ≈ d2

g(∆L1,∆L2)

= ‖∆x1 −∆x2‖2 + ‖ log(∆R1)− log(∆R2)‖2F
+ | ln(∆r1)− ln(∆r2)|2 + |∆θ1 −∆θ2|2.

Instead of (8), we define a conditional probability distribution on {∆L} with
density

p
({∆Li}

)

=
1
Z

exp
{
−

∑

i

σi

2
‖∆Li‖2g −

∑

<i,j>

τij

2d2
A(Mi,Mj)

d2
g

(
∆Li,∆Lj

)}
,

(9)



where ‖ · ‖g is the metric corresponding to dg. (9) induces a probability distri-
bution on G via L−1, which takes each ∆L back to ∆A.

The model (9) is essentially a Gaussian model on the linear space g. The
parameters {σi, τij} can be estimated from a training data set by the maximum
likelihood principle. In this case we can avoid MCMC methods and estimate the
parameters directly.

The idea of approximating the group G by a linear space g can be formalized
with Lie group theory, but is beyond the scope of this paper. For a detailed
description of Lie groups and their application in statistical shape analysis, see
[27] and the references therein.

6 Residue Statistics of Hippocampi

In this section we present some residue statistics of a sample population of
hippocampi. The data set contains 86 left hippocampi, each being represented
as a single m-rep figure by a 3× 8 array of medial atoms.

Fig. 3 shows some boundary statistics of the samples. The top left group of
figures show histograms of all boundary points, and the other three groups show
histograms of different sections of the boundary. Each section contains boundary
points that have the same (u, v) coordinates. The sections whose statistics are
shown are indicated by the big dots. In each case, the left plot is the histogram of
boundary displacements, and the right one shows the histogram of difference in
displacements between neighboring boundary points. Notice how the histograms
vary according to position changes.
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Fig. 3: Boundary displacement statistics of hippocampi. In each group, the left plot is
the histogram of boundary displacement, and the right one is that of the difference of
displacements between neighbors.



Fig. 4 illustrates some statistics on atom residues ∆A = (∆x,∆R,∆r,∆θ).
The 3 rows of figures correspond to 3 different atoms. In each row, the left two
plot are the histograms of log(∆r) and ‖∆x‖. The right two show histograms
of log(∆r) − log(∆r) and ‖∆x − ∆x‖, where log(∆r) and ∆x are weighted
averages of log(∆r) and ∆x of the atom’s neighbors, respectively. Again, the
histogram varies significantly with position, indicating that different sections of
hippocampus vary in different ways among the sampling population.
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Fig. 4: Atom residue statistics of hippocampi. The big dots on the leftmost surface
indicates the boundary section determined by the atom whose statistics is shown. In
each row, the left two plots show histograms of log(∆r) and ‖∆x‖, the right two show
histograms of log(∆r)− log(∆r) and ‖∆x−∆x‖, where log(∆r) and ∆x are weighed
averages of log(∆r) and ∆x of the atom’s neighbors, respectively.

These residue statistics are used to estimate the parameters of the corre-
sponding MRF model.

7 Conclusions

Characterizing the geometric conformation of an object complex requires de-
scribing the geometry at multiple scale levels, so that geometric features with
various degrees of locality can be described in a systematic way. We have been



developing a multi-scale shape analysis framework based on medial representa-
tions. A geometric entity is represented at the following scale levels: an object
complex, individual objects, different object parts (figures), object sections (me-
dial atoms), and boundary points. Some of these levels are directly natural and
intuitive, e.g. the object and boundary levels. The representations of other levels,
such as the description of object topology (figural relations) and the sampling
density of medial atoms, are more meaningful and informative if they are based
on a population of object instances. This is because essentially shape is not an
attribute of a single object, but rather that of a class of objects.

A successive refinement of geometric representation is obtained by describing
residual shape information across scales. The complete representation can be
recovered from these residues. In doing so features at different scales are revealed.
The geometric conformation of a population of object complexes is represented
most effectively by probabilistic models, which incorporate both the common
geometry and the deformations that occur among the population.

We have discussed how to build multi-scale probabilistic shape models based
on both inter-scale and intra-scale residues. The relationships among them are
modelled by Markov random fields, whose neighborhood structures provide a
mechanism for describing local features at each scale level. We also showed how
Markov random field models can be designed to describe residual geometric
information on both the boundary level and medial atom level. The advantage
of this approach is that it describes the rather complicated geometric information
effectively by a relatively small number of parameters. Moreover, the models can
be tuned based on the statistics of a training data set, thus the same type of
model can be used to describe different classes of geometric entities.

We are going to apply the same idea to modelling other scale levels, so that
complete multi-scale probabilistic shape models can be established. These models
can be used as priors in a variety of shape analysis applications, such as image
segmentation and object classification. Using maximum posterior approaches,
the resulting probability distributions can be used as priors for segmentation
[15] or as class probabilities in discrimination of objects by their geometry [25].
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