
Illustrative Interactive Stipple Rendering
Aidong Lu, Student Member, IEEE Computer Society, Christopher J. Morris, Joe Taylor,

David S. Ebert, Member, IEEE, Charles Hansen, Member, IEEE,

Penny Rheingans, Member, IEEE Computer Society, and Mark Hartner

Abstract—Simulating hand-drawn illustration can succinctly express information in a manner that is communicative and informative.

We present a framework for an interactive direct stipple rendering of volume and surface-based objects. By combining the principles of

artistic and scientific illustration, we explore several feature enhancement techniques to create effective, interactive visualizations of

scientific and medical data sets. We also introduce a rendering mechanism that generates appropriate point lists at all resolutions

during an automatic preprocess and modifies rendering styles through different combinations of these feature enhancements. The new

system is an effective way to interactively preview large, complex volume and surface data sets in a concise, meaningful, and

illustrative manner. Stippling is effective for many applications and provides a quick and efficient method to investigate both volume

and surface models.

Index Terms—Nonphotorealistic rendering, volume rendering, scientific visualization, medical imaging, illustration, stippling.

�

1 INTRODUCTION

THROUGHOUT history, archaeologists, surgeons, engineers,
and other researchers have sought to represent the

important scientific data that they have gathered in a
manner that could be understood by others. Illustrations
have proven to be an effective means to achieve this goal
because they have the capability of displaying information
more efficiently by omitting unimportant details. This
refinement of the data is accomplished by directing
attention to relevant features or details, simplifying com-
plex features, or exposing features that were formerly
obscured [36]. This selective inclusion of detail enables
illustrations to be more expressive than photographs and
provides a feature based compression of the data.

Indeed, many natural science and medical publications

use scientific illustrations in place of photographs because

of the illustrations’ educational, training, and communica-

tive utility [10]. Illustrations can represent a large amount of

information in a relatively succinct manner, as shown in

Figs. 2 and 3. Frequently, areas of greater emphasis are

stippled to show detail, while peripheral areas are simply

outlined to give context. The essential object elements (e.g.,

silhouettes, surface, and interior) can be combined to create

a simple, clear, and meaningful image. By controlling the

level of detail in this way, the viewer’s attention can be

directed to particular items in the image. This principle
forms the basis of our stipple rendering system.

Stipple drawing is a pen-and-ink illustration technique
where dots are deliberately placed on a surface of
contrasting color to obtain subtle shifts in value. Traditional
stipple drawing is a time-consuming technique. However,
points have many attractive features in computer-generated
images. Points are the minimum element of all objects and
have connatural features that make them suitable for
various rendering situations, no matter whether surface or
volume, concrete or implicit. Furthermore, points are the
simplest and quickest element to render. By mimicking
traditional stipple drawing, we can interactively visualize
modestly sized simulations.

We previously introduced in [15] a nonphotorealistic
rendering (NPR) stipple-based volume rendering system.
When initially exploring an unknown volume data set, this
system provides an effective means to preview this data
and highlight areas of interest in an illustrative fashion. The
system creates artistic rendering effects and enhances the
general understanding of complex structures. Once these
structures are identified, the user may choose additional
complementary rendering techniques to generate a more
detailed image of these structures. It is the use of NPR
techniques that provides the stipple volume renderer with
its interactivity and illustrative expressiveness. We refer to
this type of NPR technique as illustrative rendering.

NPR is a powerful tool for making comprehensible, yet
simple images of complicated objects. Over the past decade,
the field of NPR has developed numerous techniques to
incorporate artistic effects into the rendering process [8],
[31]. Various approaches have been used, including pen-
and-ink illustration, silhouette edges, and stroke textures.
Most of the research in the field of nonphotorealistic
illustration has concentrated on strokes, crosshatching,
and pen and ink techniques [9], [18], [30] and most of the
current research still concentrates on surface renderings,
which requires surface geometry. We choose to directly

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 9, NO. 2, APRIL-JUNE 2003 127

. A. Lu, J. Taylor, and D.S. Ebert are with the Purdue University Rendering
and Perceptualization Lab, Purdue University, West Lafayette, IN 47907.
E-mail: {alu, jtaylor, ebertd}@ecn.purdue.edu.

. C.J. Moris is with the IBM T.J. Watson Research Center, 19 Skyline Dr.,
Hawthorne, NY 10532. E-mail: cjmorris@us.ibm.com.

. C. Hansen and M. Hartner are with the Scientific Computing and Image
Institute, School of Computing, University of Utah, Salt Lake City, UT
84112. E-mail: hansen@cs.utah.edu, hartner@sci.utah.edu.

. P. Rheingans is with the Computer Science and Electrical Engineering
Department, University of Maryland-Baltimore County, Baltimore, MD
21250. E-mail: rheingan@csee.umbc.edu.

Manuscript received 15 Nov. 2002; accepted 3 Dec. 2002.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number SI0009-1102.

1077-2626/03/$17.00 � 2003 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: The University of Utah. Downloaded on April 2, 2009 at 19:48 from IEEE Xplore. Restrictions apply.

render volume and surface data sets without any additional
analysis of object or structure relationships within the data
sets. Direct stippling rendering not only maintains all the
advantages of NPR, but it also makes interactive rendering
and illustration feasible on useful-sized data sets because of
two attributes of points: fast rendering speed and innate
simplicity.

For volume data sets, the volume resolution is initially
adjusted for optimum stipple pattern rendering and point
lists are generated corresponding to the gradient magnitude
and direction. In our interactive stippling system, a
rendering mechanism is introduced that incorporates
several feature enhancements for scientific illustration.
These enhancements include a new method for silhouette
curve generation, varying point sizes, and stipple resolution
adjustments based on distance, transparency, and lighting
effects. By combining these feature enhancements, data sets
can be rendered in different illustration styles, as can be
seen in Fig. 1.

In this paper, we extend our previous work in volume
stippling to a direct interactive stipple rendering system for
both volumes and surfaces. We present several new
features which improve the quality, speed, and usability
of the stipple system. As with the volume rendering
method, the surface stippling [16] uses actual points as
geometry to achieve stipple rendered images. We also
describe the use of the latest graphics hardware capabilities
to accelerate the rendering by performing the silhouette
rendering on the GPU and the stipple density enhancement
calculations as a vertex program.

2 RELATED WORK

NPR has been an active area of research, with most of the
work concentrating on generating images in various
traditional styles. The most common techniques are sketch-
ing [34], pen-and-ink illustration [6], [27], [28], [36],
silhouette rendering [18], [23], [25], [29], and painterly
rendering [1], [4]. Pen-and-ink rendering uses combinations

of strokes (i.e., eyelashing and crosshatching) to create
textures and shading within the image.

Lines, curves, and strokes are the most popular among
existing NPR techniques. Praun et al. [24] presented a real-
time system for rendering of hatching strokes over arbitrary
surfaces by building a lapped texture parameterization
where the overlapping patches align to a curvature-based
direction field. Ostromoukhov [21] illustrated some basic
techniques for digital facial engraving by a set of black/
white and color engravings, showing different features
imitating traditional copperplate engraving. Hertzmann [9]
presented a method for creating an image with a hand
painted appearance from a photograph and an approach to
designing styles of illustration. He demonstrated a techni-
que for painting with long, curved brush strokes, aligned to
the normals of image gradients, to explore the expressive
quality of complex brush stokes. Winkenbach and Salesin
[37] presented algorithms and techniques for rendering
parametric free-form surfaces in pen and ink.

128 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 9, NO. 2, APRIL-JUNE 2003

Fig. 1. This image shows color stipples with both distance color blending

and tone shading.

Fig. 2. Traditional manual stipple drawing of idol by artist George Robert

Lewis [11].

Fig. 3. Traditional manual stipple drawing of cicadidae by artist Gerald P.

Hodge [11].

Authorized licensed use limited to: The University of Utah. Downloaded on April 2, 2009 at 19:48 from IEEE Xplore. Restrictions apply.

Deussen et al. [5] used points for computer generated
pen-and-ink illustrations in simulating the traditional
stipple drawing style. Their method first renders polygonal
models into a continuous tone image and then converts
these target images into a stipple representation. They can
illustrate complex surfaces vividly. However, their method
does not work for rendering volumes and is too slow for
interactive rendering.

NPR techniques have only recently been applied to the
visualization of three-dimensional (volume) data. Interrante
developed a technique for using three-dimensional line
integral convolution (LIC) using principal direction and
curvature to effectively illustrate surfaces within a volume
model [12]. Treavett et al. also used illustration techniques
to render surfaces within volumes [32], [33]. In both cases,
the results were compelling, but the techniques are surface-
based visualization techniques, rather than direct volume
rendering techniques that can show not only surfaces, but
also important details of the entire volume.

Several NPR techniques have recently been applied to
volume rendering. Ebert and Rheingans [7] showed the
power of illustrative rendering techniques for volume data;
however, the renderer was based on ray-casting and too
slow for interactivity or quick exploration of the data. Our
current work builds upon enhancement concepts from that
work. Furthermore, interactive volume rendering has
garnered a significant amount of attention [19] and NPR
methods have been applied to obtain interactive perfor-
mance while producing effective volume renderings [2], [3].
Treavett et al. [33] implemented artistic procedures in
various stages of the volume-rendering pipeline. Techni-
ques such as brush strokes, control volumes, paint splatting,
and others were integrated into their rendering system to
produce a variety of artistic effects to convey tone, texture,
and shape.

However, tone, texture, and shape can be effectively
conveyed by simply controlling the placement and density
of points. Though not a primary focus in illustrative
rendering systems until recently, points have previously
been used as rendering primitives. Levoy and Whitted [14]
first demonstrated that points could be used as a display
primitive and that a discrete array of points arbitrarily
displaced in space, using a tabular array of perturbations,
could be rendered as a continuous three-dimensional
surface. Furthermore, they established that a wide class of
geometrically defined objects, including both flat and
curved surfaces, could be converted into points. The use
of points as surface elements, or “surfels,” can produce
premium quality images which consist of highly complex
shape and shade attributes, at interactive rates [22], [39].

The main difference between previous stipple and point
rendering research and ours is that our system interactively
renders volumes and surfaces with points instead of just
surfaces with points. Within volume rendering, the closest
related technique is splatting [38], [26], which traditionally
does not incorporate the effectiveness of illustration
techniques. More recently, Wilson et al. [35] presented a
hybrid technique for interactive volume rendering using a
combination of hardware accelerated direct volume render-
ing (DVR) and point-based rendering. Unlike pure

hardware accelerated DVR, the hybrid approach is not
limited by the size of the available texture memory. The
hybrid technique differs from ours in that it does not use
any NPR enhancements and only utilizes points at those
locations where the volumetric data contains large amounts
of error. In the remainder of this paper, we show the
effectiveness of a simple point-based interactive stippling
system and describe how a number of illustrative enhance-
ment techniques can be utilized to quickly convey im-
portant characteristics for rapid previewing and
investigation of both volume and surface models.

3 THE STIPPLE RENDERER

The clarity and smoothness displayed by stippling, coupled
with the speed of hardware point rendering, makes
stippling an effective tool for illustrative rendering. As
with all scientific and technical illustration, this system
must perform two key tasks. First, it must determine what
to show, primarily by identifying features of interest.
Second, the system must carry out a method for how to
show identified features. The stipple renderer consists of a
point-based system architecture that behaves as a volume
and surface renderer and visually extracts various features
of the data by selective enhancement of certain regions.

For volumes, volume gradients are used to provide
structure and feature information. With this gradient
information, other features can be extracted, such as the
boundary regions of the structure. We can then illustrate
these volumes using stippling techniques with a particular
set of features in mind.

There are several issues specific to surfaces that must be
handled, including back face culling and surface shading.
Points alone could be rendered, but this would result in
stipples representing both front and back facing surfaces
being rendered. To prevent this, stipples that represent back
facing surfaces are removed with a depth test by first
rendering the entire surface object opaque. Unfortunately,
even with back face culling, some geometry which would
not have been rendered with hidden surface methods
contributes stipples to the final image. Therefore, to achieve
correct hidden surface removal, we displace the stipples by
a small epsilon along the normal direction. We use the
OpenGL polygon offset, which takes into account the
orientation of the polygon when calculating this offset.

To effectively generate renderings of both volume and
surface data sets at interactive rates, the system has two
main components: a preprocessor and an interactive point
renderer with feature enhancement.

4 PREPROCESSING

Before interactive rendering begins, the preprocessor auto-
matically generates an appropriate number of stipple points
for each object element based on its characteristics. This
preprocessing stage handles a number of calculations that
do not depend on viewpoint or enhancement parameters,
including the calculation of volume gradient direction and
magnitude (surface normals), the initial estimation of
stipple density from object resolution, and the generation

LU ET AL.: ILLUSTRATIVE INTERACTIVE STIPPLE RENDERING 129

Authorized licensed use limited to: The University of Utah. Downloaded on April 2, 2009 at 19:48 from IEEE Xplore. Restrictions apply.

of an initial point distribution. Additionally, for volumes,
the voxel values and gradients are all normalized.

4.1 Gradient Processing for Volumes

Gradient magnitude and direction are essential in feature
enhancement techniques, especially when rendering CT
data [11]. Some feature enhancements are significantly
affected by the accuracy of the gradient direction, especially
our light enhancement. Noisy volume data can create
problems in generating correct gradient directions. Addi-
tionally, first and second derivative discontinuity in voxel
gradients can affect the accuracy of feature enhancements.
Therefore, we use Neumann et al.’s [20] improved gradient
estimation method for volume data. Their method approx-
imates the density function in a local neighborhood with a
three-dimensional regression hyperplane whose four-di-
mensional error function is minimized to get the smoothed
data set and estimated gradient at the same time.

4.2 Initial Point Generation

In several illustrative applications, units (such as points,
particles, or strokes) are distributed evenly after random
initialization. Due to constantly changing scenes, these
individual units are redistributed in every frame. This
process is very time-consuming and leads to issues with
frame-to-frame coherence. To alleviate this problem, we
approximate a Poisson disc distribution to initially position
a maximum number of stipples. After this preprocessing
step is performed and the stipple positions are determined,
any processing that is subsequently performed (i.e., feature
enhancements, motion) simply adjusts either the number of
stipples that are drawn within each voxel/polygon or their
respective size. The maximum number of stipples for each
voxel or polygon is also adjusted per frame based on
distance and shading enhancements. We always select the
stipples that will be drawn from a pregenerated list of
stipples for each voxel or polygon, therefore maintaining
frame-to-frame coherence for the points.

For volume models, we generate stipples near the
gradient plane for the voxels whose gradient magnitude is
above a user specified threshold according to the statistics
of the gradient magnitude distribution. We place stipples
randomly, around the center of the voxel, between two
planes, p1 and p2, that are parallel to the tangent plane, p0,
and are separated by a distance chosen by the user, as
shown in Fig. 4. Next, we adjust the point locations in this
subvolume so that they are relatively equally spaced,
approximating the even distribution of points in a stipple
drawing.

The surface-based approach uses an analogous method,
generating the initial points for each polygon randomly
within the polygon and then redistributing them to
approximate a Poisson disc distribution.

4.3 Initial Resolution Adjustment

When viewing an entire data set, as the object’s size
increases, each element’s (voxel for volume or polygon for
surface) screen projection is reduced. Even if we assign at
most one point per element, areas with high gradient
magnitude still appear too dark. We define Nmax as the
maximum number of stipples that each element can contain
during the rendering process. After reading the data set, we
approximately calculate the maximum projection of an
element on the screen and set its maximum number of
points to be equal to the number of pixels in the projection
area. This reduces redundant point generation and im-
proves the stippling pattern in the resulting images. Also,
for surfaces, considering the polygon’s area in generating
the maximum number of stipples ensures that the stipple
pattern is independent of the object tessellation.

5 FEATURE ENHANCEMENTS

Scientific illustration produces images that are not only
decorative, but also serve science [10]. Therefore, the
rendering system must produce images accurately and
with appropriately directed emphasis. To meet this require-
ment, we have explored several feature enhancements in an
attempt to simulate traditional stipple illustrations. These
feature enhancements are based on specific characteristics
of a particular element: Whether it is part of a boundary or
silhouette, its spatial position in relation to both the entire
object and the entire scene, and its level of illumination due
to a light source. In particular, silhouette curves (common in
stipple drawings) are very useful for producing outlines of
boundary regions and significant lines along interior
boundaries and features.

To enable the use of all of our feature enhancements,
each element has the following information stored in a
data structure: number of points, gradient (volumes) or
surface normal (surfaces), element scalar data value, point
size, and a point list containing the x, y, z location of
each point. Our feature enhancements, calculated on a per
frame basis, determine a point scaling factor according to
the following sequence: boundary, silhouette, resolution,
light, distance, and interior. For different data sets, we
select a different combination of feature enhancements to
achieve the best effect.

The point count per voxel/polygon, Ti, is the product of
the maximum point count, Nmax, and the selected enhance-
ment factors described in the following sections. Except for
the boundaries and silhouettes enhancement for volume
data sets, all other feature enhancements are subtractive. All
feature enhancements are applied to volume models, while
all except boundary, silhouette, and interior enhancements
are applied to surface models. The equations used for each
feature enhancement are shown in Table 1 and a more
detailed description of the equations can be found in [15].

5.1 Boundaries and Silhouettes

In traditional stipple drawings, boundaries are usually
represented by a high concentration of stipples that cluster
on surfaces. In a scalar volume, the gradient of a voxel is a
good indication of whether the voxel represents a
boundary region. Boundary and silhouette enhancements

130 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 9, NO. 2, APRIL-JUNE 2003

Fig. 4. Initial point generation in voxel using a Poisson disc

approximation.

Authorized licensed use limited to: The University of Utah. Downloaded on April 2, 2009 at 19:48 from IEEE Xplore. Restrictions apply.

are determined using volume illustration techniques [7].
Several additional user defined factors determine the range
and sharpness of the boundary enhancement as well as the
relative effect of the data and gradient values on the
calculation.

By making the stipple placement denser in voxels of high
gradient, boundary features are selectively enhanced. The
silhouette enhancement factor is constructed in a manner
similar to the boundary enhancement factor in areas
oriented orthogonally to the view plane, forming a
silhouette edge. The boundary enhancement factor for a
voxel is a function of the voxel’s scalar data value and the
voxel’s gradient magnitude. The silhouette enhancement is
a function of voxel’s scalar data value and the dot product
of the voxel’s gradient vector and the eye vector. Using the
boundary and silhouette enhancement factors, we can
effectively render the outline of the features in the volume.
Therefore, points are dense on the outline of the objects,
while sparse on other boundaries and in the interior. Fig. 5
shows an abdominal CT volume data set rendered with
stipples. Boundary areas, particularly those in silhouette,
are enhanced, showing these features clearly.

5.2 Resolution

Traditionally, the number of stipples used to shade a given
feature depends on the viewed resolution of that feature. By
using a resolution factor, we can prevent stipple points

from being too dense or sparse. The resolution factor
adjusts the number of points in each voxel or polygon and
produces the effect that the features become larger and
clearer when the object moves closer to the viewpoint. It
also helps increase rendering performance by eliminating
unnecessary rendering of distant points.

We compute the resolution enhancement differently
based on whether an element projects larger than or smaller
than a user specified minimum screen coverage area (two to
nine pixels). If the element’s projection is large enough to
generate a stipple pattern, the resolution enhancement is a
function of the element’s z value and the object’s minimum
z value, both relative to the near plane. A user defined
parameter determines the relative effect of the resolution
enhancement. In Fig. 6, the same model is viewed at three
different distances, but the resulting stipple density is the
same for each. Fig. 7 shows a similar result of resolution
enhancement for the polygonal Stanford bunny model.

When the projection of a rendering element becomes too
small, creating a stipple pattern is not practical and we must
select an appropriate percentage of the elements to achieve
a consistent gray-level image as the object decreases in size.
We achieve this consistency by slightly adjusting the
number of stipples to be drawn. A random probability
value is assigned to each voxel or polygon to affect the
stipple number. The stipple numbers are calculated by the
weighted sum of the current maximum stipple number and
the random value. The two weights change, corresponding
to the location of the center of the object. The effect is that
the current maximum stipple number is always the

LU ET AL.: ILLUSTRATIVE INTERACTIVE STIPPLE RENDERING 131

TABLE 1
Feature Enhancement Equations

vi is the scalar voxel data value, r~VV i is the voxel gradient vector, ~EE is the eye vector, ~LL is the light vector, z is the object’s depth coordinate, Dnear is
the near plane depth coordinate, ð�a; aÞ is the depth range in the volume, and ks are user adjustable parameters.

Fig. 5. Abdomen rendered with volume stipple renderer shows boundary

and silhouette enhancements. Fig. 6. Resolution enhancement of the leg volume data set.

Authorized licensed use limited to: The University of Utah. Downloaded on April 2, 2009 at 19:48 from IEEE Xplore. Restrictions apply.

dominant factor, but the random value becomes more and

more important when the object is moved further away

from the view point.
Another technique that is used to avoid frame to frame

incoherency is the use of density determined point

intensity. We interpret a fractional density value as the
intensity of the point to be drawn, whereas the previous

coherency technique interpreted such a value as a prob-
ability. Using the probabilistic technique, three consecutive

elements with densities equal to one third would likely
produce two empty elements and one element with a single

fully intense stipple. The second technique would produce
stipples with intensity equal to one third in all three

elements. Fig. 8 and Fig. 9 show the effects of point intensity
and probability based resolution enhancement.

5.3 Distance

In resolution enhancement, we use the location of the whole
object in the scene. The location of different elements within

the overall volume presents a different challenge. Distance
is an important factor that helps us understand the

relationship between elements within an object. As in
traditional illustration, we can enhance depth perception by

using the position of an element within the object’s
bounding box to generate a factor that modifies both the

point count and the size of the points. The distance
enhancement factor is, therefore, a function of the relative

depth of the element within the object’s bounding box. A

132 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 9, NO. 2, APRIL-JUNE 2003

Fig. 7. This image shows the multiscale resolution enhancement where

polygons become smaller than one pixel. The system automatically

adjusts the stipples to provide a consistent appearance.

Fig. 8. Another example of the resolution enhancement applied to a statue model. The first image has no enhancement, the second image has point

intensity added for anti-aliasing, the third image has resolution enhancement, and the fourth image is with color.

Fig. 9. Another example of the resolution enhancement applied to a hand model. The left hand has no enhancement, the middle image has point

intensity added for anti-aliasing, and the right image has resolution enhancement.

Authorized licensed use limited to: The University of Utah. Downloaded on April 2, 2009 at 19:48 from IEEE Xplore. Restrictions apply.

user defined parameter determines the strength of the

effect. Fig. 10 shows an example of distance attenuation.

Comparing the right image to the left, it is clear that more

distant parts of the volume contain fewer and smaller

points. This is most apparent in the back, right section of the

engine block.

5.4 Interior

Point rendering is transparent in nature, allowing back-

ground objects to show through foreground objects. By

doing explicit interior enhancement, we exaggerate this

effect, allowing us to observe more detail inside the

volume. Generally speaking, the point count of the outer

volume elements should be smaller than that of the

interior to allow the viewing of interior features. While

there are several ways to implement this enhancement,

we achieve this effect by varying the number of points

based on the gradient magnitude of a voxel, thus

achieving a better transparency effect.
The interior enhancement is also a function of a user

defined parameter that controls the falloff of the transpar-

ency enhancement. With this factor, the voxels with lower

gradient magnitude become more transparent. In addition,

point sizes are adjusted by the transparency factor. In

Fig. 11, the density of the leaves changes from sparse to

dense when the gradient magnitude changes from low to

high. The structure of the tree is more evident with interior
enhancement.

5.5 Lighting

When lighting the volume, only the front oriented voxels
(where the gradient direction is within a specified number of
degrees of the eye direction) are rendered. The light
enhancement factor is a simple modification to the Lamber-
tian diffuse illumination of the Blinn-Phong model. A user
defined parameter adjusts the strength of the enhancement.
For voxels which are front facing with respect to the light
direction, we use the light enhancement factor to adjust the
number of stipples to be drawn. For voxels which are back
facing with respect to the light direction, we draw the current
maximum number of stipples.

Surface objects use an analogous technique. The lighting
factor potentially reduces the number of points drawn per
polygon for each frame. The reduction in the number of
points provides perceived shading based on the number of
stipples. Fig. 12 shows the effect of shading on the stipple
placement. Note the details which become visible with
shading in the dragon on the right.

To achieve compelling lighting effects for the volume
data sets presents several challenges. Since structures often
overlap in the volume, it can still be difficult to identify to
which structure a point belongs in complex scenes. Also, the
problem of capturing both the inner and outer surfaces at
the same time, while their gradient directions are opposite,
must be correctly handled. These issues can all significantly
reduce the quality of the lighting effects.

5.6 Silhouette Curves

Manual stipple drawings frequently contain outlines and
other curves which supplement the shading cues provided
by the stipples. These silhouette curves are generally drawn
at two places: the outline of the objects and obvious interior
curves. Different silhouette techniques are implemented for
volume and surface objects. With volumetric models,
searching for potential silhouette curves in the vicinity of
each voxel could easily create a performance bottleneck by

LU ET AL.: ILLUSTRATIVE INTERACTIVE STIPPLE RENDERING 133

Fig. 10. Engine block rendered with volume stipple renderer: (a) shows boundary and silhouette enhancement, as well as silhouette curves and

(b) distance attenuation of the engine block volume.

Fig. 11. Stipple rendering of bonsai tree volume. (a) Without interior

enhancement, (b) with interior enhancement.

Authorized licensed use limited to: The University of Utah. Downloaded on April 2, 2009 at 19:48 from IEEE Xplore. Restrictions apply.

requiring a search in, at least, the 3� 3� 3 subspace around
each voxel. We have implemented this more exhaustive
search, as well as an alternative technique using the
Laplacian of Gaussian operator (LoG) as a volumetric edge
detection technique.

This LoG edge detection technique provides virtually
identical results and simplifies the boundary computation,
so it is much faster to calculate per frame. In a preprocess,
we compute the LoG value for each voxel, then, during
rendering, we determine the silhouette voxels using a
criteria based on the scalar data value, the gradient
magnitude, the gradient direction, the eye vector, and
several user defined parameters. To “sketch” silhouette
curves, the voxels that satisfy these conditions have a line
segment drawn through the center of the voxel in the
direction of cross product of the voxel gradient and the eye
vector (r~ViVi � ~EE). Silhouette curves can be rendered at 20 to
30 frames per second and significantly improve image
quality. Fig. 13 shows the effectiveness of silhouette curves
in highlighting structures, especially the bones of the foot.

Silhouette rendering for surface-based objects should be
handled differently. We have incorporated two different
approaches to silhouette rendering in our stippling system.
The first approach is based on Raskar and Cohen’s method
for interactive silhouette lines [25]. They describe a simple
method for displaying image-based silhouettes using
standard OpenGL hardware. Their method involves

rendering front-facing polygons into the depth buffer,

while back-facing polygons are rendered in wireframe

mode with a slight offset and a depth test set to equal,

yielding silhouette lines of uniform thickness.
When the object occupies a large portion of the image,

thicker silhouette lines give a better result. However, when

the object is moved away from the viewpoint, the silhouette

lines should become thinner to give a consistent appear-

ance. We use the object’s bounding sphere to scale the

silhouette line width based on the object’s distance from the

camera. The radius, which is orthogonal to the viewing

direction, is projected onto the screen. The relative size

provides a scaling factor for the silhouette thickness. Fig. 14

shows an example of the Stanford bunny rendered without

silhouettes (left) and with silhouettes (right). The two

smaller silhouette bunnies show the effects of thinning the

silhouettes. The top-most has the thinning enabled, whereas

the bottom smaller bunny uses the same pixel size as the

larger object.
Our second approach is to use a standard “toon” shader

silhouette approach and the vertex programmability exten-

sion to OpenGL. Surfaces whose normals are nearly

perpendicular to the eye vector will have intensity near

1.0, thus producing a silhouette. Fig. 15 shows an example

of the Stanford bunny rendered using this technique with

silhouette curves.

134 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 9, NO. 2, APRIL-JUNE 2003

Fig. 12. Stipple rendering of dragon. (a) has no shading, while (b) has lighting enhancement added.

Fig. 13. Stipple rendering of the foot volume. (a) Without silhouette

curves, (b) with silhouette curves.

Fig. 14. (a) shows stipples without silhouette edges. (b) has image-

based silhouettes enabled. The smaller bunnies demonstrate the

silhouette thinning method.

Authorized licensed use limited to: The University of Utah. Downloaded on April 2, 2009 at 19:48 from IEEE Xplore. Restrictions apply.

5.7 Color

We have extended the monochrome pen and ink technique
of stippling to use colored points, similar to the traditional
painting technique of pointillism. For incorporating tone
shading and distance color blending [7], we use the HLS
(hue, lightness, and saturation) color model [13] to blend
between warm and cool colors according to the element’s
orientation with respect to the light direction and position
with respect to the viewer. We use an HLS to RGB color
palette and a texture palette, which stores indices into the
color palette, similar to the techniques in Lum and Ma [17]
to improve the performance. In Fig. 1, the skin and the
bones of the foot are rendered with different colors. To
increase the contrast, silhouette curves were rendered in
white. Fig. 16 shows the color blending from red to blue.

6 USER INTERACTION

We have developed a two-level user-interface for the stipple
rendering system. Expert users can control each of the
parameters of the enhancement equations directly to
achieve their desired effect. To simplify the use of the
system for nonexpert users, we have also developed a more
intuitive, higher-level user interface with several sliders that
each affect multiple feature enhancement parameters. For
example, the gradient slider allows the user to control the
emphasis placed on boundary regions within the data.
Adjusting this slider changes the amount of the enhance-
ments that depend on the gradient magnitude. The
sharpness slider allows the user to select the sharpness of
the feature enhancements by controlling the exponent of the
feature enhancement equations. The orientation slider

allows the user to choose how much enhancement to
include based on the orientation of the object (light and
silhouette enhancement). The distance slider, interior

slider, and color slider are self-explanatory.

7 HARDWARE ACCELERATION

We have implemented GPU-based stipple rendering en-
hancements for both volume and surface models as well as
the previously mentioned silhouette enhancement for sur-
face-based objects and will continue to explore moving
more of our calculations to the vertex processing unit of the
GPU. We have been able to increase the performance of the
stipple renderer by implementing all of the stipple

enhancements on the GPU using the vertex program
extension of OpenGL on the Nvidia GeForce3. Our volume
model implementation was written using Nvidia’s Cg
shading language, while the surface model implementation
was directly written using the hardware instruction set. The
conversion of the enhancement functions to the vertex
program hardware instruction set is simple, with the
standard trick for converting conditionals to vertex pro-
grams (compute both paths and select one of the results).
The vertex programs currently use a relatively small
number of instructions, which allows for future enhance-
ments for stippling to be computed with vertex programs.
Compared to software stipple rendering only, the current
performance increase ranges from 0 percent to almost
100 percent. The larger the model, the greater the speedup.
With silhouette rendering added, depending on the view,
the vertex program enhancements can be as much as
50 percent faster than software stipple rendering (with
hardware silhouettes).

When the computations are done in software, the density
for a given element is calculated and only the number of
stipples (vertices) that are to be drawn are sent to the
hardware. When the computations are done in the vertex
program, every potential stipple (vertex) for a given
element is sent to the GPU and the density calculation is
performed per stipple. Stipples rejected by any of the
enhancements are eliminated from further processing by
adding a large offset to the homogeneous z coordinate of
the vertex and depth culling them. Although this vertex
program calculation is faster for reasonable values of Nmax,
it requires redundant calculations compared to the software
(CPU) implementation because the density calculations are
performed once per stipple (vertex) instead of once per
element (voxel or triangle). This redundancy, however,
removes the dependency within the set of potential stipples
for a given element on a single calculation (density
calculation). Independent stipple calculation can be utilized
for even greater performance on the latest, and future,
generations of graphics boards that feature multiple parallel
vertex processing pipelines.

8 PERFORMANCE

We are able to interactively render reasonably sized volume
and surface data sets using illustrative enhancement with

LU ET AL.: ILLUSTRATIVE INTERACTIVE STIPPLE RENDERING 135

Fig. 15. This image shows our toon shading vertex program silhouette

method.

Fig. 16. This image shows color rabbit with tone shading.

Authorized licensed use limited to: The University of Utah. Downloaded on April 2, 2009 at 19:48 from IEEE Xplore. Restrictions apply.

our system on modern PCs. Performance results of our
stipple system are presented in Table 2. These running
times were gathered from a dual processor Intel Xeon
2.2 GHz computer with a Geforce 3 Ti 500 display card. The
preprocessing time varies from seconds to a minute. The
total number of point primitives in a typical volume data set
ranges from 5,000 to 2,000,000 and the silhouette curves
range from 1,000 to 300,000.

For surface models, silhouette rendering currently
occupies a significant portion of the rendering time. Vertex
programs can speed up the stipple rendering by up to
100 percent, depending on the model. Both of our silhouette
techniques for surface objects enhance the quality of the
final images and show a range of artistic styles that can be
conveyed with the stipple rendering system. The frame
rates can be improved by further reducing cache exchange
and floating-point operations.

Nonetheless, the measured frame rate does provide the
user with a level of interactivity necessary for exploring and
illustrating various regions of interest within the volume
data sets. Through the use of sliders, the user is able to
quickly adjust the parameters to select the desired feature
enhancement and its appropriate level. The user is able to
rotate, translate, and zoom in or out of the object while
maintaining consistent shading. The system has very good
temporal rendering coherence with only very subtle
temporal aliasing occurring during rotation near silhouette
edges and illuminated boundaries as new points are added
based on the silhouette and illumination enhancement
factor. We have implemented a simple partial opacity point
rendering to fade the points, alleviating this problem.

9 CONCLUSIONS AND FUTURE WORK

We have developed an interactive stippling system that
combines the advantages of point based rendering with the
expressiveness of the stippling illustration style into an
effective interactive illustration system for both volumes
and surfaces, as can be seen in Fig. 17. This system utilizes
techniques from both hand drawn illustration and volume
rendering to create a powerful new environment in which

to visualize and interact with data. Our system demon-
strates that stippling effectively illustrates complex volume
and surface data in a simple, informative manner that is
valuable, especially for initial object investigation and data
previewing. For these situations, the stipple renderer can be
used to determine and illustrate regions of interest. These
illustrated regions can then be highlighted when traditional
rendering methods are later used for more detailed
exploration and analysis. Initial feedback from medical
researchers shows they are enthusiastic about the useful-
ness of the system for generating images for medical
education and teaching anatomy and its relation to
mathematics and geometry to children.

Many new capabilities have recently become available on
modern graphics hardware that could significantly improve
the performance of our system. Programmable vertex
shaders allow us to move many of our feature enhance-
ments onto the graphics card. This is especially true for
those that are view dependent. Preprocessed points can be
stored as display lists or vertex arrays in the graphics card’s
memory, which avoids the expensive vertex download each

136 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 9, NO. 2, APRIL-JUNE 2003

TABLE 2
Running Times (Frames per Second) for Different Data Sets

Fig. 17. Head volume with silhouette, boundary, and distance enhance-

ment and silhouette curves.

Authorized licensed use limited to: The University of Utah. Downloaded on April 2, 2009 at 19:48 from IEEE Xplore. Restrictions apply.

time a frame is rendered. Vertex programs can be used to

evaluate the thresholds of feature enhancements by taking

advantage of the fact that we are using vertices rather than

polygons. Thresholding involves simple formulae and can

be easily implemented in a vertex program. When a vertex

falls below the enhancement threshold its coordinates can

be modified to a position off screen, effectively culling it.

This culling technique is not possible, in general, for

polygons since there is currently no connectivity informa-

tion available in vertex programs.
We plan to extend our work to improve the interactivity

of the system and compare the performance to other NPR

volume renderers to assess the effectiveness of using a

point-based rendering system. We will continue to explore

additional feature enhancement techniques. Additionally, it

may be interesting to investigate the implementation of a

stipple renderer using a texture-based volume rendering

architecture which modulates the alpha values per-pixel in

the fragment shader portion of the pipeline. The stipple

volume renderer is available at: http://shay.ecn.purdue.

edu/purpl/projects/dl_stipple.htm.

ACKNOWLEDGMENTS

This material is based upon work supported by the US

National Science Foundation under grants: NSF ACI-

0081581, NSF ACI-0121288, NSF IIS-0098443, NSF ACI-

9978032, NSF MRI-9977218, NSF ACR-9978099, and the US

Department of Energy’s VIEWS program. Some data sets

used in this paper come from the web page: http://

www.gris.uni-tuebingen.de/areas/scivis/volren/datasets/

datasets.html.

REFERENCES

[1] E. Akelman, “Implicit Surface Painting,” Proc. Implicit Surfaces ’98,
pp. 63-68, 1998.

[2] B. Csébfalvi and M.E. Gröller, “Interactive Volume Rendering
Based on a ’Bubble Model’,” Proc. GI 2001, pp. 209-216, June 2001.

[3] B. Csébfalvi, L. Mroz, H. Hauser, A. König, and M.E. Gröller,
“Fast Visualization of Object Contours by Non-Photorealistic
Volume Rendering,” Computer Graphics Forum, vol. 20, no. 3,
pp. 452-460, Sept. 2001.

[4] C. Curtis, S. Anderson, J. Seims, K. Fleischer, and D. Salesin,
“Computer-Generated Watercolor,” Proc. SIGGRAPH 1997, Com-
puter Graphics Proc., Ann. Conf. Series, pp. 421-430, Aug. 1997.

[5] O. Deussen, S. Hiller, C. van Overveld, and T. Strothotte, “Floating
Points: A Method for Computing Stipple Drawings,” Computer
Graphics Forum, vol. 19, no. 3, Aug. 2000.

[6] O. Deussen and T. Strothotte, “Computer-Generated Pen-and-Ink
Illustration of Trees,” Proc. ACM SIGGRAPH 2000, Computer
Graphics Proc., Ann. Conf. Series, pp. 13-18, July 2000.

[7] D. Ebert and P. Rheingans, “Volume Illustration: Non-Photo-
realistic Rendering of Volume Models,” Proc. IEEE Visualization
2000, pp. 195-202, Oct. 2000.

[8] B. Gooch and A. Gooch, Non-Photorealistic Rendering. A.K. Peters,
2001.

[9] A. Hertzmann, “Painterly Rendering with Curved Brush Strokes
of Multiple Sizes,” Proc. SIGGRAPH 98, Computer Graphics Proc.,
Ann. Conf. Series, pp. 453-460, July 1998.

[10] The Guild Handbook of Scientific Illustration, E. Hodges, ed. John
Wiley & Sons, 1989.

[11] K. Höhne and R. Bernstein, “Shading 3D-Images from CT Using
Gray Level Gradients,” IEEE Trans. Medical Imaging, vol. 5, no. 1,
pp. 45-47, Oct. 1986.

[12] V. Interrante, “Illustrating Surface Shape in Volume Data via
Principal Direction-Driven 3D Line Integral Convolution,” Proc.

SIGGRAPH ’97, Computer Graphics Proc., Ann. Conf. Series, pp. 109-
116, Aug. 1997.

[13] S. Feiner, J. Foley, A. van Dam, and J. Hughes, Computer Graphics,
Principles and Practice. Addison-Wesley, 1990.

[14] M. Levoy and T. Whitted, “The Use of Points as a Display
Primitive,” Technical Report 85-022, Univ. of North Carolina-
Chapel Hill Computer Science Dept., Jan. 1985.

[15] A. Lu, C. Morris, D. Ebert, P. Rheingans, and C. Hansen, “Non-
Photorealistic Volume Rendering Using Stippling Techniques,”
Proc. IEEE Visualization 2002, pp. 211-218, Oct. 2002.

[16] A. Lu, J. Taylor, M. Hartner, D. Ebert, and C. Hansen, “Hardware-
Accelerated Interactive Illustrative Stipple Drawing of Polygonal
Objects,” Proc. VMV2002: Vision, Modeling, and Visualization,
pp. 61-68, Nov. 2002.

[17] E. Lum and K. Ma, “Hardware-Accelerated Parallel Non-Photo-
realistic Volume Rendering,” Proc. Second Int’l Symp. Non-
Photorealistic Animation and Rendering, pp. 67-ff, 2002.

[18] K. Ma and V. Interrante, “Extracting Feature Lines from 3D
Unstructured Grids,” Proc. IEEE Visualization ’97, pp. 285-292,
Nov. 1997.

[19] L. Mroz and H. Hauser, “RTVR—A Flexible Java Lbrary for
Interactive Volume Rendering,” Proc. IEEE Visualization 2001,
pp. 279-286, Oct. 2001.

[20] L. Neumann, B. Csébfalvi, A. König, and E. Gröller, “Gradient
Estimation in Volume Data Using 4D Linear Regression,”
Computer Graphics Forum, vol. 19, no. 3, pp. 351-358, Aug. 2000.

[21] V. Ostromoukhov, “Digital Facial Engraving,” Proc. SIGGRAPH
’99, Computer Graphics Proc., Ann. Conf. Series, pp. 417-424, Aug.
1999.

[22] H. Pfister, M. Zwicker, J. van Baar, and M. Gross, “Surfels: Surface
Elements as Rendering Primitives,” Proc. ACM SIGGRAPH 2000,
Computer Graphics Proc., Ann. Con. Series, pp. 335-342, July 2000.

[23] M. Pop, C. Duncan, G. Barequet, M. Goodrich, W. Huang, and S.
Kumar, “Efficient Perspective-Accurate Silhouette Computation
and Applications,” Proc. 17th Ann. Symp. Computational Geometry,
pp. 60-68, 2001.

[24] E. Praun, H. Hoppe, M. Webb, and A. Finkelstein, “Real-Time
Hatching,” Proc. ACM SIGGRAPH 2001, Computer Graphics Proc.,
Ann. Conf. Series, pp. 579-584, Aug. 2001.

[25] R. Raskar and M. Cohen, “Image Precision Silhouette Edges,”
Proc. 1999 ACM Symp. Interactive 3D Graphics, pp. 135-140, Apr.
1999.

[26] S. Rusinkiewicz and M. Levoy, “QSplat: A Multiresolution Point
Rendering System for Large Meshes,” Proc. SIGGRAPH 2000,
pp. 343-352, 2000.

[27] M. Salisbury, C. Anderson, D. Lischinski, and D. Salesin, “Scale-
Dependent Reproduction of Pen-and-Ink Illustrations,” Proc.
SIGGRAPH ’96, Computer Graphics Proc., Ann. Conf. Series,
pp. 461-468, Aug. 1996.

[28] M. Salisbury, M. Wong, J. Hughes, and D. Salesin, “Orientable
Textures for Image-Based Pen-and-Ink Illustration,” Proc. SIG-
GRAPH ’97, Computer Graphics Proc., Ann. Conf. Series, pp. 401-406,
Aug. 1997.

[29] P. Sander, X. Gu, S. Gortler, H. Hoppe, and J. Snyder, “Silhouette
Clipping,” Proc. SIGGRAPH ’00, Computer Graphics Proc., Ann.
Conf. Series, pp. 327-334, July 2000.

[30] S. Strassmann, “Hairy Brushes,” Proc. SIGGRAPH ’86, Computer
Graphics Proc., Ann. Conf. Series, pp. 225-232, Aug. 1986.

[31] T. Strothotte and S. Schlechtweg, Non-Photorealistic Computer
Graphics: Modeling, Rendering and Animation. San Francisco:
Morgan Kaufmann, 2002.

[32] S. Treavett and M. Chen, “Pen-and-Ink Rendering in Volume
Visualisation,” Proc. IEEE Visualization 2000, pp. 203-210, Oct.
2000.

[33] S. Treavett, M. Chen, R. Satherley, and M. Jones, “Volumes of
Expression: Artistic Modelling and Rendering of Volume Data-
sets,” Proc. Computer Graphics Int’l 2001, pp. 99-106, July 2001.

[34] M. Visvalingam, “Sketch-Based Evaluation of Line Filtering
Algorithms,” Proc. GI Science, Oct. 2000.

[35] B. Wilson, K. Ma, and P. McCormick, “A Hardware-Assisted
Hybrid Rendering Technique for Interactive Volume Visualiza-
tion,” Proc. Volume Visualization and Graphics Symp. 2002, Oct.
2002.

[36] G. Winkenbach and D. Salesin, “Computer-Generated Pen-and-
Ink Illustration,” Proc. SIGGRAPH ’94, Computer Graphics Proc.,
Ann. Conf. Series, pp. 91-100, July 1994.

LU ET AL.: ILLUSTRATIVE INTERACTIVE STIPPLE RENDERING 137

Authorized licensed use limited to: The University of Utah. Downloaded on April 2, 2009 at 19:48 from IEEE Xplore. Restrictions apply.

[37] G. Winkenbach and D. Salesin, “Rendering Parametric Surfaces in
Pen and Ink,” Proc. SIGGRAPH ’96, Computer Graphics Proc., Ann.
Conf. Series, pp. 469-476, Aug. 1996.

[38] M. Zwicker, H. Pfister, J. van Baar, and M. Gross, “EWA Volume
Splatting,” Proc. IEEE Visualization 2001, pp. 29-36, Oct. 2001.

[39] M. Zwicker, H. Pfister, J. van Baar, and M. Gross, “Surface
Splatting,” Proc. SIGGRAPH 2001, Computer Graphics Proc., Ann.
Conf. Series, pp. 371-378, Aug. 2001.

Aidong Lu received the BS and MS degrees in
computer science from Tsinghua University in
1999 and 2001, respectively. Currently, she is a
graduate student at Purdue University. Her
research interests are computer graphics and
visualization. She is a student member of the
IEEE Computer Society.

Christopher J. Morris received the MS degree
in computer science from the University of
Maryland-Baltimore County in 2001, where his
focus was in scientific visualization. Previously,
he received the MS in mechanical engineering
from Stanford University in 1998, where his
interests included robotics and engineering de-
sign. He is an employee in the Visual Technology
Group at the IBM T.J. Watson Research Center.
His current research interests include volume

rendering, nonphotorealistic rendering, and parallel systems.

Joe Taylor received the BS degree in computer
engineering from Purdue University in 2001. He
is currently a graduate student at Purdue
University. His research interests are computer
graphics and visualization.

David S. Ebert received the PhD degree from
the Computer and Information Science Depart-
ment at The Ohio State University in 1991. He is
an associate professor in the School of Electrical
and Computer Engineering at Purdue University.
His research interests are scientific, medical,
and information visualization, computer gra-
phics, animation, and procedural techniques.
Dr. Ebert performs research in volume render-
ing, nonphotorealistic visualization, minimally

immersive visualization, realistic rendering, procedural texturing, model-
ing, and animation, modeling natural phenomena, and volumetric
display software. He has also been very active in the graphics
community, teaching courses, presenting papers, chairing the ACM
SIGGRAPH ’97 Sketches program, cochairing the IEEE Visualization
’98 and ’99 Papers program, serving on the ACM SIGGRAPH Executive
Committe and serving as an associate editor for the IEEE Transactions
on Visualization and Computer Graphics. He is a member of the IEEE
and the IEEE Computer Society.

Charles Hansen received the BS degree in
computer science from Memphis State Univer-
sity in 1981 and the PhD degree in computer
science from the University of Utah in 1987. He
is an associate professor of computer science at
the University of Utah. From 1997 to 1999, he
was a research associate professor in computer
science at Utah. From 1989 to 1997, he was a
technical staff member in the Advanced Comput-
ing Laboratory (ACL) located at Los Alamos

National Laboratory, where he formed and directed the visualization
efforts in the ACL. He was a Bourse de Chateaubriand PostDoc Fellow
at INRIA, Rocquencourt, France, in 1987 and 1988. His research
interests include large-scale scientific visualization, parallel computer
graphics algorithms, massively parallel processing, 3D shape repre-
sentation, and computer vision. He is a member of the IEEE and the
IEEE Computer Society.

Penny Rheingans received the PhD degree in
computer science from the University of North
Carolina, Chapel Hill, and the AB degree in
computer science from Harvard University. She
is an assistant professor of computer science at
the University of Maryland Baltimore County. Her
current research interests include uncertainty in
visualization, multivariate visualization, volume
visualization, information visualization, percep-
tual and illustration issues in graphics, dynamic

and interactive representations and interfaces, and the experimental
validation of visualization techniques. She is a member of the IEEE
Computer Society.

Mark Hartner graduated in the summer of 2002
with the BS degree in computer engineering. He
is a researcher for the Scientific Computing and
Imaging Institute at the University of Utah. His
primary interests include high performance
computing and scientific visualization.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

138 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 9, NO. 2, APRIL-JUNE 2003

Authorized licensed use limited to: The University of Utah. Downloaded on April 2, 2009 at 19:48 from IEEE Xplore. Restrictions apply.

