
Hardware-Accelerated Interactive Illustrative Stipple Drawing of
Polygonal Objects

Vision, Modeling, and Visualization 2002

Aidong Lu† Joe Taylor† Mark Hartner‡ David Ebert†
Charles Hansen‡

†School of Electrical and Computer Engineering
Purdue University, West Lafayette, IN 47906

{alu, jtaylor, ebertd}@purdue.edu
‡School of Computing, University of Utah, Salt Lake City, UT

{hartner, hansen}@cs.utah.edu

Abstract

Pen and ink rendering techniques provide artistic,
illustrative, and informative representations of ob-
jects. With recent advances in hardware graph-
ics technology, several researchers have developed
interactive non-photorealistic rendering techniques,
including hatching, toon rendering, and silhouettes.
However, the stippling method of drawing and
shading using dots has not received as much focus.
In this paper, we present an interactive system for
stipple drawing of surface-based objects that pro-
vides illustrative stipple renderings of multiple ob-
jects and includes adaptation of the stippling to pro-
vide a consistent rendering of objects at any scale.
We also describe the use of the latest graphics hard-
ware capabilities for accelerating the rendering by
performing the silhouette rendering on the GPU and
the stipple density enhancement calculations as a
vertex program.

1 Introduction

Pen and ink illustration techniques have proven to
be very effective in scientific, technical, and med-
ical illustration [4]. Within the computer graph-
ics community, the hatching style has received the
most attention (e.g., [3, 7, 9, 10]). An alternative
pen and ink technique that uses the specific place-
ment of dots to convey shape, structure, and shading
is stippling [1, 5, 7]. While stippling has received
less research attention than hatching, it is a very
effective illustration technique that has several ad-
vantages over hatching. First, it is more effective at

conveying subtle form. Second, hatching and line
based techniques can improperly suggest nonexis-
tent textures, ribbing, or segmentation of the model
[4].

Most previous work in computer generated stip-
pling performs the stippling process as a non-
interactive post-process after rendering a grey-scale
image [1], similar to dithering techniques. These
systems use approaches such as Vornoi diagrams for
stipple point placement to approximate a specific
grey-level in the resultant image. Praun et al. [7]
presented an interactive texture-based approach for
real-time hatching and showed an example of a stip-
pled texture as tone art map rendering. However,
their system requires the expensive pre-generation
of the mip-map textures and concentrates on ap-
propriate orientation and blending of the textures to
generate the resultant images. In contrast, our sys-
tem uses actual points as geometry to achieve stip-
ple rendered images, as can be seen in Figures 1
and 2.

Figure 1: An example stipple rendering of a blobby
dataset. The left image has uniform stipple place-
ment. The right image has shading enhancement to
convey simple surface shading.

VMV 2002 Erlangen, Germany, November 20–22, 2002



Figure 2: Two example stipple renderings of a dragon with varying levels of stipple density.

Stippling is especially effective when combined
with silhouette techniques to define the boundary of
an object. We have developed an interactive stip-
ple rendering system for surface-based objects that
provides effective, illustrative drawings of multiple
objects at interactive rates that incorporates distance
based adaptation of the stippling to provide consis-
tent rendering of objects at any scale.

2 The Interactive Stippling System

The interactive point-based system renders both
points and polygons to create effective stipple draw-
ings. Points are rendered to produce the stipple
patterns and polygons are rendered to create sil-
houettes, toon shading, and perform hidden surface
(point) removal. The system consists of an ini-
tial point generation phase, followed by the view-
dependent multi-scale rendering phase described
below.

2.1 Initial Point Generation

The initial points for each polygon are generated
randomly within the polygon and then redistributed
to approximate a Poisson-disc distribution [1]. This
approximately spaced placement of points simu-
lates traditional stipple placement techniques. Two
factors are used to initially adjust the maximum
number of stipples for each polygon, Nmax:

1. Maximum Point Density, Dmax: The user is
allowed to adjust a maximum point density pa-

rameter to change the overall tone of the im-
age.

2. Relative Point Density, Dr: The number of
points is automatically adjusted based on the
relative size of the initial screen area of the
projected polygon so that larger polygons re-
ceive more stipples. This ensures that the stip-
ple pattern is independent of the object tes-
sellation. The approximated projected screen
area is based on the polygon area and depth
and orientation of the polygon as follows:

area = areaorig ∗ cos(Nz ∗ π) ∗ Zrel

where Nz is the z component of the image
space polygon normal, and Zrel is the relative
depth of the polygon in the scene.

Therefore, the maximum stipples for each polygon
is calculated as the following:

Nmax = Objectmax ∗ min(Dmax, Dr)

During interactive rendering, this value is ad-
justed per frame based on distance and shading en-
hancements described in the next section.

Illustrative stipple rendering is achieved by ren-
dering the resulting points as geometric primitives.
Frame-to-frame coherence of stipples is achieved
since their location within a polygon does not vary
over time: only the number of stipples per poly-
gon varies based on shading and distance calcula-
tions. To eliminate any stipple “popping”, the in-
tensity of the last stipple for each polygon is based

666



on the fractional portion of the density value. Un-
fortunately, even with back-face culling, geometry
which would not have been rendered with hidden
surface methods contributes stipples to the final im-
age. Therefore, to achieve correct hidden surface
removal, we displace the stipples by a small epsilon
along the normal direction. We use the OpenGL
polygon offset which takes into effect the orienta-
tion of the polygon when calculating the offset.

2.2 Shading

To achieve an effective stipple drawing, the shading
of the surface must be conveyed by the density of
the stipples. Therefore, a simple modification to the
Lambertian diffuse illumination of the Blinn-Phong
model, (N ·L)n, is used to shade the object, which
potentially reduces the number of points drawn per
polygon for each frame. The reduction in the num-
ber of points provides perceived shading based on
the number of stipples. Figure 1 shows the effect of
shading on the stipple placement. Note the details
which become visible with shading.

2.3 Distance Based Scale Enhancement

A desirable quality of a pen and ink rendering is
that the object appears with consistent brightness
when rendered at multiple scales. This problem was
addressed in hatching by Winkenbach et al. [10],
where they solved the sampling and reconstruction
problem to produce hatching of a consistent grey-
level across multiple scales. For point-rendered
stipples, we achieve consistent rendering at multi-
ple scales by modifying the number of points drawn
per polygon.1 There are two issues which impact
the number of stipples due to scale: the relative
placement of the object in the viewing frustum, and
the relative position of each polygon in the object’s
bounding box. We refer to the first as extrinsic dis-
tance enhancement and the second as intrinsic dis-
tance enhancement.

The extrinsic distance enhancement modulates
the point density on a per-object basis to provide
consistent appearance. We compute the extrinsic
distance enhancement differently based on whether
a polygon projects larger than or smaller than a user

1As described above, this is also adjusted based on the area of
the polygon to correctly render models with non-uniform tessella-
tion.

specified minimum screen coverage area for stip-
pling (two to nine pixels).

If the polygon’s projection is large enough to
generate a stipple pattern, we use the following for-
mula to adjust the point density:

pnt density = shaded pnt density/(
Zmin

2
−Zcurr)pr

where Zmin is the closest Z value in the scene and
all other object Z values are less than this. Zcurr

is the depth of the center of the polygon, and pr is
a user parameter to control the amount of extrinsic
distance enhancement. The orientation of the poly-
gon in the view frustum is also used to adjust the
point density based on the cosine of the z compo-
nent of the image space normal vector. The results
of this enhancement can be seen in Figure 3.

Figure 3: This image shows the extrinsic dis-
tance enhancement where the polygon’s projection
is larger than a pixel. The three images with dif-
ferent sized triangles show how the system auto-
matically modifies the original number of stipples
to provide a consistent appearance.

When the projection of a polygon becomes too
small, creating a shaded stipple pattern is not prac-
tical, and we must select an appropriate percentage
of the polygons to achieve a consistent grey-level
image as the object decreases in size. When pro-
cessing polygons in strips or area mode, we use the
polygon’s current approximate screen area2 to de-
termine the number of polygons that cover our min-
imum stipple screen area, N . We use a probabil-
ity function based on this calculated area to deter-
mine if the polygon should be drawn. We, therefore,
only generate stipples for every N th polygon. Sim-
ilarly, for other types of meshes, a random probabil-
ity value can be assigned to each polygon and used
in conjunction with the projected area to determine
which surface elements to process. The approxi-
mated projected screen area is based on the initial

2This value is updated per frame based on the changing depth
and orientation of the polygon to the camera.

666



projected area of the polygon and the current view
location as follows:

area = areaorig ∗ cos(Nz ∗ π) ∗ Z
′

rel

where Nz is the z component of the image space
polygon normal, and Z ′

rel is the relative depth of
the polygon compared to its original position. This
area value is then used to determine the probability
that a given polygon has its stipples drawn, using
one of the two methods above. An example of this
enhancement can be seen in Figures 4, 5, and 6.

Figure 4: This image shows the multi-scale extrin-
sic enhancement where polygons become smaller
than one pixel. The system automatically adjusts
the stipples to provide a consistent appearance.

Our intrinsic distance enhancement also modifies
the number of stipples rendered to provide user con-
trollable depth cuing internal to the model. Intrinsic
depth enhancement allows the user to focus atten-
tion on the closest portion of a polygonal model,
using the relative depth of the polygon within the
object’s bounding box. For this enhancement, we
use the following equation:

pnt density = curr pnt density∗(1+(Zcurr/A)de)

where Zcurr is the depth of the polygon, (−A, A)
is the depth range in the object and de is a user
controlled parameter that allows the enhancement
rate to vary, which exaggerates or lessens the effect.
The results of intrinsic distance enhancement can be
seen in Figure 7 by comparing the stippling on the

left horse and the right horse. The horse on the left
has no intrinsic distance enhancement, whereas, the
stippling on the body and hind legs of the horse on
the right is lighter, exaggerating the depth relation-
ship within the model.

Figure 7: This image shows the effects of distance
enhancement. The left image has no depth enhance-
ment, while the image on the right has the relative
depth of the horse’s components exaggerated.

3 Hardware Acceleration

We have designed our system to balance the com-
putation that is performed on the CPU with that
performed on the GPU to achieve the best perfor-
mance. One main division of the workload is be-
tween the stipple density calculation on the CPU
and the silhouette calculation on the GPU. We have
also implemented GPU-based resolution, distance,
and light enhancement for the stipple rendering and
will continue to explore moving more of our calcu-
lations to the vertex processing unit of the GPU.

3.1 Silhouette Rendering

Silhouettes have become a vital part of many non-
photorealistic rendering techniques [2, 8]. Gooch
et al. [2] have shown that silhouettes can empha-
size structure and detail, as well as be a aestheti-
cally pleasing. We have incorporated two different
approaches to silhouette rendering in our stippling
system.

The first approach is based on Raskar and Co-
hen’s method for interactive silhouette lines [8].
They describe a simple method for displaying

666



Figure 5: Another example of the multi-scale extrinsic enhancement applied to a statue model. The left
image has no enhancement; the middle image has point intensity added for anti-aliasing; and the right
image has extrinsic enhancement.

image-based silhouettes using standard OpenGL
hardware. Their method involves rendering front-
facing polygons into the depth buffer, while back-
facing polygons are rendered in wireframe mode
with a slight offset and a depth test set to equal,
yielding silhouette lines of uniform thickness.

When the object occupies a large portion of the
image, thicker silhouette lines give a better result.
However, when the object is moved away from the
viewpoint, the silhouette lines should become thin-
ner to give a consistent appearance. We use the ob-
ject’s bounding sphere to scale the silhouette line
width based on the object’s distance from the cam-
era. The radius, which is orthogonal to the viewing
direction, is projected onto the screen. The rela-
tive size provides a scaling factor for the silhouette
thickness. Figure 8 shows an example of the Stan-
ford bunny rendered without silhouettes (left) and
with silhouettes (right). The two smaller silhouette
bunnies show the effects of thinning the silhouettes.
The top-most has the thinning enabled, whereas the
bottom smaller bunnies use the same pixel size as
the larger object.

Our second approach is to use a “toon” shader
silhouette approach and the vertex programmabil-
ity extension to OpenGL. In a vertex program that
is executed for each triangle, we compute the dot
product of the eye vector and the surface normal
vector and multiply this by an increasing ramp func-
tion, clamped between 0.0 and 1.0. This becomes
the intensity of the surface. Only surfaces whose
normals are nearly perpendicular to the eye vector
will have intensity near 1.0, thus producing a sil-
houette. The sharpness of the silhouette is deter-
mined by the steepness of the ramp function. Fig-
ure 9 shows an example of the Stanford bunny ren-
dered using this technique with and without stip-
ples. The weakness of this approach is that the sil-
houette is not uniform when comparing edges of
high and low curvature. This can clearly be seen
when comparing the silhouette at the feet and ears
of the rabbit to the silhouette along its back and
chest. To improve the overall rendered quality,
these images were generated with an implementa-
tion using two separate vertex programs: one for the
silhouette polygons and one for the stipple points.

666



Figure 6: Another example of the multi-scale extrinsic enhancement applied to a hand model. The left hand
has no enhancement, the middle image has point intensity added for anti-aliasing, and the right image has
extrinsic enhancement.

While the silhouette vertex program implements the
technique as described, the stipple vertex program
uses a decreasing ramp function causing stipples
near the silhouette to fade. The slope of the de-
creasing function determines the sharpness of this
fade. Other approaches to silhouette enhancement
include a per-pixel approach using cubemap tex-
tures and register combiners, as well as a multi-pass
technique using an offset viewport for each pass [6].

Figure 9: This image shows our toon shading vertex
program silhouette method.

3.2 GPU-based Distance and Resolution
Enhancement

We have been able to increase the performance of
the stipple renderer by implementing all of the stip-
ple enhancements (resolution, distance, lighting) on
the GPU using the vertex program extension of
OpenGL on the Nvidia GeForce3. The conversion
of these functions to the vertex program hardware
instruction set is simple, with the standard trick for
converting conditionals to vertex programs (com-
pute both paths and select one of the results). For
the power function, the lighting coefficients instruc-
tion (LIT) was used for a fast, approximate cal-
culation. The vertex program currently uses 36
operations per vertex, which allows for future en-
hancements for stippling to be computed with ver-
tex programs. Compared to software stipple render-
ing only, the current performance increase ranges
from 0% to almost 100%. The more polygons in
the model, the greater the speedup. With silhouette
rendering added, depending on the view, the ver-
tex program enhancements can be as much as 50%
faster than software stipple rendering (with hard-
ware silhouettes).

When the computations are done in software,
the density for a given surface is calculated, and
only the number of stipples (vertices) that are to be

666



Figure 8: The left image shows stipples without silhouette edges. The right large bunny has image-based
silhouettes enabled. To the right and above the lower bunny demonstrates the silhouette thinning method.

drawn are sent to the hardware. When the compu-
tations are done in the vertex program, every po-
tential stipple (vertex) for a given surface is sent to
the GPU and the density calculation is performed
per stipple. Additionally, an index value, ranging
from one to the total number of potential vertices, is
needed for each stipple. If this index value is greater
than the calculated density for that vertex, fast depth
culling is used to eliminate further processing of the
vertex by adding a large offset to the homogeneous
z coordinate of the vertex.

Although this vertex program calculation is
faster, it requires redundant calculations compared
to the software (CPU) implementation because the
density calculations are performed once per stip-
ple (vertex) instead of once per surface (triangle).
This redundancy, however, removes the dependency
within the set of potential stipples for a given sur-
face on a single calculation (density calculation).
Independent stipple calculation can be utilized for
even greater performance on the latest, and future,
generations of graphics boards that feature multiple
parallel vertex processing pipelines (e.g., the Nvidia
GeForce4).

4 Results

The results of the stippling system can be seen in
Figures 2 through 9 Our performance information
is for 1280x1024 rendering on a PC with dual In-
tel Xeon 2.2 GHz processors and a GeForce3 Ti

500 graphics board. Table 1 shows the performance
of the system on several different models, demon-
strating that interactive stipple rendering can be per-
formed for useful-sized models on current graphics
hardware. This table shows that currently, silhou-
ette rendering occupies a significant portion of the
rendering time and also that vertex programs can
speed up the stipple rendering by up to 100%, de-
pending on the model. The extrinsic distance en-
hancements shown in Figures 3 and 4 demonstrate
that the system can create appropriate stipple ren-
derings of models at a wide range of scales and can
apply these enhancement techniques to different ob-
jects within the same scene. As the projection of the
object becomes smaller, the extrinsic distance en-
hancement automatically switches techniques. For
a particular scale, the distance enhancement main-
tains consistent perceived shading by modulating
the number of stipples. The intrinsic distance en-
hancement shown in Figure 7 can create subtle or
exaggerated depth effects for illustrative rendering
and artistic results. Both of our silhouette tech-
niques enhance the quality of the final images and
show a range of artistic styles that can be conveyed
with the stipple rendering system.

5 Conclusions

Stippling is one of the most important and effec-
tive methods for technical illustration. We have
shown that point-based stipple rendering can be

666



Dataset Number of Stipple Only Stipple & Silhouette
Name Polygons Vertex Program No Vertex Program Vertex Program No Vertex Program

(fps) (fps) (fps) (fps)

horse 13,352 60.39 60.39 30.19 30.19
low-res dragon 45106 32.05 30.4 15.60 15.24

bunny 69451 30.12 20.07 12.03 11.89
skeleton1 124018 20.66 12.08 10.16 7.53
skeleton2 522567 4.65 2.60 1.94 1.50

hand 654666 4.00 2.07 1.88 1.32
dragon 871414 2.99 1.50 1.32 0.91

Table 1: Running times (frames per second) for different rendering techniques on several example polygonal
models.

used to create effective and illustrative renderings of
surface-based objects at interactive rates and across
multiple scales using the programming capabilities
of the latest generation of graphics hardware. The
addition of different hardware silhouette techniques
enhance the final renderings and create different
artistic styles in the renderings. While the current
system is very effective, we will further explore op-
timizing the performance to allow interactive ren-
dering of even more complex models.

6 Acknowledgments

This material is based upon work begun by Chris
Morris and is supported by the National Sci-
ence Foundation under Grants: NSF ACI-0081581,
NSF ACI-0121288, NSF IIS-0098443, NSF ACI-
9978032, NSF MRI-9977218, NSF ACR-9978099,
and the DOE VIEWS program.

References

[1] Oliver Deussen, Stefan Hiller, Cornelius van
Overveld, and Thomas Strothotte. Floating
points: A method for computing stipple draw-
ings. Computer Graphics Forum, 19(3):41–
50, August 2000. ISSN 1067-7055.

[2] Bruce Gooch, Peter-Pike Sloan, Amy Gooch,
Peter Shirley, and Richard Riesenfeld. Inter-
active technical illustration. In Proceedings of
Symposium on Interactive 3D Graphics, pages
31–38, April 1999.

[3] Aaron Hertzmann and Denis Zorin. Illustrat-
ing smooth surfaces. In Proceedings of SIG-
GRAPH 2000, Computer Graphics Proceed-
ings, Annual Conference Series, pages 517–
526. ACM Press / ACM SIGGRAPH / Ad-

dison Wesley Longman, July 2000. ISBN 1-
58113-208-5.

[4] Elaine R.S. Hodges. The Guild Handbook of
Scientific Illustration. John Wiley and Sons,
Inc., New York, 1989. ISBN 0-471-28896-9.

[5] M. Levoy and T. Whitted. The use of points
as a display primitive. Technical Report 85-
022, University of North Carolina-Chapel Hill
Computer Science Department, January 1985.

[6] One-pass silhouette rendering with geforce
and geforce2. Technical report, June 2000.
http://developer.nvidia.com/.

[7] Emil Praun, Hugues Hoppe, Matthew Webb,
and Adam Finkelstein. Real-time hatching.
In Proceedings of SIGGRAPH 2001, Com-
puter Graphics Proceedings, Annual Confer-
ence Series, pages 579–584. ACM Press /
ACM SIGGRAPH, August 2001. ISBN 1-
58113-292-1.

[8] Ramesh Raskar and Micheal Cohen. Image
precision silhouette edges. In Proceedings of
Symposium on Interactive 3D Graphics, pages
135–140, April 1999.

[9] Michael P. Salisbury, Sean E. Anderson, Ro-
nen Barzel, and David H. Salesin. Interactive
pen-and-ink illustration. In Proceedings of
SIGGRAPH 94, Computer Graphics Proceed-
ings, Annual Conference Series, pages 101–
108, Orlando, Florida, July 1994. ACM SIG-
GRAPH / ACM Press. ISBN 0-89791-667-0.

[10] Georges Winkenbach and David H. Salesin.
Rendering parametric surfaces in pen and
ink. In Proceedings of SIGGRAPH 96, Com-
puter Graphics Proceedings, Annual Confer-
ence Series, pages 469–476, New Orleans,
Louisiana, August 1996. ACM SIGGRAPH /
Addison Wesley. ISBN 0-201-94800-1.

666


