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Abstract

In this paper, we present a Bayesian framework for both generating inter-subject large deformation transformations between two
multi-modal image sets of the brain and for forming multi-class brain atlases. In this framework, the estimated transformations are
generated using maximal information about the underlying neuroanatomy present in each of the different modalities. This modality
independent registration framework is achieved by jointly estimating the posterior probabilities associated with the multi-modal
image sets and the high-dimensional registration transformations mapping these posteriors. To maximally use the information pres-
ent in all the modalities for registration, Kullback–Leibler divergence between the estimated posteriors is minimized. Registration
results for image sets composed of multi-modal MR images of healthy adult human brains are presented. Atlas formation results are
presented for a population of five infant human brains.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

With the increasing number of imaging techniques
and imaging sensors, multi-modal image registration
has become an active area of research in medical image
analysis. An increasingly important area of medical im-
age analysis is computational anatomy, the study of
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anatomical variation. Understanding anatomical vari-
ability requires robust high-dimensional image registra-
tion methods where the number of parameters used to
describe the mappings between images is on the order
of the number of voxels describing the space of the
images.

Modern imaging techniques provide an array of imag-
ing modalities which enable the acquisition of comple-
mentary information representing an underlying
anatomy. Most image registration algorithms find a
mapping between two scalar images. To utilize multi-
modal images of a single anatomy, we define a multi-
modal image set, �I , as a collection of m co-registered
multi-modal images where, for a given spatial location
x, �IðxÞ 2 Rm. For example, �I might represent a CT image,
a T1-weighted MR image, and a PET image of a single
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anatomy. We assume that the underlying neuroanatomy,
represented in two acquired sets of multi-modal images,
consists of a set, C, of separate anatomical structure clas-
ses, cj. Throughout this paper, we assume that, for a
given subject, the multi-modal images of that subject
are co-registered.

Many image registration techniques that register
probability functions involve information theoretic dis-
tance measures. Mutual information is one such method
that is typically used to register multi-modal images.
High-dimensional image registration in the context of
mutual information and other dissimilarity measures
has been studied extensively. A thorough investigation
of these dissimilarity measures in high-dimensional im-
age registration is presented in (Hermosillo, 2002). Mu-
tual information is, equivalently, the Kullback–Leibler
divergence between the joint distribution and product
of marginal distributions of two random variables. A
multi-modal free-form registration algorithm that
matches voxel class labels, rather than intensities, via
minimizing Kullback–Leibler divergence, another infor-
mation theoretic distance measure, is presented in
(D�Agostino et al., 2003a,b). This method only finds cor-
respondences between two scalar images. A method that
minimizes Kullback–Leibler divergence between ex-
pected and observed joint class histograms is presented
in (Chan et al., 2003). This technique, however, esti-
mates class labels as a preprocessing step and is used
only for rigid registration between scalar images. The
method presented in this paper is more general in that
registration is performed on sets of images, of arbitrary
number, and is not constrained by an initial class label-
ing. Although inter-subject high-dimensional image reg-
istration has received much attention (Rueckert et al.,
1998; Miller et al., 1999; Gaens et al., 1998; Studholme
et al., 1999), to our knowledge, little attention has been
given to the use of multi-modal image sets in image reg-
istration. The foundation for the work presented in this
paper have been proposed in (Lorenzen and Joshi, 2003;
Lorenzen et al., 2004a; Davis et al., 2004; Lorenzen
et al., 2004b).

1.1. Model-based multi-modal image set registration

Across image sets, the number of constituent images
may vary, thus registration based on an intensity similar-
ity measure is not possible in this setting. While mutual
information can be extended to multiple random vari-
ables, its extension to registration involving three or more
images is problematic in that it requires maintaining an
impractical number of histogram bins (Bhatia et al.,
2004). Consider a multi-modal image set registration
involving four twelve-bit DICOM images, an example
of which is provided in Section 5.2. Using mutual infor-
mation would require the construction of a 24.12 �
2.8 · 1014 bin joint histogram, which is impractical.
Given these difficulties we move to a model-based
approach where the registration is performed using
underlying anatomical structures. We incorporate
these anatomical structures as a prior in a Bayesian
framework.

This framework is based on the assumption that hu-
man brain anatomy consists of finitely enumerable
structures such as grey matter, white matter, and cere-
brospinal fluid. These structures present with varying
radiometric intensity values across disparate image
modalities. Given two multi-modal image sets, we cap-
ture the underlying structures by estimating, for each
image set, the class posterior mass functions associated
with each of the structures. These class posteriors are
then used to produce a mean posterior atlas by estimat-
ing high-dimensional diffeomorphic registration maps
relating the coordinate spaces of the class posteriors.
The Kullback–Leibler divergence is used as a distance
function on the space of probability mass functions to
estimate the transformations. The use of the class poste-
riors provides an image intensity independent approach
to image registration.

1.2. Multi-class atlas formation

An important problem in computational anatomy is
the construction of an exemplar atlas from a population
of medical images. This atlas represents the anatomical
variation present in the population (Miller et al., 1997;
Grenander and Miller, 1998; Thompson et al., 2000).
Many images are mapped into a common coordinate
system to study intra-population variability and inter-
population differences, to provide voxel-wise mapping
of functional sites, and facilitate tissue and object seg-
mentation via registration of anatomical labels. Com-
mon techniques for creating atlases often include the
choice of a template image, which inherently produces
a bias. Motivated by the atlas construction framework
presented in (Joshi et al., 2004), we propose the con-
struction of an unbiased multi-class atlas from a popu-
lation of anatomical class posteriors using large
deformation diffeomorphic registration. When applied
to two image sets, this atlas formation method yields in-
verse-consistent image registration.

1.3. Inverse consistent registration

Many registration algorithms are not inverse consis-
tent since their dissimilarity metrics are computed in
the coordinate system of either one of the images in-
volved in the registration. This leads to order non-
preservation of optimization energy cost functions. In
traditional techniques for image registration, solutions
may be systematically biased with respect to expanding
and contracting regions in the estimated transformation
(Cachier and Rey, 2000). Inverse consistent registration
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is desired when there is no preference, or believability,
for one image over another. Existing methods for gener-
ating inverse consistent registration approximate inverse
consistency by adding an inverse consistency penalty to
the optimization cost function. The registration frame-
works formulated in these methods are not intrinsically
symmetric. A method for approaching this problem,
involving an algorithm that estimates incremental trans-
formations while approximating inverse consistency
constraints on each incremental transformation, is pre-
sented in (He and Christensen, 2003). The approach pre-
sented in this paper is intrinsically inverse consistent as
the registration problem is formulated symmetrically.
Therefore, no correction penalty for consistency is
required.

The remainder of this paper is organized as follows.
Sections 2 and 3 cover the methodology of the multi-
class atlas formation and the specialization to two image
set registration, results for these methods are presented
in Sections 4 and 5, respectively, and finally, a discussion
and conclusion are presented in Sections 6 and 7.
Fig. 1. Atlas formation. Unbiased atlas constructed as the intrinsic
mean of a population of class posteriors.

Fig. 2. Velocity fields.
2. Methodology: atlas formation

In this section, we present the atlas formation frame-
work and the motivation for the use of Kullback–
Leibler divergence to drive the registration. We begin
by describing the Bayesian framework for representing
the anatomical class structures. The specialization to im-
age set registration involving two image sets is presented
in Section 3.

2.1. Bayesian framework

From a population of N multi-modal image sets
f�I igN

i¼1, for each class cj 2 C, we first estimate the class
posterior mass functions piðcjðxÞj�I iÞ for each image set
i where cj(x) is the class associated with the voxel at spa-
tial position x 2 X � R3. This method is independent of
the number of images comprising each image set. These
class posteriors are produced using the expectation max-
imization method described in (Prastawa et al., 2003)
and (van Leemput et al., 1999a). Following van Leem-
put et al. (1999a), for each class cj the associated data
likelihood, pð�I iðxÞjcjðxÞ; lj;RjÞ, is modeled as a normal
distribution with mean, lj, and covariance, Rj.

2.2. Large deformation multi-class atlas formation

We now consider the problem of estimating an atlas
class posterior p̂ that is the best representative for a pop-
ulation of N class posteriors, fpig

N
i¼1, representing the N

individual image sets f�I igN
i¼1. The atlas p̂ is not a member

of the set {pi}. To this end, we consider the problem of
constructing a mapping between p̂ and each class poster-
ior in the set {pi}. That is, we estimate the mappings
hi :X! Xi where X � R3 and Xi � R3 are the coordinate
systems of the class posteriors p̂ and pi, respectively. The
coordinate system X is chosen to be independent of the
individual population class posterior coordinate sys-
tems, Xi. This framework is depicted in Fig. 1.

We seek the representative atlas class posterior p̂ that
requires the minimum amount of energy to deform into
every population class posterior pi. More precisely, gi-
ven a transformation group S with associated metric
D : S2 ! R, along with a probability density dissimilar-
ity measure E(p,q), we wish to find the class posterior
density p̂ such that

fĥi; p̂g ¼ arg min
hi2S;p

XN

i¼1

Eðpi � hi; pÞ þ D2ðe; hiÞ; ð1Þ

where e is the identity transformation.
In this paper, we focus on the infinite dimensional

group of diffeomorphisms H where we apply the theory
of large deformation diffeomorphisms (Miller et al.,
1999; Joshi and Miller, 2000) to generate deformations
hi that are solutions to the Lagrangian ODEs
d
dt hiðx; tÞ ¼ viðhðx; tÞ; tÞ; t 2 ½0; 1�. The transformations
hi are generated by integrating velocity fields forward
in time and h�1

i are generated by integrating velocity
fields backward in time. The relationship between spa-
tial locality, velocity fields, and time is shown in
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Fig. 2. The spatial location y is described in terms of the
forward integration of the velocity field v starting from
spatial location x, that is, y ¼ hðx; 1Þ ¼ xþ

R 1

0
v

ðhðx; sÞ; sÞds. Similarly, x can be described in terms of
integrating the reverse velocity field ~v starting at y, that
is, x ¼ /ðy; 1Þ ¼ y þ

R 1

0
~vð/ðy; sÞ; sÞds. From this figure

we note that vðhðx; tÞ; tÞ ¼ �~vð/ðy; 1� tÞ; 1� tÞ and,
hence, kLvðx; tÞk2 ¼ kL~vðy; 1� tÞk2, where L = a$2 +
b$($Æ) + c is the Navier–Stokes operator.

We induce a metric on the space of diffeomorphisms
by using a Sobolev norm (a norm that involves deriva-
tives of a function) via the partial differential operator
L on the velocity fields v. Let h be a diffeomorphism iso-
topic to the identity transformation e. We define the
squared distance D2(e,h) as

D2ðe; hÞ ¼ min
v

Z 1

0

Z
X
kLvðx; tÞk2 dx dt

subject to

hðxÞ ¼ xþ
Z 1

0

vðhðx; tÞ; tÞ dt.

The distance between any two diffeomorphisms is de-
fined by

Dðh1; h2Þ ¼ Dðe; h�1
1 � h2Þ.

The construction of h and h�1, as well as the proper-
ties of D, are described in (Miller and Younes, 2001) and
(Miller et al., 2002).

Having defined a metric on the space of diffeomor-
phism and a regularization operator L, the energy min-
imization problem described in Eq. (1) is formulated as

fĥi; p̂g ¼ arg min
hi;p

XN

i¼1

Eðpi � hi; pÞ þ
Z 1

0

Z
X
kLviðx; tÞk2 dx dt

ð2Þ

subject to

hiðxÞ ¼ xþ
Z 1

0

viðhiðx; tÞ; tÞ dt.
2.3. Kullback–Leibler divergence

As a measure of dissimilarity between two class pos-
teriors, we use Kullback–Leibler divergence (relative
entropy).

Definition 1. Let p and q be probability mass functions
on a set C. The Kullback–Leibler divergence (Kullback
and Leibler, 1951) between p and q is defined as

DKLðpkqÞ ¼
X
cj2C

pðcjÞ log
pðcjÞ
qðcjÞ

.

The Information Inequality theorem provides the ba-
sic properties of DKL(piq):
Theorem (Information Inequality). Let p(cj), q(cj) be

two probability mass functions on the set C. Then

DKL(piq) P 0 with equality if and only if p(cj) = q(cj)

for all cj 2 C.
Proof. By an application of Jensen�s inequality, see
(Cover and Thomas, 1991). h

In our setting, we use the Kullback–Leibler diver-
gence as a measure of dissimilarity between the two
probability mass functions pX and pi at spatial location
x 2 X,

DKLðpXðxÞkpiðxÞÞ ¼
X
cj2C

pXðcjðxÞÞ log
pXðcjðxÞÞ
piðcjðxÞÞ

.

From an information theoretic viewpoint (Cover and
Thomas, 1991), this dissimilarity can be interpreted as
the inefficiency of assuming that pi(x) is true when
pX(x) is true. That is, if we have a model expressed as
a probability mass function pi(x), we can then measure
how far an observation, also expressed as a probability
mass function, pX(x), deviates from pi(x) using Kull-
back–Leibler divergence.

2.3.1. Bayes probability of error

The use of Kullback–Leibler divergence as a distance
function is appropriate in this setting as it provides a
lower bound on the Bayes probability of error, P(error),
between two probability mass functions. Specifically,
reducing DKL(Æ) increases a lower bound on P(error).

Motivated by Kailath (1967), we can consider the
two-hypothesis decision-theory problem of classifying
an observation as coming from one of two possible
hypotheses H1, the average class posterior pX(x), and
H2, the class posterior of one of the deformed image sets
�I i, pi(hi(x)). Let q(H1) and q(H2) denote the a prior prob-
abilities on the two hypotheses, and let q(cjH1) and
q(cjH2) denote the class conditional probability density
functions given the true hypotheses. For an observed
class structure, c, (e.g., white matter), the posterior
probability of Hk is

qðH kjcÞ ¼
qðcjH kÞqðH kÞ

qðcjH 1ÞqðH 1Þ þ qðcjH 2ÞqðH 2Þ
for k = 1,2. To minimize the probability of error,
choose the hypothesis with the larger posterior probabil-
ity. Therefore,

PðerrorjcÞ ¼ min
qðcjH 1ÞqðH 1Þ

qðcjH 1ÞqðH 1Þ þ qðcjH 2ÞqðH 2Þ
;

�

qðcjH 2ÞqðH 2Þ
qðcjH 1ÞqðH 1Þ þ qðcjH 2ÞqðH 2Þ

�

and, hence,

PðerrorÞ ¼ Ec½PðerrorjcÞ�
¼
X
c2C

minfqðcjH 1ÞqðH 1Þ; qðcjH 2ÞqðH 2Þg;



Fig. 3. Bayes probability of error for two distributions. Let q(H1) and
q(H2) represent the a priori probabilities of hypothesis H1 and H2

being true, respectively, and q(cjH1) and q(cjH2) be the hypothesis-
conditioned likelihoods for class c. In the context of neuroanatomical
matching, c could be grey matter, white matter, or cerebrospinal fluid.
The densities q(cjH1)q(H1) and q(cjH2)q(H2) correspond to the atlas
class posterior pX(x) and the class posterior of the deformed image set
�I i, pi, at a given spatial location x.
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where Ec denotes the expectation with respect to c. The
probability of error is graphically depicted in Fig. 3. In
our registration problem we want to maximize P(error).
That is, the closer these posterior distributions become,
the larger the probability of mistaking one for the other,
and, hence, an increase in indistinguishability.

In practice, real distributions are not known so the
P(error) cannot be directly computed. Given this reality,
we look for a lower-bound on P(error) which is maxi-
mized when DKL(Æ) is minimized.

2.3.2. Bounds on P(error) for our two-hypothesis problem
One of the first divergence measures involving density

ratios is the Jeffreys divergence (Jeffreys, 1946),

Jðq1kq2Þ ¼ DKLðq1kq2Þ þ DKLðq2kq1Þ.
As will be described in Section 3.2, this symmetric

form of Kullback–Leibler divergence will be used as the
distance measure to drive the registration. Using inequal-
ities derived in (Hoeffding and Wolfowitz, 1958) a lower
bound on P(error) in terms of J(q1iq2) is presented in
(Kailath, 1967) and (Toussaint, 1972), 1

4
e�

J
2 6 P ðerrorÞ.

Thus, a reduction in DKL(Æ) leads to an increase in the
lower bound of P(error). It should be noted, that while
we have defined Jeffreys divergence in terms of symmetric
Kullback–Leibler divergence, Sir Harold Jeffreys pub-
lished his divergence measure in 1946 (Jeffreys, 1946)
while Solomon Kullback and Richard Leibler published
theirs in 1951 (Kullback and Leibler, 1951).

2.4. Registration

Under the Kullback–Leibler divergence measure,
Section 2.3, the atlas estimation problem in Eq. (2)
becomes
ĥi; p̂ ¼ arg min
hi;p

XN

i¼1

Z
X

DKLðpðxÞkpiðhiðxÞÞÞ dx

þ
Z 1

0

Z
X
kLviðx; tÞk2 dx dt. ð3Þ

This minimization problem can be simplified by noticing
that for fixed transformations hi, the p̂ that minimizes
Eq. (3) is given by normalized geometric mean of the de-
formed class posteriors, pi(hi(x)),

p̂ðcjðxÞÞ ¼
QN

i¼1piðhiðcjðxÞÞÞ
� �1

N

P
ck2C

QN
i¼1piðhiðckðxÞÞÞ

� �1
N

. ð4Þ

Combining Eqs. (3) and (4) results in the following min-
imization problem

ĥi ¼ arg min
hi

XN

i¼1

Z
X

DKLðp̂ðxÞkpiðhiðxÞÞÞ dx

þ
Z 1

0

Z
X
kLviðx; tÞk2 dx dt. ð5Þ

Note that the solution to this minimization problem
is independent of the ordering of the N image sets and
increases linearly as image sets are added, thus, making
the algorithm scalable.
2.5. Implementation

We use Christensen�s greedy algorithm for propagat-
ing templates (Christensen et al., 1996). In the atlas for-
mation setting, the velocity vn

i for each iteration n is
computed as follows. First, compute the updated atlas
estimate (i.e. the normalized geometric mean)

p̂nðcjðxÞÞ ¼
QN

i¼1piðhn
i ðcjðxÞÞÞ

� �1
N

P
ck2C

QN
i¼1piðhn

i ðckðxÞÞÞ
� �1

N

for each class component cj. Next, using the second or-
der approximation to Kullback–Leibler divergence, we
define the body force functions

F n
i ðxÞ ¼

X
ck2C

piðhiðckðxÞÞÞ
p̂ðckðxÞÞ

� 2

� �
rpi

����
T

ckðhiðxÞÞ
.

This is the variation of the class posterior dissimilarity
term in Eq. (5) with respect to the transformation hi.
The velocity field vn

i is computed at each iteration by
applying the inverse of the differential operator L to
the body force function, i.e. vn

i ðxÞ ¼ L�1F n
i ðxÞ. This com-

putation is performed in the Fourier domain (Joshi
et al., 2003).

The forward and inverse integration is described as
follows. At time t the transformations hi are described as
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hiðx; t þ dÞ ¼ hiðx; tÞ þ
Z tþd

t
viðhiðx; sÞ; sÞ ds

� hiðx; tÞ þ dviðhiðx; tÞ; tÞ

for small d. At iteration k of the algorithm, the transfor-
mations hi become the telescoping compositions
hi ¼ h1

i � h2
i � � � � � hk

i . At time t the inverse transforma-
tions h�1

i are described as

h�1
i ðy; tÞ ¼ h�1

i y �
Z t�d

t
viðy; sÞ ds; t � d

	 


� h�1
i ðy � dviðy; tÞ; t � dÞ

for small d. At iteration k of the algorithm, the transfor-
mations h�1

i become the telescoping compositions
h�1

i ¼ h�1;k
i � h�1;k�1

i � � � � � h�1;1
i .
3. Methodology: image set registration

In this section, we present the specialization of the at-
las formation problem of Section 2 to the problem of
image set registration involving two image sets. That
is, we consider the problem of finding a mapping be-
tween image sets �I1 and �I2 (Fig. 4). We would like to find
the mappings f :X1! X2 and g :X2! X1 where X1 and
X2 are the coordinate systems of image sets �I1 and �I2,
respectively. Again, we introduce a new coordinate sys-
tem X, independent of X1 and X2. Let transformations
h1 and h2 map X to X1 and X2, respectively. By construc-
tion, f ¼ h2 � h�1

1 and g ¼ h1 � h�1
2 . This registration

method is inverse consistent as f � g = g � f = e, the
identity map.

3.1. Bayesian framework

From the multi-modal image sets �I1 and �I2, for each
class cj 2 C we jointly estimate the posterior mass func-
tions p1ðxÞ ¼ pðcjðh1ðxÞÞj�I1Þ and p2ðxÞ ¼ pðcjðh2ðxÞÞj�I2Þ
along with the registration maps h1(x) and h2(x), that
map the independent coordinate space X � R3, into
the space of �I1, X1 � R3, and �I2, X2 � R3, respectively.
This method is independent of the choice of the number
of images comprising each image set. Optimal inter-
subject multi-modal image registration is estimated by
Fig. 4. Registration framework. Registration of image sets �I1 and �I2

through the unbiased coordinate space X.
an alternating iterative algorithm which is motivated
by an expectation maximization method used in (Pras-
tawa et al., 2003; van Leemput et al., 1999a). Our algo-
rithm interleaves the estimation of the posteriors
associated with �I1 and �I2 and the estimation of the reg-
istration maps h1:X! X1 and h2:X! X2.

As defined in Section 2.1, for each class cj the associ-
ated data likelihoods, pð�If1;2gðxÞjcjðxÞ; lj;RjÞ, are mod-
eled as a normal distributions with means, lj, and
covariances, Rj. Given the transformations h1 and h2

and the current estimates lj and Rj for both image sets,
the posteriors of �I1 and �I2 are associated with the inde-
pendent coordinate probability mass function pX by
using Bayes�s Rule with pX as the prior for both posteri-
ors p1(x) and p2(x). Having defined the posteriors, the
parameters lj and Rj are updated by their expected val-
ues. We are currently investigating the use of kernel den-
sity estimation as a replacement for the Gaussian models
as described in (Prastawa et al., 2004).

3.2. Registration

At a given spatial location x 2 X, the dissimilarity be-
tween image sets �I1ðxÞ and �I2ðxÞ is measured by the dis-
similarity between the posterior mass functions
modeling them, p1(x) and p2(x). As we have seen in Sec-
tion 2.3.2, minimizing the Jeffrey�s divergence between
two probability mass functions increases the lower
bound on the Bayes� probability of error in the two-
hypothesis decision problem, and, thus, renders the
probability mass functions more indistinguishable. That
is, brings them closer together. The following distance is
used to drive the registration

Dðp1ðxÞ; p2ðxÞÞ
¼ arg min

pXðxÞ
DKLðpXðxÞkp1ðxÞÞ þ DKLðpXðxÞkp2ðxÞÞ½ �.

ð6Þ
From Eq. (6), D(p1(x),p2(x)) = D(p2(x), p1(x)). For
known transformations h1 and h2 the probability mass
function in the independent coordinate system, pX(x),
that minimizes the distance above is the normalized geo-
metric mean

pXðcjðxÞÞ ¼
p1ðcjðxÞÞp2ðcjðxÞÞ
� �1

2

P
ck2C p1ðckðxÞÞp2ðckðxÞÞð Þ

1
2

.

Thus, the dissimilarity measure can be expressed
wholly in terms not involving the independent coordi-
nate system. After substituting the above expression
for pX into Eq. (6) we obtain the following distance at
position x 2 X

Dðp1ðxÞ; p2ðxÞÞ

¼ �2 log
X
cj2C

p1ðh1ðcjðxÞÞj�I1Þp2ðh2ðcjðxÞÞj�I2Þ
� �1

2.
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With this result we re-write the minimization problem
stated in Eq. (1) as follows

v̂1; v̂2 ¼ arg min
v1 ;v2

Z
X

log
X
cj2C

p1ðh1ðcjðxÞÞj�I1Þp2ðh2ðcjðxÞÞj�I2Þ
� �1

2 dx

þ
Z 1

0

Z
X
kLv1ðxÞk2 dx dtþ

Z 1

0

Z
X
kLv2ðxÞk2 dx dt.
3.3. Implementation

As described in Section 2.5, we compute the variation
for h1 of the average D(p1(x),p2(x)) term

o

oh1

1

jXj

Z
X

Dðp1ðxÞ; p2ðxÞÞ dx

¼ � 1

jXj

Z
X

P
cj2C

p2ðcjðxÞÞ
p1ðcjðxÞÞ

� �1
2rp1j

T
cjðh1ðxÞÞP

ck2C p1ðckðxÞÞp2ðckðxÞÞð Þ
1
2

dx.

In a similar manner the variation for h2 is computed.
The velocity fields v{1,2} at each iteration are updated by
solving the partial differential equations,

Lvf1;2gðx; tÞ ¼
o

ohf1;2g

1

jXj

Z
X

Dðp1ðxÞ; p2ðxÞÞ dx.
Fig. 6. Atlas construction. The top row shows the normalized
geometric mean class posterior density following an affine registration
of all five subjects. The bottom row represents the estimated atlas after
the final iteration of the algorithm.
4. Results: atlas formation

To evaluate the performance of the atlas formation
method, we applied the algorithm to a set of five class
posterior mass functions that where derived from a pop-
Fig. 5. Population of class posteriors. Five class posteriors (columns) each wi
variability, especially in the ventricular system.
ulation of T1-weighted, T2-weighted, and proton den-
sity 3D MR images of brains of health two-year-old
children, acquired at UNC Chapel Hill, using an expec-
tation maximization segmentation method (van Leem-
put et al., 1999a,b). As a preprocessing step, these
images were aligned using affine registration. An axial
slice from each derived class posterior mass function is
shown in Fig. 5. There is noticeable variation between
these anatomies, especially in the ventricular region.

Fig. 6 shows the normalized geometric mean of the
five class posterior mass functions and the final estimate
of the atlas. The normalized geometric mean is blurry
since it is an ‘‘average’’ of the varying individual neuro-
anatomies. Ghosting is evident around the lateral ventri-
cles and near the boundary of the brain. In the final
th four classes (rows). These images clearly show the large inter-subject
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estimate of the atlas these variations have been accom-
modated by the high-dimensional registration.
Fig. 7. Subject one.
5. Results: image set registration

To evaluate the image set registration method, we de-
fined a collection of image sets of increasing complexity.
For each image subject, the image sets were created using
3D scalar images from a population of four imaging
modalities: MRA, T1-FLASH MR, T1-MPRAGE
MR, and T2 MR. The composition of these image sets
is described in Section 5.2.1. The individual MR images
were acquired at UNC Chapel Hill using a Siemens head-
only 3Tesla system (Allegra, Siemens Medical Systems
Inc.) and a Siemens 1.5Tesla system (Sonata, Siemens
Medical Systems Inc.) with a head coil. Imaging param-
eters, TR/TE/TH/in-plane resolution, for the T1 and T2
image acquisitions are as follows, 15 ms/7 ms/1 mm/
1 · 1 mm2 and 7730 ms/80 ms/1 mm/1 · 1 mm2, respec-
tively. Additionally, a 3D time-of-flight MRA sequence
was acquired. Velocity compensation along both fre-
quency and phase encoding direction was used to maxi-
mize signal de-phasing induced by the flowing spins. A
magnetization transfer pulse was used to suppress signal
from brain parenchyma while maintaining signal from
flowing spins. The acquired spatial resolution for the
MRA images was 0.5134 · 0.5134 · 0.78 mm3 and
1 · 1 · 1 mm3 for the T1 and T2 images. The MRA
images were resampled to the 1 · 1 · 1 mm3 resolution.
5.1. Data preprocessing

The tissue exterior to the brain was removed using a
mask generated by a brain segmentation tool based on
the statistical classification method described in (Pras-
tawa et al., 2004). The geometric prior used to initialize
the algorithm was also produced using this tool. Mid-
axial, mid-coronal, and mid-sagittal slice views for
subjects one and two are presented in Figs. 7 and 8,
respectively. These four modalities provide complemen-
tary information. For example, the T1-FLASH and T1-
MPRAGE images have contrast differences and the
MRA images exhibit missing information due to grey
matter/white matter wash out and axial slab effect. In
these examples, the set of structural classes is taken to be

C ¼ fc1 ¼ grey matter; c2 ¼ white matter;

c3 ¼ cerebrospinal fluid; c4 ¼ otherg.
Fig. 8. Subject two.
5.2. Registration experiments

To evaluate this image set registration framework, we
first estimated transformations, f1 and g1, relating the
coordinate spaces of subject one and subject two by
applying our method to a mono-modal registration.
These two transformations were then used as ‘‘ground
truth’’ for the purpose of evaluating an increasingly
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complex collection of image set registrations. Quantita-
tive analysis of these results involves computing the in-
verse-consistency error.

5.2.1. Set-up

We performed the following eight registration
experiments

(1) Mono-modal/Mono-modal (common): �I1 ¼ T1�
FLASH of subject one and �I2 ¼ T1� FLASH of
subject two.

(2) Mono-modal/Mono-modal (mutually exclusive):
�I1 ¼ T1� FLASH of subject one and �I2 ¼ T2 of
the subject two.

(3) Bi-modal/Bi-modal (fully common): �I1 ¼ T1�
FLASH and T2 of subject one and �I2 ¼ T1�
FLASH and T2 of subject two.

(4) Bi-modal/Bi-modal (single common): �I1 ¼ T1�
FLASH and T2 of subject one and �I2 ¼ T1�
MPRAGE and T2 of subject two.

(5) Bi-modal/Bi-modal (mutually exclusive): �I1 ¼
T1� FLASH and T2 of subject one and �I2 ¼
T1�MPRAGE and MRA of subject two.

(6) Bi-modal/Mono-modal (mutually exclusive):
�I1 ¼ T1� FLASH and T2 of subject one and
�I2 ¼MRA of subject two.
Fig. 9. Forward mapping. The top row shows mid-axial, mid-coronal, and m
views for the deformed image set �I2ðf Þ.

Fig. 10. Inverse mapping. The top row shows mid-axial, mid-coronal, and m
views for the deformed image set �I1ðgÞ.
(7) Tri-modal/Tri-modal (fully common): �I1 ¼ T1�
FLASH, T1-MPRAGE, and T2 of subject one
and �I2 ¼ T1� FLASH, T1-MPRAGE, and T2
of subject two.

(8) Quad-modal/Quad-modal (full common): �I1 ¼
T1� FLASH, T1-MPRAGE, T2, and MRA of
subject one and �I2 ¼ T1� FLASH, T1-
MPRAGE, T2, and MRA of subject two.

From each of these experiments, transformations fi

and gi are obtained. The first experiment provides the
‘‘ground truth’’ transformations, f1 and g2. The T1-
FLASH modality was chosen for the first experiment
due to its relatively good white matter/grey matter
contrast.

5.2.2. Bi-modal/bi-modal (mutually exclusive)

registration

For the purposes of brevity we present qualitative re-
sults for the most interesting of these experiments, the
bi-modal/bi-modal mutually exclusive registration. In
this experiment, �I1 represents the T1-FLASH and T2
images acquired from subject one and �I2 represents the
T1-MPRAGE and MRA images acquired from subject
two. The estimated forward, f, and inverse, g, transfor-
mations are depicted, in three orthogonal views, in
id-sagittal views of image set �I1 and the bottom row shows the same

id-sagittal views of image set �I2 and the bottom row shows the same



Fig. 11. Qualitative assessment. The top row shows a checker board blending of an axial slice of the image sets �I1 and �I2. The middle row shows a
blending between �I1 and �I2ðf Þ, the forward mapping and the bottom row a blending between �I2 and �I1ðgÞ, the inverse mapping. The left column is
composed of the T1-FLASH of �I1 and the MRA of �I2 and the right column is composed of the T2 of �I1 and the T1-MPRAGE of �I2. The registration
has accommodated the local variability between the two image sets, especially in the cortical region, e.g. point ‘‘A’’, and in the ventricular region, e.g.
point ‘‘B’’.
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Figs. 9 and 10, respectively. In Fig. 11, a qualitative
assessment of the registration can be made by examining
axial slices of �I1 and �I2 in greater detail through a check-
erboard pattern. The mismatch between the image sets is
clearly evident in the top row of the figure. The second
and third rows illustrate the effectiveness of the registra-
tion under the estimate forward and inverse transforma-
tions, respectively.

5.2.3. Inverse-consistency

We used the L2 difference norm, if1(gi(x)) � xi2, to
evaluate inverse-consistency between each experiment,
i, and the first experiment for each spatial location
x 2 X. For numerical stability these inverse-consistency
errors were computed via telescoping compositions as
described in Section 2.5. Over all eight experiments,
the maximum computed inverse consistency error was
3.12 · 10�4 voxels with an average of 5.04 · 10�5 voxels.
6. Discussion

The multi-modal image set registration as presented
here might be potentially significant in various applica-
tions which rely on the measurement of image sets.
For example, multi-modal imaging is standard in the
imaging of pathologies such as tumors and lesions. Reg-
istration between images presenting pathology and
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images of healthy subjects is a challenging task since
space-occupying lesions have to be treated differently
from infiltrating lesions. Specifically, the registration
needs to accommodate both local spatial deformation
and local change of image intensity. Existing registra-
tion method involving scalar images based on image
brightness do not accommodate pathologies. In the for-
mation of the class posteriors, we can explicitly assign
classes to the various healthy and pathological tissues.
This allows us to potentially model the behaviors of
the different tissues during the registration process.

Another potential application for this method is the
registration of images acquired from scanners of differ-
ent field-strength. Image set registration across different
scanners becomes an increasingly important component
in multi-center studies. For example, in studies of devel-
opmental changes covering multiple years, and in fol-
low-up studies of diseases with change of scanner
technology. Images acquired from different scanners
potentially have different contrasts and different spatial
distortions. Our new method may help address these
problems as the registration would be based on underly-
ing anatomical structures rather than simply image
intensities.
7. Conclusion

Image set registration is a generalization of pair-wise
scalar image registration where each image set is com-
posed of an arbitrary number of scalar images. In this
paper, we have presented a novel method for multi-
modal image set registration and multi-class atlas
formation. The method is model-based and finds corre-
spondences between underlying class structures using
posterior mass functions. We use Kullback–Leibler
divergence on the space of posteriors as the minimiza-
tion of this distance maximizes Bayes probability of
error and, hence, indistinguishability between two poste-
riors. This method extends to the problem of multi
-class atlas formation via computing an intrinsic, and
hence, unbiased, mean. The introduction of this unbi-
ased mean makes this registration approach intrinsically
inverse-consistent. We have presented results, for image
set configurations of varying complexity, which suggest
that this method produces image set registrations with
low inverse-consistency error.
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