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Abstract. This paper presents a general
framework for analyzing structural and
radiometric asymmetry in brain images.
In a healthy brain, the left and right
hemispheres are largely symmetric across
the mid-sagittal plane. Brain tumors may
belong to one or both of the following
categories: mass-effect, in which the dis-
eased tissue displaces healthy tissue; and
infiltrating, in which healthy tissue has
become diseased. Mass-effect brain tumors
cause structural asymmetry by displacing
healthy tissue, and may cause radiometric
asymmetry in adjacent normal structures
due to edema. Infiltrating tumors have a
different radiometric response from healthy
tissue. Thus, structural and radiometric
asymmetries across the mid-sagittal plane
in brain images provide important cues
that tumors may be present. We have
developed a framework that registers
images with their reflections across the
mid-sagittal plane. The registration process
accounts for tissue displacement through
large deformation image warping. Radio-
metric differences are taken into account
through an additive intensity field. We
present an efficient multi-scale algorithm
for the joint estimation of structural and
radiometric asymmetry.
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1 Introduction

The healthy human brain is largely symmetric across
the mid-sagittal plane. Recognizing that structural
asymmetry may indicate disease, in our previous
work we examined shape and volume differences be-
tween the left and right hippocampi in patients with
schizophrenia [1,2,3,4], epilepsy [5], and Alzheimer’s

disease [6]. Most other work involving structural
asymmetry has focused on small-scale geometric
inter-hemispheric differences [7,8,9,10,11,12,13]. Up
to now, little attention has been paid to gross dif-
ferences between the left and right brain hemispheres
in patients with brain tumors. In this paper, we de-
scribe our unified framework for studying not only
large- and small-scale structural variations, but also
intensity variations occurring in images of patients
with brain tumors.

As part of a larger effort aimed at improving the
diagnosis and treatment of tumor patients, our group
is investigating techniques for analyzing the regional
effects and vascular characteristics of brain tumors.
The initial stages of this work aim toward the auto-
matic identification of tumors in MR images. We are
investigating several, potentially synergistic, methods
for segmenting tumors: multi-channel (white matter,
grey matter, and cerebrospinal fluid) statistical pat-
tern recognition, level set evolution, atlas-based reg-
istration, and asymmetry analysis.

Tumors exhibit two main effects in MR images:
mass-effect and infiltration. Mass-effect tumors dis-
place and distort the underlying structure. Infiltrat-
ing tumors affect the tissue characteristics, changing
the radiometric response in the image. Most cases
show a combination of these two effects. For example,
in purely mass-effect tumors, the presence of edema
induces changes in the radiometric response of adja-
cent normal structures. We have developed a single
framework to study both structural and radiometric
asymmetry in images of patients with brain tumors.

We study the asymmetry of the brain in MR im-
ages by registering an image with its reflection about
the plane of symmetry. Given a scalar 3D MR, im-
age, I(r) € Rt where v = [z, 29, 23]T € 2 C R3,
of the brain and corresponding plane of symmetry,
the structural deformations and changes in the radio-
metric response of the tissue due to the the disease
process are estimated via the following mean squared
error minimization

: d, f = arg min
o S g, f

H7 9
/Q 11(z) — I(H(z — q) + g+ d(x)) + f@)|Pdz (1)

where H is a Householder reflection matrix and ¢ €
R3 is a translation characterizing the plane of symme-
try. The high dimensional vector field d(z) € R? de-
scribes the geometric deformations in the brain across
the plane of symmetry, and the additive scalar inten-
sity field f(z) € R describes the intensity variation.
The latter two quantities are regularized with deriva-



tive operators to ensure smoothness during the esti-
mation process.

In this paper, we present a two-stage algorithm. In
the first stage of the process, H.q, f are estimated
through a multi-scale iterative approach while hold-
ing the deformation field fixed as the additive iden-
tity, d(x) = 0,Va € (2. In this way, we obtain both the
estimated plane of symmetry characterized by H and
g, and an initial estimate of the intensity variation
field, f.

The second stage estimates the structural defor-
mations characterized by d(z) in Equation (1) and
refines the estimate of the intensity field variation
f(x) via an extension of the large deformation dif-
feomorphic image warping algorithms developed in
[14,15,16].

This paper is divided into sections according to
the two-stage process mentioned above. The follow-
ing section (Section 2) develops the first part of the
framework which involves estimating the plane of
symmetry and initial intensity field variation. Section
3 extends the framework to include high dimensional
local deformations. The remaining sections discuss
the results and the performance of the algorithms.

2 Estimation of Plane of Symmetry

Given a scalar 3D MR image, I(x), of the brain we
would like to estimate the plane of symmetry as well
as investigate the inter-hemispheric asymmetry in the
brain. In this paper, we define the plane of symmetry
to be the plane about which inter-hemispheric sim-
ilarity is maximal. This plane is not necessarily the
mid-sagittal plane defined by the anterior commis-
sure and the posterior commissure [17].

A number of techniques have been employed to
compute the plane of symmetry in MR images of the
brain. Many of these methods involve fitting a 3D
plane from a set of symmetry lines extracted from
2D images. Smith and Jenkinson [11] present an algo-
rithm that finds symmetry via symmetry profiles. Of
these 2D approaches many employ a cross-correlation
symmetry measure. Liu et al. [18,19] extract the plane
of symmetry from a set of 2D slices via an edge-based
technique.

Our approach differs from these methods in that
we make a direct estimation of the plane of symmetry
from a whole 3D volume. This approach is less sensi-
tive to the variability in the inter-hemispheric fissure.
Ardekani [20] et al. present a 3D multi-resolution
cross-correlation method for estimating the plane of
symmetry. Prima et al [21] present an in-depth analy-
sis of previous plane of symmetry estimation methods
along with their own, which involves matching the

centers of homologous blocks by reflective symmetry.
Rather than performing a series of localized point-
to-point correspondences, we estimate the plane of
symmetry globally over all {2. The plane of symmetry
is parameterized via the Householder reflection ma-
trix, H, and a translation, ¢. The inter-hemispheric
intensity variation due to the presence of tumors or
bias field induced by the MR acquisition or both is
modeled as an additive scalar field f(z).

The inter-hemispheric intensity variation due to
the presence of tumors is modeled as an additive
scalar Gaussian random field, f(z), with covariance
induced by a linear differential operator Ly follow-
ing [22]. Namely, we let {f(z),z € 2} be a random
process process satisfying the stochastic partial dif-
ferential equation

Lif(z) = e(x)

where e(z) is white noise. That is, (e,y) ~
N(0, (y,y)). From [22] we know that {f(z),z € 2}
is a zero-mean Gaussian process with covariance

K(ry) = / G, w)Gly, u)d,

where G is the Green’s function of L; satisfying
LG(z,y) = d(x — y). Since L; is the Laplacian, V2,

Using the Bayesian paradigm the global energy
function is defined using a Gaussian mean squared er-
ror data likelihood function and the quadratic Gaus-
sian norm induced by the linear differential opera-
tor on f(z). The linear differential operator norm
enforces smoothness constraints and regularizes the
estimation of the the additive intensity field. The op-
timization then becomes:

11,4, = arg uin, [ |110)=1( (@0 +0)+ (@) |Pda
8 [ ILgf@lPe 2

where Ly = V? is the Laplacian operator.

2.1 Algorithm for Estimating the Plane of

Symmetry

We begin by defining the parameterization of the
plane of symmetry via the Householder reflection ma-
trix. We construct a reflection matrix H from a plane
characterized by its unit normal vector v shown in
Figure 1.

Let p’ be the reflection of the point p € (2 about
the plane of symmetry. We let p; be the projection of
p onto the line defined by v, that is p; = vvp. Let po
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Fig. 1. This figure depicts the Householder reflection con-
struction. The plane of symmetry, POS, is characterized
by its normal, v.

be the reflection of p; about the origin, p; = —p; =
—vvT'p. Therefore, p’ = p+ ps — p; and, hence, Hp =
Ip—vvTp —vvTp = (I — 2vv")p. Thus, given a plane
as described by v, we can construct its associated
Householder reflection matrix,

H=1-2w", (3)

where ||v|| = 1 is the Householder vector. The House-
holder matrix is symmetric, H” = H, and orthogo-
nal, H'H = I, with determinant det |H| = det |I —
2007 | =1 =2|]v||* = —1.

In our framework an image, I(x), is considered
to have perfect symmetry about a plane defined
by Householder reflection matrix H passing through
point g if

/Q 1) = I(H(z — q) + )|[2dz = 0.

The iterative algorithm for minimizing the energet-
ics defined in Equation (2) is derived by embedding
the optimization of the Householder matrix H and
corresponding point ¢ in the space of affine motions
GL(3) x R* ¢ R'2. Rather than estimating H and
¢ directly, we estimate an affine matrix, A, and a
translation vector, , by a quasi-Newton’s method and
project the result onto the space of Householder ma-
trices using the Householder projection theorem.
Theorem 1:(Householder Projection Theorem) Let
A € GL(3) be an affine matrix with negative deter-
minant. The Householder reflection matrix, H , which

minimizes the Frobenius norm to A,

H:argmhirnHA—HHF, 4)
is given by: A
H=1—2ce”

where e is the eigenvector associated with the small-
est eigenvalue of A.
Proof: From Equations (4) and (3) we obtain the fol-

lowing relation, which defines H,

H=||A—(I-200")||p where

0 = argmin ||[A — (I — 2v0T)||p.
v

where || - || denotes the Frobenius norm. Minimizing
the second equation is equivalent to minimizing the
following trace calculation

tr[(A — (I —2v0T))(A - (I —2v0"))T] =
tr(AAT) — 2tr(A) + dtr(Avv™) + 3.

Minimizing the above equation with respect to v re-
duces to the problem of minimizing tr(Avv?) with
respect to v. Matrix A can be written with its eigen-
decomposition, A = UXVT where

g1 00
0 g9 0
00 g3

Y= ,0120220'3 and V:[€16263].

Construct v = Va for some unit vector a« =
[a1, a2, a3]T. We then have

tr(Av?) = tr(USVTVad?vT).

Since both U and V7 are orthogonal and thus do not
contribute to the trace calculation we simply find a v
that minimizes tr(Xaa®). That is,

& = argmin tr(Yaal)
o

arg min (0103 + 0903 + 0303)
a1,02,k3

subject to : af + a3 +a3 = 1.
This implies that & = [0,0,1]7. Hence, v = e3 the
eigenvector associated with the smallest eigenvalue
03 of A. QED.
With the Householder Projection Theorem, we em-
bed the optimization in R'? by first registering the
image, I(z), with it’s reflection, I,..(z), about the YZ-
plane passing through the image centroid following
Prima et al. [8]. Figure 2 exemplifies this procedure.
In Figure 2, I(z), a solid outline, is represented as an
axial slice of a skull and I,.(z), a dotted outline, as
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Fig. 2. The original image, the solid-line curve, is flipped
about the YZ-plane to produce the dotted-line curve. The
affine motion between these two images, shown by the
arrows, is estimated from which the plane of symmetry,
the vertical line, is produced.

a flipped version of the same. We define the reflected
image, I(z) via I..(x) = I(S(x — u) + p) where
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and 4 is the centroid of I(z). We estimate the A, £,
and f according to

Af, f = arg min / [[I(z) — Le(Az + t) + f(x)||2dx
Anf o

8 /Q 1L f ()| P (5)

The lower left panel of the figure illustrates the esti-
mation of this affine motion, A and ¢, via arrows that
takes the original solid-line ellipse into the flipped
dotted-line ellipse, such that I,.(z) = I(A(x — p) +
t + u). Reflecting I,.(x) back across the YZ-plane
produces I(SA(z — p) + £ + p) which best approx-
imates the original image I(z). The estimate of H
then becomes the projection of SA, which character-
izes the normal, ¢, in Equation (3) of the plane of
symmetry. The estimate ¢, which is the point in the
point-normal representation of the plane is given by
solving the equation —Hi+G=—Hu+1i+p. Solving
for ¢ yields,

. R 1 .
G=p+ (I —-H)"' and t=u+§Uth. (6)

2.2 Quasi-Newton Optimization Algorithm

Having parameterized the plane of symmetry via the
Householder matrix we now derive the Quasi-Newton
optimization algorithm for estimating the affine mo-
tion, (A,t). Let A* = [af;] , t* = [t},15,¢5]" be the
estimates after iteration k. The 1terat1ve algorlthm is
defined via the update step

ARt = AR 4 AA and R =t + At
We prove that the estimates (A, #) minimizing Equa-
tion (5) are given by the stable points of the algo-

rithm. For convenience we define the notation,

200100
0x0010
00z001

X =

, where T = [z, z2, z3] and
k_ 1.k k _k k 1k 1k
a” = [aj; ajy afs a21' St tst ]

Using the above notation, Equation (5) can be writ-

ten as,

9= [ @) = LX) + @) P

+8 /Q ILs £ @)l P ”)
Let the estimate at iteration k + 1, a**!, be given by

the update Aa € R'? of a*, that is
a" ™ = a* + Aa.

The energy in Equation (7) at iteration k& + 1 then
becomes,

k+1 / ||I

8 /Q 1Ly f*()|2de.

X (a* 4 Aa)) + f*(2)|>dx

Using the Taylor series expansion of I..(x) up to the
second order about Xa*, we approximate EF! as
follows,

E(a") = Ve % or (X Aa)]

() = [Hre(x) —
£2

+ R P+ B /Q L fH@)|Pde (@)

Notice that Equation (8) is quadratic with respect
to Aa. The update step Aa is chosen to minimize
E(a**1) which implies

VasE =0.



Applying this gradient we obtain,
- re Xa )

VaoE = /
</QV()V():c>Aa

=0

+ @)V (2) de

where V(z) = VITe o X - Thus,

-1
= — T T T X
Aa = [/QV( YV )d] x
/Q I(x) — Le(Xa¥) + fA@)V(2)Tdz (9)

Theorem 2: The stable points @ = (A,#) of the
above iterative algorithm minimize the energy in
Equation (5) and satisfy the necessary condition
V.E(a) = 0.

Proof: If G is a stable point of the above algorithm
then the update Aa in Equation (9) is zero implying
that

/Q I(x) — Le(Xa*) + f5(@)]V(2)Tdz = 0,

where, as before, V(z) = VI,..|% . X. This is exactly
the necessary condition for minimizer V,E(a) = 0.
QED.

After convergence of the algorithm we compute
the estimate for the Householder reflection. From the
Householder Projection Theorem and Equation (6)
we have H = I — 2ee”T where e is the eigenvector
associated with the smallest eigenvalue of SA and
qg=p+ %eeTf

At each iteration of the Quasi Newton algorithm
derived above for estimating (A,t), an estimate for
the inter-hemispheric intensity variation f*(z) is ob-
tained by minimizing

k= argmlnE(f)
/||I (¥ ) 4 () P

8 /Q 1L £ (2) P, (10)

where A, t* are the estimates of the affine motion
and f*(x) is the intensity field variation estimate at
the k' iteration. The necessary condition for the
minimizer of (10) is that the Gateaux differential

dE(f;n) for all allowable perturbations 7 is zero [?]
SE(f :m)

da/ 1(z)

6 /Q 1L (F*(@) + an(@)) P de]laodz

— Ire( Akx"'tk)‘i‘f ( )+an($)||2d$

—2[/ I(2) - Le(Abz + %) + f*(@)]n(x)dz

+6 [ LiL}s

where L} is the adjoint of Lj;. The conditions
SE(f;n) = 0 for all n(x) imply that f*(x) satisfy
the differential equation,

I(w) = Ine(A*z + ") + f(2) + BLsLY f(2) = 0. (11)

The above differential equation is solved using the
Fast Fourier Transform as follows. Let {2 be a peri-
odic discrete lattice having dimensions L x M x N.
Further define the residue at iteration k to be 7*(z) =
[I.e(A*z + t*) — I(x)]. Given this, the intensity dif-
ferential equation (11) can be re-stated as,

[BLFLs +1]"(x) = r*(2).

We write f*(z) and 7*(z) in terms of their Fourier
representations,

daln(z)de

(12)

2

M-

,_.

= Z (u, v, w)e @)
w=0 v=0 u=0
N—1M-1L—1
r*(z) = R (u, v, w)e? @)
w=0 v=0 u=0
where w = [wy,wy,wy]? with w, = %T“,wv =
Ly = %Tw and F* RF € C. We re-write Equa-
tion (12) as

N-1M-1L—
Lf*(x) :ZZZ Lel ) FF(y v, w)  (13)

where L = L fLJr + 1. As L is a differential opera-
tor with complex exponentlals as it’s eigenfunctions.
Equation (13) becomes

N—-1M-1L-1

= Z Z Z)\(u,v,w)ej<w’x>Fk(u,U,w)a

w=0 v=0 u=0

where A\(u,v,w) are the eigenvalues of the operator

L. We now compute the eigenvalues A(u, v, w):
/\(u,v,w)ej<“”z> = Lei{w)

= (BLsLY + 1)/

= (BN} (u, v,w) + 1)e? )

(14)



where A¢(u, v, w) are the eigenvalues of the operator

5 = V2. Using the standard definition of the finite
differences approximation of the Laplacian the eigen-
values become,

Af(u, v, w) = 2co8wy + 2 Cosw, + 2 cosw, — 6.
Substituting the eigenvalues into (14) we obtain,
AMu, v, w) = 408[—

+ 2(cos Wy, COS Wy + COS Wy, COS Wy, + COS Wy, COS ww)

2 Wy + cos? wy + cos? wy, +9]+1.

6(cosw,, + cosw, + Coswy,)

=+ cos

Finally, we can compute f(x) by taking the inverse
Fast Fourier Transform,

FH @) =
No1M-1L-1 p
(u, v, w)

271'LMNZZZ AMu, v, w)

=0 v=0 u=0

)

For an efficient implementation we employ a multi-
scale approach in estimating A and f directly from
I(z). We construct a pyramid of three images of de-
creasing size taken at increasing scale via Gaussian
kernel convolutions, I(z;0) = G(0,0) @ I(x) where
o =27 and 7 = 2, 4, 8 voxels. The estimation pro-
cess begins with the images at the largest scale by
estimating A and ¢ for the image. The results of this
process become the initialization for the estimation
process for the next smaller scale image. This process
is repeated until A and £ are estimated at the original
scale of I(x).

The convergence criteria for progress to successive
scales is simply that both ||A*1 — A¥|| < ¢ and
|[t*+1 — t*|| < e for some sufficiently small e.

An initial estimate for A° and t° is obtained via
the method of moments as follows: define the first
and the second moments of an image I(x) as

1
pr = fg Ty /$I(gc)dx

T T L = e )T

Notice that for an image I(x) = I(Az +t) the first
and second moments of I(x) can be expressed as

K=

pr=pr—t , Ki=AKA™

Letting S; = K7 and Sy = \/71, it follows from
the above equations that A = SlS and t = pur—pj.
Using this construction the initial estimates A" and
t? are computed by calculating the first and second
moments of the image I(x) and it’s reflected image

Ie().

2.3 Results

We have analyzed the performance of the plane of
symmetry estimation algorithm on ten tumor pa-
tients. We have found that the plane of symmetry
estimation algorithm to be visually robust in the pres-
ence of large tumors as well as to the original align-
ment of the plane of symmetry with respect to the
YZ-plane. Figure (3) provides a validation test im-
age of a patient which has been rotated axially twenty
degrees. The image on the left shows the estimated
plane of symmetry through an axial slice of data. The
right side images shows a 3D iso-surface rendering
of the same image with the estimated 3D plane of
symmetry. Notice that the estimation of the plane of
symmetry, also shown in magenta, is robust in the
presence of the tumor.

Figure (4) shows the rate of convergence for the
affine estimation portion of the algorithm for the
taking an image (size of image) into a rotated ver-
sion (axial rotation of thirty degrees) of the same.
The left plot shows clearly the individual multi-scale
stages. The plot on the right shows that the algorithm
converges in approximately 500 seconds. The pre-
vious non-multi-scale implementation required sub-
stantially more time to converge.

3D Isosurface

25 Degree Axial Rotation

Fig. 3. Shown on the left is an axial slice through a pa-
tient with the estimated plane of symmetry shown in pur-
ple. The right panel shows the 3D rendering of the skin
as well as the estimated plane of symmetry. Notice the
robustness of the algorithm in the presence of the large
tumor.

3 Analysis of Inter-hemispheric
Geometric Deformations via Image
Mapping

After estimating the plane of symmetry, attention
now focuses on small scale geometric differences
across the plane of symmetry. The approach devel-
oped is similar to the work of Thirion et al. in that the
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Fig. 4. Shown on the left is a per-iteration plot of the
convergence of the estimation of the affine for an image
with itself rotated by 30 degrees about the Z-axis. The
right panel shows the same on a per-time basis.
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Fig. 5. The top row of the figure shows the axial sagittal
and the coronal views through an example patient image
with a glioma in the right frontal lobe. The middle row
shows the same views of the image reflected about the
plane of symmetry. The bottom row shows the difference
between the original and reflected images.

geometric variation is captured via the definition of a
high dimensional deformation field. However in pre-
vious work [23][24], such analyses have been directed
purely toward detection of geometric differences. We
present an algorithm that jointly estimates deforma-
tion and inter-hemispheric radiometric intensity dif-
ferences. The method used for estimating the defor-
mation field is an extension of the fluid flow formula-
tion of Christensen et al. and is only briefly described
here. For a complete description of the deformation
algorithm see [14][15][?].

The high dimensional displacement vector field
d(z) and the scalar intensity field f(z) are estimated
using an alternating optimization technique that min-
imizes the quadratic error

; (2) = Le(H(x — q) + ¢+ d(x)) + f(2)]|*d

e /Q||Lff($)||2d$

where the L; = V? is a Laplacian operator that en-
sures smoothness of the estimate of f(x) as in Equa-
tion 2 in the plane of symmetry estimation. Following
Christensen, the deformation field d(x) is defined via
an integration of an O.D.E.

1
d(z) == —|—/0 v(d(x,t),t)dt.

Energetics are induced on the velocity field v(-,t) us-
ing the Navier-Stokes operator Ly = aV?+bV-V+cl.
The energetics induced on the velocity field become

E(v) :/0 /Q||Ldv(x,t)|| dxdt.

Following [15], a computationally efficient algorithm
for image matching is used which exploits the fact
that the Navier-Stokes operator does not differenti-
ate in time. A time indexed, tx,k = 1,---, N, se-
quence of optimizations are solved for a locally op-
timum velocity field v(x,t;). The transformation is
then computed by forward integrating the locally op-
timum velocity field

d(x, tiy1) = d(z, tr) —i—/ o v(d(z,0),0)do.

tr

Since this is a locally-in-time optimal method the di-
mensionality of the optimization is reduced. The ra-
diometric intensity variation is incorporated into this
framework by performing the optimization for f(z)



at each time step

additive intensity image, f(x), depicted in Figure (5)
after 500 iterations of the algorithm.

fFx) = argmfin/g [[I(z)—(Ire(H(x—q)+q+d(z, tg))+

f@)|[Pdz + 6 /Q||Lff($)||2d$-

The above optimization is computed using the Fast
Fourier Transform as described in section 2.2.

Axial

Sagittal Coronal

Fig. 6. The top row shows the same views through the
determinant of the Jacobian of the transformation, . The
bottom row shows the same views through the estimated
intensity field capturing the inter-hemispheric radiometric
differences.

3.1 Results

We have applied the above algorithms for the study
of brain asymmetry in images of ten tumor patients.
The top row of Figure (5) shows the axial, sagit-
tal, and coronal views of a patient with an inter-
hemispheric tumor mass. The plane of symmetry es-
timation algorithm was used to produce the reflected
image across the plane of symmetry shown in the
bottom row. The high dimensional deformation vec-
tor field, d(z), capturing the normal and pathological
inter-hemispheric geometric variability and the inten-
sity field, f(z), capturing the radiometric variation
were calculated using the algorithm described above.
In studying the inter-hemispheric geometric differ-
ences we calculate a modified Jacobian, J(x), of the
transformation h(x) = = + d(z), The Jacobian of the
deformation field captures the local inter-hemispheric
volume differences of corresponding anatomical struc-
tures. Shown in the top row of Figure (6) is the Ja-
cobian J(h(z)) where J(h(z)) < 1, light regions in
the image, corresponds to contraction of volume and
J(h(x)) > 1, dark regions in the image, which indi-
cate dilation. The bottom row of Figure (6) shows the
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