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Abstract— Biosurveillance is a critical area in the intelligence 
community for real-time detection of disease outbreaks. 
Identifying epidemics enables analysts to detect and monitor 
disease outbreak that might be spread from natural causes or 
from possible biological warfare attacks. Containing these events 
and disseminating alerts requires the ability to rapidly find, 
classify and track harmful biological signatures. In this paper, we 
describe a novel visual paradigm to conduct biosurveillance using 
an Infectious Disease Weather Map. Our system provides a 
visual common ground in which users can view, explore and 
discover emerging concepts and correlations such as symptoms, 
syndromes, pathogens and geographic locations. 
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I. INTRODUCTION 

The mission critical need for the early detection of disease 
outbreaks coupled with an exponential growth in our ability to 
collect and analyze vast amounts of data has led to the 
development of a multitude of modern disease surveillance 
systems.  In the past ten years, there have been many efforts by 
government agencies to better detect emerging biodisasters. 
Much of these efforts have gone into the creation of 
biocontaminant laboratories and public health infrastructure[2-
4]. The main emphasis of current biosurveillance systems has 
been to facilitate the aggregation and analysis of large amounts 
of data from numerous and disparate sources.  Their goal has 
been to assist public health officials by shifting the load from 
the resource-limited, error-prone, slow human-based analysis 
to a more robust, sophisticated, and fully automated computer-
based approach.  

In order to achieve these goals for biosurveillance, tools 
must be designed around the user’s needs and accessibility of 
the data.  This requires the engineering of solutions that can 
handle multidimensional data acquired from different sources, 
the ability to detect threats in real time, and perform pattern 
recognition to identify alarms[5]. Surveillance systems, such as 
ESSENCE[6,7], RODS[8], GermWatch[1], the pandemic 
quick look tool[9] and BioSense[10], have shown great 
promise in their abilities to address these goals.  In particular, 
such systems provide the user with unparalleled access to a 
wide range of analytic algorithms and numerous views of the 
data.  Nevertheless, access to the data through these tools is 
constrained by a minimal user interface. Often, views of only 

one or two variables are allowed at a time, making it difficult 
to infer information from disparate sources.  

Actual bioterrorism events can be easily misdiagnosed as 
other, unrelated, infections and mistakenly go undetected for 
too long [3, 11, 12]. Visualization can elevate the 
comprehension of this information by fostering rapid 
correlation and perceived associations. To that end, the design 
of the display must support the decision making process: 
identifying problems, characterizing them, and determining 
appropriate responses. It is imperative that information be 
presented in a manner that facilitates the user’s ability to 
process the information and minimize any mental 
transformations that must be applied to the data. 

In this paper we describe CommonGround (Fig. 1), a visual 
paradigm [13] that aims to improve situational awareness in 
biosurveillance. Our work focuses on visualization of signature 
data that other systems collect, aggregate and analyze. We 
emphasize the discourse between the user and the surveillance 
system and leverage human perception and cognitive processes 
in order to facilitate and enhance comprehension. Our approach 
provides a common ground system for monitoring, exploration 
and discovery of diverse heterogeneous biosurveillance data. 
The system can also be used to identify known signatures and 
discover new ones.   

This work was funded in part by a grant from US Army Medical 
Research and Materiel Command, Telemedicine and Advanced Technology 
Research Center (TATRC, project # W81XWH0710699) 

Fig. 1 Screenshot of the CommonGround interface showing various 
components of the system. Left panel: controls for selecting variables. 
Middle panel: the interactive tag cloud depicting active concepts and 
temporal correlations. Right panel: additional information such as a GIS 
map, a list of selected tags and charts. 
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II. BACKGROUND

Current surveillance systems concentrate on the 
aggregation and automated analysis of the data while 
neglecting the issue of information visualization.  Most often, 
such systems rely on three forms of data visualization; 
Geographic Information Systems (GIS), graphs and tabular 
based presentations.  These approaches emphasize qualitative 
or quantitative presentation, each with its own merits and 
pitfalls.  

GIS based approaches are well suited for presenting the 
geographic distribution of a single variable but are limited in 
their ability to display relationships between multiple variables.  
GermWatch[1] is a website that successfully demonstrates this 
visualization by mapping virus outbreaks to zip codes. Such a 
map makes it easy to see the spread of viruses and identify 
geographically distinct outbreaks. However, the GermWatch 
map cannot show related symptoms, age distribution, and other 
syndromes at the same time. In essence a map is restricted to 
show only over variable at a time. 

Graphs on the other hand provide an effective means to 
visualize relationships between several variables and for 
monitoring changes over time.  The challenge is choosing the 
appropriate number and type of variables for presentation.  In 
addition, some variables may relate to a localized geographic 
area, such as a city, while others may relate to information over 
large regions, such as across an entire state.  Yet other 
variables may relate to discrete rather than contiguous 
locations.  

 Finally, tabular information is a familiar tool for analysts 
to use comparing high dimensional data, but its numerical 
nature can make it hard for the user to compare qualitatively. 
This is easily demonstrated if one considers the ease of 
comparing two images versus the equivalence of two tables of 
numbers. Differences or patterns in images are revealed 
quickly when we can view a visual representation of the data.  

Recently, several systems have attempted to address these 
shortcomings by focusing on the interaction with the user via 
the use of advanced information visualization methods.  One 
system in particular, the situational awareness tool[14] that is 
part of the Argus project, is similar to our earlier work on 
visual paradigms for network intrusion detection[15] and 
situational awareness[16].  This project based at Georgetown 
University is noteworthy for its handling of vast amounts of 
data and allowing user interaction.   

III. SITUATIONAL AWARENESS

In this work we focus on developing a visualization 
paradigm that takes advantage of human perceptive and 
cognitive facilities in order to enhance the users’ situational 
awareness for signature detection and support decision-making. 
Situational awareness is the ability to identify, process, and 
comprehend the critical elements of information about what is 
happening. The formal definition of situational awareness deals 
with the concepts at  three separate levels[17]: 
• Level 1 – perception of the elements in the environment.
• Level 2 – comprehension of the current situation.
• Level 3 – projection of future status.

Fig. 2 depicts the relationship between the three cognitive 
levels, the mental model, and the decision-making. In level 1, 
perception of attributes and dynamics of the environment, may 
be gained by a combination of visual, tactile, and auditory 
senses. Level 2, involves the comprehension of what the 
received data mean in relation to the relevant goals and 
objectives of the cognit ve task being supported. This may 
include integration of the data to generate information, 
prioritizing and associating specific goal-related meanings and 
significance. Level 3 is achieved when one can predict how the 
environment will be affected in the future, based on the 
perceived data and its meaning. One must have a good 
understanding of the situation and the dynamics of the system 
in order to achieve level 3 situational awareness. The 
perception of time and the temporal dynamics of the 
environment are also important factors. The trends developed 
over time can play a critical part as well. Time is a strong 
component of Level 2 and Level 3[18].  

It is important to note that comprehension relies on a 
mental model, which we create, or most often augment, based 
on our perception of the environment. In order to facilitate 
comprehension, we need to streamline and simplify the 
perception process and ensure that the data presentation 
matches, as much as possible, the user’s mental model. 

The cognitive process as depicted in Fig. 2 also highlights 
some of its limitations.  In particular, comprehension depends 
on the quality and detail of the user’s mental model. 
Information overload leads to an incomplete model or 
erroneously encoded information. Mental errors also stem from 
distraction, such as that resulting from too much irrelevant 
information, or the need to shift our focus of attention to 
another task to seek additional information. 

IV. EXPLICIT AND IMPLICIT KNOWLEDGE

Knowledge encoding and representation of signatures is 
another important requirement. We distinguish between a 
priori explicit knowledge, that can be encoded and 
incorporated into a system, and implicit knowledge about the 
domain, that cannot.  Examples of a priori explicit knowledge 
include the zip code of a hospital, or that a particular pathogen 
that causes specific symptoms.  Other examples relate a 
medication to risks, or that a county comprises a collection of 
municipalities.  A school can be an entity by itself, part of a 
group (based on its type; elementary, middle, and high) or be 
part of a single group comprising of all schools in a particular 
geographic area (i.e., a school district). User expertise 
represents implicit knowledge that is not part of a system and is 
not typically, or is technically challenging to encode.  For 
example, an experienced public health practitioner in Utah will 
be aware that school absenteeism may be high on the first and 

!Fig. 2 Decision making model for situational awareness
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last day of the hunting season.  User expertise is also a crucial 
component in appreciating correlations between seemingly 
unrelated bits of information.  It is thus important to facilitate 
and encourage the user to formulate and explore signature 
correlations that the system did not deduce based on its a priori 
knowledge.  

Incorporating user expertise into a system is a challenging 
task.  By its very nature, the system cannot be aware of what 
the user knows.  The only way to take advantage of the user 
expertise is by creating a synergy between the system and the 
user via a dynamic discourse. Catering to the user’s cognitive 
task by reducing information overload and reducing interface 
clutter that leads to distraction can help maintain focus.  In 
particular, it is important not to force information on the user. 
For example, a carefully designed interface will only display 
relationships that won’t distract the focus of the user. Rather, it 
will help in forming and testing hypotheses by supporting rapid 
confirmation or refutation of association. 

Another subtle issue with user expertise is that users do not 
like to see information, such as correlations or dependencies 
between known signatures that they are already familiar with. 
If the system repetitively presents information the user 
considers trivial, or irrelevant to the cognitive task, then 
developers risk reducing the willingness of the user to 
participate in a dynamic discourse with the system.   

This analysis of the implications of integrating implicit 
knowledge that is part of the user’s expertise, leads us to the 
conclusion that less is more. That is, biosurveillance system 
developers should reduce the amount of information initially 
presented to the user but provide the user with easy access to 
all of the available information.  Note that we do not advocate 
randomly removing or hiding information from the user.  It is 
important to provide enough information scent[19] to help 
guide the user during the discovery and exploration phases. 

V. THE COMMONGROUND PARADIGM 
This paper describes a visual paradigm that provides a 

common ground (a unified framework) for representing, 
organizing, visualizing and interacting with a wide range of 
concepts and signatures. The approach focuses on a qualitative 
visual presentation of multi-dimensional concepts and their 
temporal correlations rather than the traditional quantitative 
display of raw data (e.g. charts or maps). The CommonGround 
conceptual model is based on an abstract representation of the 
raw data using meta data tags, similar to the notion of a tag 
cloud [20]. The size and color of a tag conveys information, 
such as the temporally relevant importance, the number of 
reported cases, or the semantics of the tag. In contrast to 
traditional tag clouds, which are rigid and static in nature, our 
approach employs a dynamic, free form layout that supports an 
interactive interrogation of the data. The layout of the tags is 
based on projection of high-dimensional data into a two-
dimensional display using a multidimensional scaling (MDS) 
algorithm. Using this approach, concepts (tags) that relate to 
similar cases will tend to cluster together, even if these 
concepts don’t have explicit relations between them. For 

example, a collection of tags -- Toddlers, SkinIrritation, 
RespiratoryDistress, City1, and City2.  

To assist in identifying known signatures and discovering 
new signatures, we introduce or suggest correlations (i.e., 
edges) between tags that exhibit strong temporal correlation. 
The entire collection of active tags and the edges between them 
form a complex graph that can easily overwhelm the user and 
create an unintelligible display. There has been much work in 
recent years on graph reduction and simplification in particular 
with respect to social networks. The general approach is to 
rearrange the graph, combine nodes and bundle edges in the 
hope of reducing clutter. These approaches however are not 
appropriate in our visual paradigm, as the locations and sizes of 
the tags convey important information that we do not want to 
alter.  

Our approach is based on the notion of delayed disclosure 
of information where only the tags, ignoring all the edges, are 
initially displayed. The aim of the initial display is to promote 
situational awareness and provide an overall view of all the 
active tags and their relative importance and temporal 
clustering.  The relationships between tags are only disclosed 
though a dynamic discourse between the user and the system. 
As the user engages in an interactive exploration and discovery 
session by hovering or selecting tags, the system discloses 
relations (edges) between the selected tags and the rest of the 
tags. Our interface design attempts to reduce the clutter by 
showing only correlations that are higher than a user-controlled 
threshold. Using this approach, only the relations most 
appropriate for user at that moment are presented, i.e. only 
those that are relevant to the tags that the user is focusing on. 
This approach addresses the issue of implicit vs. explicit 
knowledge, as discussed in section IV. For example, consider 
the two tags, SchoolAbsentee and HuntingSeason. Seeing these 
two tags together, an expert physician in Utah will likely 
deduce, based on implicit knowledge, that school absentee is 
temporarily high due to the opening or closing of the hunting 
season. Other users, who may not be aware of such known 
relationships, will wonder about the implication of the 
HuntingSeason tag and will select it. The system will then 
disclose the potential dependency between the hunting season 
and school absentees by displaying an edge between the two 
tags, essentially incorporating additional explicit knowledge 
into the display. 

Fig. 3 shows a screenshot of a typical display before and 
during and exploration phase, as it applies to Influenza Like 
Illnesses (ILI) data. In the following sections, additional 
implementation details of our software prototype are provided. 

A. Tag Cloud: 
A tag is a keyword assigned to a piece of information.  

Using tags as a form of associating meta-information to assist 
in searching and classification is most prominent in Internet 
and social bookmarking[20], and in presenting keywords that 
are shared between documents.  Often several freeform tags are 
associated with a web page by one or more people.  Each tag 
provides an additional piece of meta-information and thus 
implici ly associate knowledge about the tagged entity.  
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A typical tag cloud comprises of a collection of tags that 
are organized in an alphabetic order. The font size of each tag 
reflects the number of time the tag has been used to annotate an 
entity.  In general, the color of a tag does not convey any 
additional meaning exp pt to po entially disti guish between 
adjacent tags.  

B. Knowledge Base 
A key difference between our visualization paradigm and 

traditional tag clouds lies in our definition of a tag.  In our 
implementation, e use tags as first-class entities, that is, 
objects with semantics that have independent meaning and 
context. Our system’s knowledge base includes a collection of 
tags and their semantic relationships. The semantic can include 
p esentation information such as the tag’s label, color and font. 
We also associate a group: such as ‘symptoms’, ‘age group’ 
and ‘pathogen’, with each tag. In general, the semantic can 
include relationships such as ‘is-a’, ‘part-of’ and ‘suggests’. 
The knowledge base is independent of the rest of the system 
and different knowledge bases can be used for different 
domains. The knowledge base can be augmented with new tags 
and their semantic without interfering with the rest of the 
system. 

C. Tagging 
The CommonGround visualization is independent of the 

underlying raw data. Instead, we rely on independent, offline 
tagging processes that assign tags from the knowledge base to 
the raw data. The tagging results will then consist of a table of 
many-to-many relations, i.e. which tags are associated with 
which data item. Note that we do not need access to the raw 
data from a remote data source and it is sufficient to use a 
unique id for each data item. 

For example, assume the raw data consist of a list of 
Influenza-Like-Illness (ILI) reported cases. A tagging process 
may associate a Sex tag (Male, Female) with the data to create 
a list of pairs ((id_1, Male), (id_2, Female), …). A separate 
tagging process may examine the age field in the data and 
assign an AgeGroup tag (Infant, Toddlers, Child, Teen, Adult, 
Elderly) to each reported case. Finally, a third tagging process 

may associate a HighRisk tag only to those reported cases that 
are either very young, elderly, or pregnant women. The only 
requirement is that all these tagging processes use the same ids 
for the reported cases. The list of assignments, i.e., (id, tag) 
along with the knowledge base are the only input the 
visualization needs. 

The separation of the tagging process from the 
visualization system enables us to work with disparate sources 
without the need to actually gain access to the raw data. This 
has the added benefits of allowing the data curator to 
determine what portion of the data can be disclosed via the 
tagging processes.  

In general one may view all the available data at once, 
however in biosurveillance one is typically concern with 
temporally relevant data. For real-time analysis, it is important 
to view only recent data but in forensic analysis users may 
choose data that occurred within certain time periods. In our 
work, we associate the incident day with each data item. When 
the user specify a period we extract only the tags associated 
with items from this time period and rearrange the display 
based on the new data. 

D. Layout 

In contrast to the traditional static alphabetic order 
approach used in tag clouds, we employ a dynamic and free 
form arrangement of the tags on the display.  Our aim is to 
cluster tags based on temporal similarities between them.  For 
example, if many Toddlers exhibit signs of Respiratory 
Syncytial Virus (RSV) than the two tags will be positioned 
close to each other on the display.  Furthermore, if there are 
many Toddlers with RSV in both City1 and City2 than these 
two cities will be placed closed to the Toddlers and RSV tags. 
Note that this will lead to City1 and City2 to be placed near 
each other even if they are geographically very far apart. A 
quick look at the display can thus suggest to the user that an 
outbreak is occurring in multiple places in the state. It is 
important to note that this approach can only suggest that there 
might be correlation between RSV, Toddlers, City1 and City2. 
The alerted users can further investigate the situation in 

Fig. 3 Initial display (left) and during investigation (right) 
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CommonGround as we describe bellow or use additional tools 
at their disposal to confirm to disprove this hypothesis. 

In general, one can use a variety of layout algorithms to 
determine the best location of each tag. We have opted not to 
use algorithms, such as spring layout, that iteratively converges 
to a solution, as these methods tend to be slow and users do not 
like to see the tags moving around on the screen in undermined 
paths. Instead, we opt to use one-step algorithms such as 
Principle Component Analysis (PCA) and Multi Dimensional 
scaling (MDS)[21]. Each time the user selects a different 
period or changes the layout algorithm, or a parameter that 
affects the layout, the system recomputes a new layout on the 
fly, and animates the movement of each tag from its current 
location to the new one. New tags fade-in, while visible tags 
that do not participate in the new layout, fade-out. 

To compute the layout we consider a tag as an n-
dimensional vector, v, where n is the number of reported cases 
and  vi represent the probability that the tag is associated with 
data item i . The distance between any two tags, vi and vj, can 
thus be computed as the dot product 

Dij= <vi,vj>   for i,j=1..m, 

where m  is number of a tags. To layout the tags we need to 
find a projection of the tags from the n-dimentional space into 
the two-dimensional screenspace that attempts to prese ve 
these distances. More forma ly, the goal of MDS is to find a 
set of points, p, in R2 such that  

||pi – pj|| ! Dij for all i,j=1..m 

The MDS is usually formulated as an optimization problem of 
finding a set of points, p, that minimize some cost function 
such as 

min ! (||pi – pj|| = Dij)2    for i<j. 

In out work, we employed a classical MDS algorithm, 
which operates on a matrix of dissimilarities between pairs of 
tags. We compute the dissimilarities using a variety of 
correlation functions including Pearson, geometric and 
centered geometric functions. The user can choose which 
correlation function to use and the same function is used in the 
MDS algorithm to layout the tag and to compute temporal 
correlations, which we show as edges between the tags. The 
complexity of a naïve MDS is O(n3) and can be prohibitively 
high for large data sets.  However, modern algor thims exist 

with complexity of only O(n2). In general, the number of tags 
is much smaller than the nu ber of data items (m<<n) and 
thus the size of the similarity matrix D is relatively small. 

E. Exploration 

When the user engages in exploration and selects a tag, the 
system filters the underlying data to consider only raw data 
items that are associated with the selected tag. As a result, the 
relative importance of all the other tags will change based the 
new subset of data items. More formally, assume  

Ti associated with data items {Di
j}

and assume the user has selected tag Ts, then the filtered 
association of tag Ts

i will be, 

{Di
j} iff  Di

j is associated with Ti and Ts 

For example, assume that there are 100 cases of RSV and 30 of 
them are teens. Initially the RSV tag will be associated with the 
100 cases but when the user selects the tag Teen then the RSV 
tag will be associated only with the 30 cases that are teens with 
RSV. As a result, when the user selects a tag, all the other tags 
will rescale to show their new relative importance. Some tags 
will shrink in size, others may grow, while others may 
disappear all together. While we do rescale the size of the tags, 
we do not recompute the layout of the tags, as this will 
introduce too many changes on the screen (tags moving to new 
locations), making it harder for the user to understand the 
effect and meaning of the selection.  

The discovery and exploratory processes depend on a 
continuous, iterative discourse between the user and the 
surveillance system.  To compensate for the limited amount of 
information one can process and store efficiently, our approach 
sup resses details that can easily be retrieved later.  By 
assigning importance and priority through visual cues, our 
approach allows us to discard what is perceived to be less 
valuable information.  This process depends on the ability to 
access additional details on demand, when our mental model is 
ready to incorporate them and when they become important 
enough to warrant storing them. 

The common ground approach facilitates the discovery 
process by removing as much information as possible from the 
display but disclosing additional information when the user 
focuses on specific tags. To assist the user, the interface 
augments each tag the user selects with both quantitative 
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Fig. 4 Three screenshots depicting the course of a 2007 cryptosporidium outbreak in Utah 
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information (the number of actually data items that a tag is 
associated with) and qualitative information (a sparkline of the 
tag’s trend, i.e. the number of data items the tag was associated 
with).  Fig. 4 (right) shows two selected tags, Cryptosporidium 
and Gastrointestinal, and the additional information they 
contain. The number of data items for each tag is shown in the 
format of n[m], where n is the number of data items the tag is 
associated with and m is the number of data items that are 
associated with all the selected tags. In the example in Fig. 3, 
Cryptosporidium is associated with 13 cases, Gastrointestinal 
is associated with 175 but there are only 7 cases that are 
associated with both tags. 

F. Signatures 
The CommonGround visual paradigm conveys information 

at a glance through the layout: correlated tags are arrayed based 
on the strength of the correlation and individual tags are 
dynamically sized based on their relationships relative to all 
tags or tags of the same type. Fig. 4 depicts the course of the 
2007 outbreak of cryptosporidium in Utah and illustrates this 
information conveyance.  From this interaction, the user can 
see the initial case of Cryptosporidium and watch the outbreak 
progress. 

VI. FUTURE WORK

In this work, we focused on facilitating user exploration of 
the data and as such, we do not currently have a backend 
system that can automatically identify known signatures.  We 
imagine this knowledge would be derived from the 
incorporation of historical health data, such as CATCH[22].  In 
addition to being able to compare current data with historical 
data, data mining on known outbreaks from databases will help 
users identify similar patterns in illnesses.  When combined 
with emerging relevant data, additional challenges lie in 
visually presenting known signatures to users so as not to 
confuse or bias their conclusions. 

Another possible extension of this work is to incorporate 
local infrastructure and health resources into the 
CommonGround biosurveillance system.  This might include 
information that directs where individuals suffering from a 
contaminant should go to seek the closest medical assistance
[12] or help medical personnel isolate areas for possible 
quarantine.  Finally, incorporating models that can run 
simulations and predict emerging outbreaks would help prevent 
and predict containment for threatening scenarios.  We believe 
the ommon round infrastructure, with the right user 
interaction, would be capable of being extended into these 
areas for broader use. 
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