
47
Fast Isosurface Extraction

Methods for Large Image Data sets

Yarden Livnat,
Steven G. Parker,
Christopher R. Johnson
University of Utah

47.1 Introduction . 801
47.2 Accelerated Search . 802

47.2.1 The Span Space • 47.2.2 The NOISE Algorithm • 47.2.3 Optimization
• 47.2.4 Other Span Space Algorithms

47.3 View-Dependent Algorithm . 805
47.3.1 Visibility • 47.3.2 Image Space Culling • 47.3.3 Warped Isosurface Extraction
(WISE)

47.4 Real-Time Ray-Tracing . 809
47.4.1 Ray-Isosurface Intersection • 47.4.2 Optimizations • 47.4.3 Real-Time
Ray-Tracing Results

47.5 Sample Applications . 811
47.6 References . 812

47.1 Introduction

Isosurface extraction is a powerful tool for investigating volu-
metric scalar fields and has been used extensively in medical
imaging ever since the seminal paper by Lorensen and Kline
on marching cubes [1, 2]. In medical imaging applications,
isosurfaces permit the extraction of anatomical structures and
tissues.

Since the inception of medical imaging, scanners continu-
ally have increased in their resolution capability. This increased
image resolution has been instrumental in the use of 3D images
for diagnosis, surgical planning, and with the advent of the GE
Open MRI system, for surgery itself. Such increased resolu-
tion, however, has caused researchers to look beyond marching
cubes in order to obtain near-interactive rates for such large-
scale imaging datasets. As such, there has been a renewed
interested in creating isosurface algorithms that have opti-
mal complexity and can take advantage of advanced computer
architectures.

In this chapter, we discuss three techniques developed by the
authors (and colleagues) for fast isosurface extraction for large-
scale imaging datasets. The first technique is the near optimal
isosurface extraction (NOISE) algorithm for rapidly extracting
isosurfaces. Using a new representation, termed the span space,
of the underlying domain, we develop an isosurface extraction
algorithm with a worst-case complexity of O(

√
n + k) for the

search phase, where n is the size of the dataset and k is the

number of cells in the isosurface. The memory requirement is
kept at O(n), while the preprocessing step is O(n log n). We note
that we can utilize the span space representation as a tool for
comparing other isosurface extraction methods on structured
(and unstructured) grids.

While algorithms such as NOISE effectively have eliminated
the search phase bottleneck, the cost of constructing and render-
ing the isosurface remains high. Many of today’s large imaging
datasets contain very large and complex isosurfaces that can
easily overwhelm even state-of-the-art graphics hardware. As
such, we discuss an output-sensitive algorithm that is based
on extracting only the visible portion of the isosurface. This
output-sensitive algorithm is based on extracting only the visi-
ble portion of the isosurface. The visibility tests are done in two
phases. First, coarse visibility tests are performed in software
to determine the visible cells. These tests are based on hier-
archical tiles and shear-warp factorization. The second phase
resolves the visible portions of the extracted triangles and is
accomplished by the graphics hardware.

When an isosurface is extracted from a large imaging
dataset by the preceding two techniques (or by other march-
ing cube-like methods), an explicit polygonal representation
for the surface is created. This surface is subsequently rendered
with attached graphics hardware accelerators. Such explicit
geometry-based isosurface extraction methods can generate an
extraordinary number of polygons,which take time to construct

Copyright © 2008 by Elsevier, Inc.

All rights of reproduction in any form reserved. 801

802 Handbook of Medical Image Processing and Analysis

and to render. For very large (i.e., greater than several million
polygons) surfaces, the isosurface extraction and rendering
times limit the interactivity.

In the third technique we describe, we generate images of iso-
surfaces directly with no intermediate surface representation
through the use of ray-tracing. Using parallel processing and
incorporating simple optimizations enables interactive render-
ing (i.e., 10 frames per second) of the 1 Gbyte full resolution
visible woman CT dataset on an SGI Origin 2000.

47.2 Accelerated Search

47.2.1 The Span Space

Let ϕ : G → V be a given field and let D be a sample set over D
such that

D = {di}; di ∈ D = G × V , (47.1)

where G ⊆ Rp is a geometric space and V ⊆ Rq, for some p, q ∈
Z , is the associated value space. Also, let d = ||D|| be the size of
the dataset.

Definition 1 (Isosurface Extraction): Given a set of samples D
over a field ϕ: G → V, and given a single value v ∈ V, find,

S = {gi} gi ∈ G such that ϕgi = v .

Note that S, the isosurface, need not be topologically simple.

Approximating an isosurface, S, as a global solution to
Equation 47.1 can be a difficult task because of the sheer size,
d , of a large imaging dataset.

In thinking about imaging datasets, one can decompose the
geometric space, G, into a set of polyhedral cells (voxels), C ,
where the data points define the vertices. While n = ||C ||, the
number of cells, is typically an order of magnitude larger than
d , the approximation of the isosurface over C becomes a man-
ageable task. Rather than finding a global solution, one can
seek a local approximation within each cell. Hence, isosurface
extraction becomes a two-stage process: locating the cells that
intersect the isosurface and then, locally, approximating the iso-
surface inside each such cell [1, 2]. We focus our attention on
the problem of finding those cells that intersect an isosurface of
a specified isovalue.

On structured grids, the position of a cell can be represented
in the geometric space G. Because this representation does not
require explicit adjacency information between cells, isosurface
extraction methods on structured grids conduct searches over
the geometric space, G. The problem as stated by these methods
[3–6] is defined as follows:

Approach 1 (Geometric Search): Given a value v ∈ V and
given a set C of cells in G space where each cell is associated

with a set of values {vj} ∈ V space, find the subset of C that an
isosurface, of value v, intersects.

Another approach is to forgo the geometric location of a cell
and examine only the values at the cell vertices. The advantage of
this approach is that one needs to examine only the minimum
and maximum values of a cell to determine if an isosurface
intersects that cell. Hence, the dimensionality of the problem
reduces to two for scalar fields.

Current methods for isosurface extraction that are based on
this value space approach [7–9] view the isosurface extraction
problem in the following way:

Approach 2 (Interval Search): Given a value v ∈ V and given
a set of cells represented as intervals,

I = {[ai , bi]} such that ai , bi ∈ V

find the subset Is such that

Is ⊆ I and ai ≤ v ≤ bi ∀(ai , bi) ∈ Is ,

where a norm should be used when the dimensionality of V is
greater than 1.

The method presented in this section addresses the search
over the value space. Our approach is not to view the problem
as a search over intervals in V but rather as a search over points
in V 2. We start with an augmented definition of the search
space.

Definition 2 (The Span Space): Let C be a given set of cells.
Define a set of points P = {pi} over V 2 such that

∀ci ∈ C associate, pi = (ai , bi),

where

ai = min
j

{vj}i and bi = max
j

{vj}i ,

and {vj} are the values of the vertices of cell i.

Though conceptually not much different from the interval
space, the span space will, nevertheless, lead to a simple and
near-optimal search algorithm.

A key aspect is that points in two dimensions exhibit no
explicit relations between themselves, whereas intervals tend
to be viewed as stacked on top of each other so that over-
lapping intervals exhibit merely coincidental links. Points do
not exhibit such arbitrary ties and in this respect lend them-
selves to many different organizations. However, as we shall
show later, previous methods grouped these points in very
similar ways because they looked at them from an interval
perspective.

Using our augmented definition, we can state the isosurface
extraction problem as follows.

47 Fast Isosurface Extraction Methods for Large Image Data sets 803

Approach 3 (The Span Search): Given a set of cells, C, and its
associated set of points, P, in the span space, and given a value
v ∈ V, find the subset Ps ⊆ P, such that

∀(xi , yi) ∈ Ps xi < v < yi .

We note that ∀(ai , yi) ∈ Ps , xi ≤ yi and thus the associ-
ated points will lie on or above the line yi = xi . A geometric
perspective of the span search is given in Figure 47.1.

47.2.2 The NOISE Algorithm

A common obstacle for all the interval methods was that the
intervals were ordered according to either their maximum or
their minimum value. The sweeping simplicies algorithm [9]
attempted to tackle this issue by maintaining two lists of the
intervals, ordered by the maximum and minimum values. What
was missing, however, was a way to combine these two lists into
a single list.

In the following, we present a solution to this obstacle. Using
the span space as our underlying domain, we employ a kd-tree
as a means for simultaneously ordering the cells according to
their maximum and minimum values.

47.2.2.1 Kd-Trees

Kd-trees were designed by Bentley in 1975 [10] as a data struc-
ture for efficient associative searching. In essence, kd-trees are
a multidimensional version of binary search trees. Each node
in the tree holds one of the data values and has two subtrees
as children. The subtrees are constructed so that all the nodes

max

V

V min

FIGURE 47.1 Search over the span space.

in one subtree—the left one, for example—hold values that are
less than the parent node’s value, while the values in the right
subtree are greater than the parent node’s value.

Binary trees partition data according to only one dimension.
Kd-trees, on the other hand, utilize multidimensional data and
partition the data by alternating between each of the dimensions
of the data at each level of the tree.

47.2.2.2 Search over the Span Space Using Kd-Tree

Given a dataset, a kd-tree that contains pointers to the data cells
is constructed. Using this kd-tree as an index to the dataset,
the algorithm can now rapidly answer isosurface queries.
Figure 47.2 depicts a typical decomposition of a span space
by a kd-tree.

47.2.2.3 Construction

The construction of the kd-trees can be done recursively in
optimal time O(n log n). The approach is to find the median
of the data values along one dimension and store it at the root
node. The data is then partitioned according to the median and
recursively stored in the two subtrees. The partition at each level
alternates between the min and max coordinates.

An efficient way to achieve O(n log n) time is to recur-
sively find the median in O(n), using the method described
by Blum et al. [11], and partition the data within the same time
bound.

A simpler approach is to sort the data into two lists according
to the maximum and minimum coordinates, respectively, in
order O(n log n). The first partition accesses the median of the

max

root

minV

2

1

22

1

2

FIGURE 47.2 A kd-tree.

804 Handbook of Medical Image Processing and Analysis

first list, the min coordinate, in constant time, and marks all the
data points with values less than the median. We then use these
marks to construct the two subgroups, in O(n), and continue
recursively.

Though the preceding methods have complexity of
O(n log n), they do have weaknesses. Finding the median in
optimal time of O(n) is theoretically possible, yet difficult to
program. The second algorithm requires sorting two lists and
maintaining a total of four lists of pointers. Although it is still
linear with respect to its memory requirement, it nevertheless
poses a problem for very large datasets.

A simple (and we think elegant) solution is to use a
Quicksort-based selection [12]. Although this method has a
worst case of O(n2), the average case is only O(n). Furthermore,
this selection algorithm requires no additional memory and
operates directly on the tree.

It is clear that the kd-tree has one node per cell, or span point,
and thus the memory requirement of the kd-tree is O(n).

47.2.2.4 Query

Given an isovalue, v , we seek to locate all the points in
Figure 47.1 that are to the left of the vertical line at v and are
above the horizontal line at v . We note that we do not need to
locate points that are on these horizontal or vertical lines if we
assume nondegenerate cells, for which minimum or maximum
values are not unique. We will remove this restriction later.

The kd-tree is traversed recursively when the isovalue is com-
pared to the value stored at the current node alternating between
the minimum and maximum values at each level. If the node is
to the left (above) of the isovalue line, then only the left (right)
subtree should be traversed. Otherwise, both subtrees should be
traversed recursively. For efficiency we define two search rou-
tines: SearchMinMax and SearchMaxMin. The dimension we
are currently checking is the first named, and the dimension we
still need to search is named second. The importance of naming
the second dimension will be evident in the next section, when
we consider optimizing the algorithm.

Following is a short pseudocode for the min-max routine.

SearchMinMax(isovalue, node)
{

if (node.min < isovalue) {
if (node.max > isovalue)

construct a polygon(s) from node
SearchMaxMin (isovalue, node.right),

}
SearchMaxMin (isovalue, node.left);

}

Estimating the complexity of the query is not straightfor-
ward. Indeed, the analysis of the worst case was developed by
Lee and Wong [13] only several years after Bentley introduced
kd-trees. Clearly, the query time is proportional to the num-
ber of nodes visited. Lee and Wong analyzed the worst case by

constructing a situation in which all the visited nodes are not
part of the final result. Their analysis showed that the worst-
case time complexity is O(

√
n + k). The average case analysis

of a region query is still an open problem, though observations
suggest it is much faster than O(

√
n + k) [12, 14]. In almost

all typical applications k ∼ n2/3 >
√

n, which suggests a com-
plexity of only O(k). On the other hand, the complexity of the
isosurface extraction problem is �(k) because it is bound from
below by the size of the output. Hence, the proposed algorithm,
NOISE, is optimal, θ(k), for almost all cases and is near optimal
in the general case.

47.2.2.5 Degenerate Cells

A degenerate cell is defined as a cell having more than one vertex
with a minimum or maximum value. When a given isovalue is
equal to the extremum value of a cell, the isosurface will not
intersect the cell. Rather, the isosurface will touch the cell at a
vertex, an edge, or a face, based on how many vertices share that
extrema value. In the first two cases, vertex or edge, the cell can
be ignored. The last case is more problematic, as ignoring this
case will lead to a hole in the isosurface. Furthermore, if the face
is not ignored, it will be drawn twice.

One solution is to perturb the isovalue by a small amount, so
that the isosurface will intersect the inside of only one of those
cells. Another solution is to check both sides of the kd-tree when
such a case occurs. While the direct cost of such an approach is
not too high, as this can happen at most twice, there is a higher
cost in performing an equality test at each level. We note that
in all the datasets we tested there was not a single case of such a
degeneracy.

47.2.3 Optimization

The algorithm presented in the previous section is not optimal
with regard to the memory requirement or search time. We now
present several strategies to optimize the algorithm.

47.2.3.1 Pointerless Kd-Tree

A kd-tree node, as presented previously, must maintain links to
its two subtrees. This introduces a high cost in terms of memory
requirements. To overcome this, we note that in our case the
kd-tree is completely balanced. At each level, one data point
is stored at the node, and the rest are equally divided between
the two subtrees. We can therefore represent a pointerless kd-
tree as a one-dimensional array of the nodes. The root node
is placed at the middle of the array, while the first n/2 nodes
represent the left subtree and the last (n − 1)/2 nodes the right
subtree.

When we use a pointerless kd-tree, the memory requirements
for our kd-tree, per node, reduce to two real numbers, for mini-
mum and maximum values, and one pointer back to the original

47 Fast Isosurface Extraction Methods for Large Image Data sets 805

cell for later usage. Considering that each cell for a 3D appli-
cation with tetrahedral cells has pointers to four vertices, the
kd-tree memory overhead is even less than the size of the set of
cells.

The use of a pointerless kd-tree enables one to compute the
tree as an offline preprocess and load the tree using a single read
in time complexity of only O(n). Data acquisition via CT/MRI
scans or scientific simulations is generally very time consuming.
The ability to build the kd-tree as a separate preprocess allows
one to shift the cost of computing the tree to the data acquisition
stage, hence reducing the impact of the initialization stage on
the extraction of isosurfaces for large datasets.

47.2.3.2 Optimized Search

The search algorithm can be further enhanced. Let us consider,
again, the min-max (max-min) routine. In the original algo-
rithm, if the isovalue is less than the minimum value of the
node, then we know we can trim the right subtree. Consider
the case in which the isovalue is greater than the node’s mini-
mum coordinate. In this case, we need to traverse both subtrees.
We have no new information with respect to the search in the
right subtree, but for the search in the left subtree, we know
that the minimum condition is satisfied. We can take advan-
tage of this fact by skipping over the odd levels from that
point on. To achieve this, we define two new routines: search-
min and search-max. Adhering to our previous notation, the
name search-min states that we are looking only for a minimum
value.

Examining the search-min routine, we note that the max-
imum requirement is already satisfied. We do not gain new
information if the isovalue is less than the current node’s min-
imum and again only trim off the right subtree. If the isovalue
is greater than the node’s minimum, we recursively traverse the
right subtree, but with regard to the left subtree, we now know
that all of its points are in the query’s domain. We therefore
need only to collect them. If we use the notion of pointerless
kd-tree as proposed in the previous subsection, any subtree is
represented as a contiguous block of the tree’s nodes. Collecting
all the nodes of a subtree requires only sequentially traversing
this contiguous block.

We remark that with the current performance of the algo-
rithm and current available hardware, the bottleneck is no
longer in finding the isosurface or even in computing it, but
rather in the actual time needed to display it. As such, we look
next at a new view-dependent algorithm that constructs and
displays only the part of the isosurface that is visible to the user.

47.2.4 Other Span Space Algorithms

The span space representation has been used by Cignoni et al.
[15] to reduce the complexity of the search phase to O(log
n + k) at the expense of higher memory requirements. Shen

et al. [16] used a lattice decomposition of the span space for a
parallel version on a massive parallel machine.

47.3 View-Dependent Algorithm

The proposed method is based on the observation that isosur-
faces extracted from very large datasets often exhibit high depth
complexity for two reasons. First, since the datasets are very
large, the projection of individual cells tends to be subpixel.
This leads to a large number of polygons, possibly nonover-
lapping, projecting onto individual pixels. Second, for some
datasets, large sections of an isosurface are internal and, thus,
are occluded by other sections of the isosurface, as illustrated
in Figure 47.3. These internal sections, common in medical
datasets, cannot be seen from any direction unless the exter-
nal isosurface is peeled away or cut off. Therefore, if one can
extract just the visible portions of the isosurface, the num-
ber of rendered polygons will be reduced, resulting in a faster
algorithm. Figure 47.4 depicts a two-dimensional scenario. In
view-dependent methods, only the solid lines are extracted,
whereas in non-view-dependent isocontouring, both solid and
dotted are extracted.

The proposed algorithm, which is based on a hierarchi-
cal traversal of the data and a marching cubes triangulation,
exploits coherency in the object, value, and image spaces, and
balances the work between the hardware and the software. We
employ a three-step approach, depicted in Figure 47.5. First, we
augment Wilhelms and Van Gelder’s algorithm [4] by traversing
down the octree in a front-to-back order in addition to prun-
ing empty subtrees based on the min-max values stored at the

FIGURE 47.3 A slice through an isosurface reveals the internal
sections that cannot contribute to the final image.

806 Handbook of Medical Image Processing and Analysis

Visible isoline

Non–visible isoline

Screen

FIGURE 47.4 A two-dimensional scenario.

3) Forward
to graphics
accelerator

1 bpp
screen mask1) Traverse

2) Project

FIGURE 47.5 The three-step algorithm.

octree nodes. The second step employs coarse software visibility
tests for each [meta-] cell that intersects the isosurface. The aim
of these tests is to determine whether the [meta-] cell is hidden
from the viewpoint by previously extracted sections of the iso-
surface (hence the requirement for a front-to-back traversal).
Finally, the triangulation of the visible cells is forwarded to the
graphics accelerator for rendering by the hardware. It is at this
stage that the final and exact [partial] visibility of the triangles
is resolved. A dataflow diagram is depicted in Figure 47.6.

47.3.1 Visibility

Quickly determining whether a meta-cell is hidden, and thus
can be pruned, is fundamental to this algorithm. This is imple-
mented by creating a virtual screen with one bit per pixel. We
then project the triangles, as they are extracted, onto this screen
and set those bits that are covered, providing an occlusion mask.

Additional pruning of the octree nodes is accomplished by
projecting the meta-cell onto the virtual screen and checking if
any part of it is visible, i.e., if any of the pixels it covers are not
set. If the entire projection of the meta-cell is not visible, none
of its children can be visible.

We note that it is important to quickly and efficiently classify
a cell as visible. A hidden cell, and all of its children, will not
be traversed further and thus can justify the time and effort
invested in the classification. A visible cell, on the other hand,

Traversal: Hierarchical
and front to back

Object space

Image space

Value space

Prune empty [meta–] cells

[partial–] visible triangles
and points with normals

Final visibility test (z –buffer)

Rendering

Final image

H
ar

dw
ar

e
S

of
tw

ar
e

Graphics engine

Visibility Part II

Visibility Part I
Prune non–visible [meta–] cells
Prune non–visible triangles of a visible cell
Small [meta–] cells ––> Points with normals

FIGURE 47.6 The algorithm data flow.

does not gain any benefit from this test and the cost of the
visibility test is added to the total cost of extracting the isosur-
face. As such, the cell visibility test should not depend heavily on
the projected screen area; otherwise, the cost would prohibit the
use of the test for meta-cells at high levels of the octree—exactly
those meta-cells that can potentially save the most.

Two components influence the visibility cost, namely the cost
of projecting a point, triangle, or a meta-cell onto the screen and
the cost of either scan-converting triangles or determining if a
meta-cell projected area contains any unset pixels.

In the next sections, we address these costs in two ways. First,
we employ a hierarchical tiling for the virtual screen. Second,
to reduce the cost of the projection, we use a variation of the
shear-warp factorization.

47.3.2 Image Space Culling

We employ hierarchical tiles [17] as a means of fast classifica-
tion of meta-cells and determining the coverage of extracted
triangles. The hierarchical nature of the algorithm ensures that
the cost of either of these two operations will not depend highly
on their projected area.

47.3.2.1 Hierarchical Tiles

A coverage map (a tile) is a rectangular bitmap (we use 8×8) in
which each bit represents a pixel in the final image. The algo-
rithms are based on the premise that all the possible coverage

47 Fast Isosurface Extraction Methods for Large Image Data sets 807

of a single edge crossing a tile can be precomputed and tab-
ulated based on the points where the edge intersects the tile
border (Figure 47.7). The coverage pattern of a convex polygon
for a particular tile of the image is computed by combining the
coverage maps of the polygon edges. The coverage map of a tri-
angle can thus be computed from three precomputed tiles with
no dependency on the number of pixels the triangle actually
covers (Figure 47.8). We refer the reader to the work by Greene
[17] for a detailed explanation on how the three states (Covered,
Partially covered, and Not-covered) can be represented by two
tile masks and the rules for combining coverage maps.

Rendering a polygon amounts to computing the coverage
map of the polygon for each tile in the image and isolating
only those pixels that are covered by the polygon but were not
already covered. In order to accelerate the rendering, the tiles
are organized in a hierarchical structure in which each meta-tile
represents a block of [meta-] tiles. Under this structure, a poly-
gon is projected onto the top meta-tile, and only those subtiles
in which the polygon might be visible are checked recursively,
leading to a logarithmic search.

47.3.2.2 Hierarchical Visibility Mask

Our implementation differs from the one proposed by Greene
in that we do not actually render the visible portion of a visible
triangle. Rather, we mark the triangle as visible and forward it to
the graphics hardware. It is then left to the graphics accelerator
to determine which pieces of the triangle are actually visible and
correctly render them.

One should note that it is not possible to determine a priori
the front-to-back relations between the triangles inside a single
cell. It is therefore mandatory to accept all or none of the trian-
gles, even though they need to be projected on the hierarchical

Covered

Edge

Out In

Partially covered

Not covered

FIGURE 47.7 An edge tile.

FIGURE 47.8 A triangle tile coverage map.

Non-visible
cell (skipped)

Extracted visible isoline

Extracted non-visible isoline

Non-visible isoline (skipped)
Empty
cell (skipped)

Visible
cell

FIGURE 47.9 Cells and isolines visibility.

tiles one triangle at a time. Figure 47.9 shows the classifica-
tion of the cells as well as the portions of the isolines that are
extracted. Note that the entire isoline section in a visible cell
(shown in light gray) is extracted. The nonvisible portions will
be later removed by the graphics accelerator.

An additional feature we employ limits recursion down the
octree once the size of a meta-cell is approximately the size of
a single pixel. Instead, we forward a single point with an asso-
ciated normal to the graphics hardware, similar to the dividing
cubes method [18]. The normal is estimated by the gradient
of the field. The advantage of this method is that the single
point potentially represents a large number of polygons, since
the meta-cell that projects to a pixel may still be high in the
octree.

47.3.3 Warped Isosurface Extraction (WISE)

A key component in the visibility test is the projection of a
point, a triangle, or a meta-cell onto the screen. In general, the
perspective projection of a point is a 4 × 4 transformation fol-
lowed by two divide operations, for a total of 16 multiplications,
12 additions, and 2 divisions per vertex. Clearly, the cost of per-
forming such transformations for each and every vertex of the
projected meta-cells and triangles is too high. In addition, the
nonlinearity of the perspective transformation prohibits the use
of precomputed transformation table. To accelerate this critical
step, we take advantage of the shear-warp factorization of the
viewing transformation.

47.3.3.1 Shear-Warp Factorization

In 1994, Lacroute [19, 20] presented a volume rendering
method that was based on the shear-warp factorization of the
viewing transformation. The underlying idea is to factor the

808 Handbook of Medical Image Processing and Analysis

Object
Object

Screen

Shear

Project

Warp

Object

Screen

Object

Shear and scale

Project

Warp

FIGURE 47.10 Shear-warp in orthographic and perspective projections.

viewing transformation into a shear followed by a warp trans-
formation. The data is first projected into a sheared object
space that is used to create an intermediate, albeit warped,
image. Once this image is complete, a warping transformation
is applied to create the correct final image. Figure 47.10 illus-
trates the shear-warp transformation for both orthographic and
perspective projections.

The advantage of this method is that the intermediate image
is aligned with one of the dataset faces. This alignment enables
the use of a parallel projection of the 3D dataset. The warp stage
is then applied to a 2D image rather than to each data point.

47.3.3.2 Shear but No Warp

We now note that the visibility on the image plane and on
the warped projection plane are the same (see Figure 47.11).
In other words, any point in the dataset that is visible on the
image plane is also visible on the warped projection plane, and

similarly, points that would be occluded on the image plane
also are occluded on the warped plane. It is therefore sufficient
to perform the visibility tests on the warped projection plane.
The advantage of this approach is twofold. First, the perspective
projection is removed. Second, since the shear and scale factors

FIGURE 47.11 Warped space.

47 Fast Isosurface Extraction Methods for Large Image Data sets 809

are, with respect to the current viewpoint, constant for each
slice, we can precompute them once for each new viewpoint.

Let [X , Y , Z] be the coordinate system of the dataset and let
[sx , sy , sz] be the scaling vector of the data with respect to this
coordinate system. Let us assume,without loss of generality, that
the current warped projection plane is Z = 0. We first transform
the current eye location onto the [X , Y , Z] coordinate system
and then precompute the shear and scale coefficients:

foreach Z

s = Z ∗ sz/(Z ∗ sz − eyez)

scalex [Z] = (1 − s) ∗ sx

scaley [Z] = (1 − s) ∗ sy

shearx [Z] = s ∗ eyex

sheary [Z] = s ∗ eyey .

The projection of any grid point p(x , y , z) can now be
computed as

Project (p) ≡
x = px ∗ scalex [pz] + shearx [pz]
y = py ∗ scaley [pz] + sheary [pz]

for a total of two multiplications and two additions per
vertex.

While the Z coordinate of every grid point is known in
advance and thus the shear and scale factor can be precom-
puted for each new viewpoint, the same does not hold true for
the vertices of the isosurface triangles. However, since the pro-
jection onto the warped projection plane is orthographic, it can
be shown that a vertex projection is

Project (p) ≡
s = Pz/(z − eyez)

x = px + s ∗ (eyex − px)

y = py + s ∗ (eyey − py)

for a total of two multiplications, five additions, and one
division.

47.4 Real-Time Ray-Tracing

Many applications, including most medical imaging techniques,
generate scalar fields ρ(x , y , z) that can be viewed by display-
ing isosurfaces where ρ(x , y , z) = ρiso . Ideally, the value for ρiso

is interactively controlled by the user. When the scalar field is
stored as a structured set of point samples, the most common
technique for generating a given isosurface is to create an explicit
polygonal representation for the surface using a technique such
as marching cubes [1, 2]. This surface is subsequently rendered
with attached graphics hardware accelerators such as the SGI
Infinite Reality. Marching cubes can generate an extraordinary
number of polygons, which take time to construct and to ren-
der. For very large (i.e., greater than several million polygons)

surfaces, the isosurface extraction and rendering times limit the
interactivity. In this chapter, we generate images of isosurfaces
directly with no intermediate surface representation through
the use of ray-tracing. Ray-tracing for isosurfaces has been used
in the past (e.g., [21–23]), but we apply it to very large datasets
in an interactive setting for the first time.

The basic ray-isosurface intersection method used in this
chapter is shown in Figure 47.12. Conventional wisdom holds
that ray-tracing is too slow to be competitive with hardware
z-buffers. However, when a surface is rendered from a suffi-
ciently large dataset, ray-tracing should become competitive,
as its low time complexity overcomes its large time constant
[24]. The same arguments apply to the isosurfacing problem.
Suppose we have an n × n × n rectilinear volume that for a
given isosurface value has O(n2) polygons generated using
marching cubes. Given intelligent preprocessing, the render-
ing time will be O(n2). Since it is hard to improve performance
using multiple graphics engines, this seems a hard limit when
using commercially available graphics accelerators unless a large
fraction of the polygons are not visible [25]. If a ray-tracing
algorithm is used to traverse the volume until a surface is
reached, we would expect each ray to do O(n) work. If the
rays are traced on p processors, then we expect the runtime for
an isosurface image to be O(n/p), albeit with a very large time
constant and a limit that p is significantly lower than the num-
ber of pixels. For sufficiently large n, ray-tracing will be faster
than a z-buffer algorithm for generating and rendering isosur-
faces. The question is whether it can occur on an n that occurs
in practice (e.g., n = 500 to 1000) with a p that exists on a real
machine (e.g., p = 8 to 128). The following demonstrates that
with a few optimizations, ray-tracing is already attractive for
at least some isosurface applications, including high-resolution
medical imaging applications.

Ray-tracing has been used for volume visualization in many
works (e.g., [26–28]). Typically, the ray-tracing of a pixel is a
kernel operation that could take place within any conventional

IsosurfaceScreen

Eye

FIGURE 47.12 A ray is intersected directly with the isosurface. No
explicit surface is computed.

810 Handbook of Medical Image Processing and Analysis

ray-tracing system. In this section we review how ray tracers are
used in visualization and how they are implemented efficiently
at a systems level.

The algorithm has three phases: traversing a ray through cells
that do not contain an isosurface, analytically computing the
isosurface when intersecting a voxel containing the isosurface,
and shading the resulting intersection point. This process is
repeated for each pixel on the screen. Since each ray is indepen-
dent, parallelization is straightforward. An additional benefit
is that adding incremental features to the rendering has only
incremental cost. For example, if one is visualizing multiple iso-
surfaces with some of them rendered transparently, the correct
compositing order is guaranteed, since we traverse the volume
in a front-to-back order along the rays. Additional shading tech-
niques, such as shadows and specular reflection, can easily be
incorporated for enhanced visual cues. Another benefit is the
ability to exploit texture maps that are much larger than texture
memory (typically up to 64 Mbytes).

In the following subsections, we describe the details of our
technique. We first address the ray-isosurface intersection and
then describe various optimizations we have performed to
achieve the interactive rates.

47.4.1 Ray-Isosurface Intersection

If we assume a regular volume with even grid point spacing
arranged in a rectilinear array, then the ray-isosurface inter-
section is straightforward. Analagous simple schemes exist for
intersection of tetrahedral cells, but the traversal of such grids
is left for future work. This work will focus on rectilinear
data.

To find an intersection (Figure 47.13), the ray a + tb tra-
verses cells in the volume, checking each cell to see if its data
range bounds an isovalue. If it does, an analytic computation is
performed to solve for the ray parameter t at the intersection
with the isosurface:

ρ(xa + txb , ya + tyb , za + tzb) − ρiso = 0.

When one is approximating ρ with a trilinear interpolation
between discrete grid points, this equation will expand to a

Ray equation:
x 5 xa1 t xb
y 5 ya1 t yb
z 5 za1 t zb �(x,y,z) 5�iso

FIGURE 47.13 The ray traverses each cell (left), and when a cell that
has an isosurface in it is encountered (right), an analytic ray-isosurface
intersection computation is performed.

cubic polynomial in t . This cubic can then be solved in closed
form to find the intersections of the ray with the isosurface
in that cell. Only the roots of the polynomial that are con-
tained in the cell are examined. There may be multiple roots,
corresponding to multiple intersection points. In this case, the
smallest t (closest to the eye) is used. There may also be no roots
of the polynomial, in which case the ray misses the isosurface in
the cell. The details of this intersection computation are given
in [29].

47.4.2 Optimizations

For the traversal of rays through the data, we use the incre-
mental method described by Amanatides and Woo [30]. We
found that traversing the cells is the computational bottleneck
for large datasets, so we include optimizations to accelerate
performance.

The first optimization is to improve data cache locality by
organizing the volume into“bricks”that are analogous to the use
of image tiles in image-processing software and other volume-
rendering programs [31] (Figure 47.14). The details of our
method for efficiently indexing cells are discussed in [29].

The second optimization is to use a multilevel spatial hier-
archy to accelerate the traversal of empty cells, as shown in
Figure 47.14. Cells are grouped divided into equal portions,
and then a “macrocell” is created that contains the minimum
and maximum data value for its child cells. This is a com-
mon variant of standard ray-grid techniques [32], and the use
of minimum/maximum caching has been shown to be use-
ful [3, 4, 33]. The ray-isosurface traversal algorithm examines
the min and max at each macrocell before deciding whether
to recursively examine a deeper level or to proceed to the next
cell. The average complexity of this search will be O(

√
n) for

a three-level hierarchy. Although the worst-case complexity is
still O(n), it is difficult to imagine an isosurface occurring in
practice approaching this worst case. Using a deeper hierarchy
can theoretically reduce the average case complexity slightly,
but it also dramatically increases the storage cost of intermedi-
ate levels. We have experimented with modifying the number
of levels in the hierarchy and empirically determined that a tri-
level hierarchy (one top-level cell, two intermediate macrocell
levels, and the data cells) is highly efficient. This optimum may
be data dependent and is modifiable at program startup. Using
a trilevel hierarchy, the storage overhead is negligible (< 0.5%
of the data size). The cell sizes used in the hierarchy are inde-
pendent of the brick sizes used for cache locality in the first
optimization.

Since one cannot predict a priori the complexity of extract-
ing an isosurface from a particular screen pixel, we employ a
dynamic load balancing scheme to ensure high processor uti-
lization over a wide range of views. The screen space is first
split into tiles in the image space. In our implementation,
tiles are 32 pixels wide by 4 pixels high. The width of the tile

47 Fast Isosurface Extraction Methods for Large Image Data sets 811

0 1 2 3

4 5 6 7

8 9 10 11

FIGURE 47.14 The ray-tracing algorithm uses two different hierarchies simultaneously. On the left, cells can be organized into “tiles” or “bricks”
in memory to improve locality. The numbers in the first brick represent layout in memory. Neither the number of atomic voxels nor the number
of bricks need be a power of 2. On the right is the hierarchy used to efficiently skip over empty cells. With a two-level hierarchy, rays can skip
empty space by traversing larger cells. A three-level hierarchy is used for the Visible Woman example.

(128 bytes) ensures that tiles will not share a cache line with
neighboring tiles. At the beginning of a frame, each tile becomes
an assignment in a queue. Each processor pulls a range of assign-
ments from the queue, performs the assigned work, and then
returns to the queue for more work. The assignments, which are
initially doled out in large chunks, get smaller and smaller as
the frame nears completion. The large granularity in the begin-
ning reduces contention for a large portion of the image, and
the smaller granularity near the end helps to balance the load
efficiently [34].

47.4.3 Real-Time Ray-Tracing Results

Table 47.1 shows the scalability of the algorithm from 1 to 128
processors. View 2 uses a zoomed-out viewpoint with approxi-
mately 75% pixel coverage, whereas view 1 has nearly 100%
pixel coverage. We chose to examine both cases since view 2
achieves higher frame rates. The higher frame rates cause less
parallel efficiency due to synchronization and load balancing.
Of course, maximum interaction is obtained with 128 pro-
cessors, but reasonable interaction can be achieved with fewer
processors. If a smaller number of processors were available, one
could reduce the image size in order to restore the interactive
rates. Efficiencies are 91% and 80% for views 1 and 2, respec-
tively, on 128 processors. The reduced efficiency with larger
numbers of processors (> 64) can be explained by load imbal-
ances and the time required to synchronize processors at the
required frame rate. The efficiencies would be higher for a larger
image.

Table 47.2 shows the improvements that were obtained
through the data bricking and spatial hierarchy optimizations.

TABLE 47.1 Scalability results for ray-tracing the bone isosurface in
the visible humana

View 1 View 2

#cpus FPS Speedup FPS Speedup

1 0.18 1.0 0.39 1.0
2 0.36 2.0 0.79 2.0
4 0.72 4.0 1.58 4.1
8 1.44 8.0 3.16 8.1

12 2.17 12.1 4.73 12.1
16 2.89 16.1 6.31 16.2
24 4.33 24.1 9.47 24.3
32 5.55 30.8 11.34 29.1
48 8.50 47.2 16.96 43.5
64 10.40 57.8 22.14 56.8
96 16.10 89.4 33.34 85.5

128 20.49 113.8 39.98 102.5

aA 512 × 512 image was generated using a single view of the bone isosurface.

TABLE 47.2 Times in seconds for optimizations for ray-tracing the
visible humana

View Initial Bricking Hierarchy + Bricking

Skin: front 1.41 1.27 0.53
Bone: front 2.35 2.07 0.52
Bone: close 3.61 3.52 0.76
Bone: from feet 26.1 5.8 0.62

aA 512 × 512 image was generated on 16 processors using a single view of an isosurface.

47.5 Sample Applications

In this section, we give examples of the NOISE, view-dependent,
and real-time ray-tracing algorithms given in the previous sec-
tions. The examples we chose are from large medical imaging

812 Handbook of Medical Image Processing and Analysis

datasets, as well as from a large-scale geoscience imaging dataset.
Further examples of each of the algorithms along with detailed
performance analyses can be found in our recent papers on
isosurface extraction [16, 25, 29, 35, 36–42]. Figure 47.15
shows NOISE examples; Figure 47.16 shows view-dependent
examples, and Figures 47.17–47.21 show examples of real-time
ray-tracing.

Acknowledgments

This work was supported in part by awards from the
Department of Energy, the National Science Foundation, and
the National Institutes of Health (NCRR). The authors thank
Peter Shirley, Chuck Hansen, Han-Wei Shen, Peter-Pike Sloan,
and James Bigler for their significant contributions to the
research presented in this chapter. The Visible Woman dataset
was obtained from the Visible Human Project of the National
Library of Medicine.

47.6 References

1. Wyvill B, Wyvill G, McPheeters C. Data structures for soft
objects. The Visual Computer. 1986;2:227–234.

2. Lorensen WE, Cline HE. Marching cubes: A high resol-
ution 3D surface construction algorithm. Computer
Graphics. ACM Siggraph ’87 Conference Proceedings.
1987;21(4):163–169.

3. Wilhelms J, Van Gelder A. Octrees for faster isosurface
generation. Computer Graphics. 1990;24(5):57–62.

4. Wilhelms J, Van Gelder A. Octrees for faster isosurface
generation. ACM Transactions on Graphics. 1992;11(3):
201–227.

5. Itoh T, Koyamada K. Isosurface generation by using
extrema graphs. In Visualization ’94. Los Alamitos, CA:
IEEE Computer Society Press; 1994:77–83.

6. Itoh T, Yamaguchi Y, Koyyamada K. Volume thinning for
automatic isosurface propagation. In Visualization ’96.
Los Alamitos, CA: IEEE Computer Society Press; 1996;
303–310.

7. Gallagher RS. Span filter: An optimization scheme for
volume visualization of large finite element models. In
Proceedings of Visualization ’91. Los Alamitos, CA: IEEE
Computer Society Press; 1991;68–75.

8. Giles M, Haimes R. Advanced interactive visualization for
CFD. Computer Systems in Engineering. 1990;1(1):51–62.

9. Shen H, Johnson CR. Sweeping simplicies: A fast iso-
surface extraction algorithm for unstructured grids. In:
Proceedings of Visualization ’95. Los Alamitos, CA: IEEE
Computer Society Press; 1995;143–150.

10. Bentley JL. Multidimensional binary search trees used
for associative search. Communications of the ACM.
1975;18(9):509–516.

FIGURE 47.15 Mantle convection modeling that was done on a Cray
T3D at the Advanced Computing Laboratory at Los Alamos National
Laboratory using more than 20 million elements. The left image shows
a single, hot, isosurface, while the second adds a cold (blue) transparent
isosurface. The third image shows a slice through the mantle with a
single isosurface.

47 Fast Isosurface Extraction Methods for Large Image Data sets 813

FIGURE 47.16 Full versus view-dependent isosurface extraction. The isosurfaces were computed based on a user
point of view that was above and behind the skull. These images illustrate the large portions of the isosurface that the
view-dependent algorithm was able to avoid.

FIGURE 47.17 Ray tracings of the bone and skin isosurfaces of the Visible Woman.

814 Handbook of Medical Image Processing and Analysis

FIGURE 47.18 A ray-tracing with and without shadows.

FIGURE 47.19 Ray-tracing opens avenues to utilize more compli-
cated rendering techniques. Here, an isosurface rendered from the CT
scan of the Visible Female dataset is illuminated with a technique that
accounts for all the paths of light as they bounce from surface to sur-
face. The illumination is computed during rendering, and results are
stored to allow the computed illumination to persist and build up from
frame to frame. Global illumination models like this allow for a greater
perception of spatial relationships of the data.

FIGURE 47.20 Using CT scans of the Visible Female dataset, iso-
surfaces of the bone and skin can be visualized interactively using
customized ray-tracing techniques that greater enable the use of ren-
dering effects such as transparency. In this image, the skin is rendered
partially transparent to facilitate seeing the two surfaces simultane-
ously. The isosurfaces are extracted while the ray is traced, alleviating
the need to extract the geometry before rendering.

47 Fast Isosurface Extraction Methods for Large Image Data sets 815

FIGURE 47.21 Color plates are the last data obtained from the visible
human datasets due to the destructive nature of the acquisition. Images
are taken off the top of the tissue block as layer upon layer is shaved
off. The result of stacking these images is a volumetric color texture
that can be applied to the extracted isosurfaces. The isosurface was
generated from the CT scan.

11. Blum M, Floyd RW, Pratt V, Rivest RL, Tarjan RE. Time
bounds for selection. J Computer and System Science.
1973;7:448–461.

12. Sedgewick R. Algorithms in C++. Reading, MA: Addison-
Wesley; 1992.

13. Lee DT, Wong CK. Worst-case analysis for region
and partial region searches in multidimensional binary
search trees and balanced quad trees. Acta Information.
1977;9(23):23–29.

14. Bentley JL, Stanat DF. Analysis of range searches in quad
trees. Info Proc Lett. 1975;3(6):170–173.

15. Cignoni P, Montani C, Puppo E, Scopigno R. Optimal
isosurface extraction from irregular volume data.
In Proceedings of IEEE 1996 Symposium on Volume
Visualization. ACM Press, 1996.

16. Shen H, Hansen CD, Livnat Y, Johnson CR. Isosurfacing is
span space with utmost efficiency (ISSUE). In Proceedings
of Visualization ’96. Los Alamitos, CA: IEEE Computer
Society Press; 1996;287–294.

17. Greene N. Hierarchical polygon tiling with coverage
masks. In Computer Graphics, Annual Conference Series.
1996(August):65–74.

18. Cline HE, Lorensen WE, Ludke S. Two algorithms for the
three-dimensional reconstruction of tomograms. Medical
Physics, 1988;15(3):320–327.

19. Lacroute P, Levoy M. Fast volume rendering using a
shear-warp factorization of the viewing transformation.
In Computer Graphics, Annual Conference Series, ACM
SIGGRAPH. 1994;451–458.

20. Lacroute PG. Fast Volume Rendering Using Shear-Warp
Factorization of the Viewing Transformation. Technical
Report, Stanford University, September 1995.

21. Lin CC, Ching YT. An efficient volume-rendering algo-
rithm with an analytic approach. The Visual Computer.
1996;12(10):515–526.

22. Marschner S, Lobb R. An evaluation of reconstruction fil-
ters for volume rendering. In Proceedings of Visualization
’94. Los Alamitos, CA: IEEE Computer Society Press;
1994(October);100–107.

23. Sramek M. Fast surface rendering from raster data by
voxel traversal using chessboard distance. In Proceedings
of Visualization ’94. Los Alamitos, CA: IEEE Computer
Society Press; 1994(October):188–195.

24. Kajiya JT. An overview and comparison of rendering
methods. A Consumer’s and Developer’s Guide to Images
Synthesis. ACM Siggraph ’88 Course 12 Notes; 1988;
259–263.

25. Livnat Y, Hansen CD. View dependent isosurface extrac-
tion. In IEEE Visualization ’98. Los Alamitos, CA: IEEE
Computer Society Press; 1998(October);175–180.

26. Levoy M. Display of surfaces from volume data. IEEE
Computer Graphics & Applications. 1988;8(3):29–27.

27. Sabella P. A rendering algorithm for visualizing 3D scalar
fields. Computer Graphics. ACM Siggraph ’88 Conference
Proceedings; 1988;22(4):51–58.

28. Upson C, Keeler M. V-buffer: Visible volume render-
ing. Computer Graphics. ACM Siggraph ’88 Conference
Proceedings; 1988;22(4):59–64.

29. Parker S, Shirley P, Livnat Y, Hansen C, Sloan PP.
Interactive ray-tracing for isosurface rendering. In
Proceedings of Visualization ’98. Los Alamitos, CA: IEEE
Computer Society Press; 1998(October).

30. Amanatides J, Woo A. A fast voxel traversal algorithm for
ray-tracing. In Eurographics’ 87. 1987.

31. Cox MB, Ellsworth D. Application-controlled demand
paging for Out-of-Core visualization. In Proceedings of
Visualization’ 97. Los Alamitos, CA: IEEE Computer
Society Press; 1997(October):235–244.

32. Arvo J, Kirk D. A survey of ray-tracing acceleration
techniques. In Glassner AS, (ed.), An Introduction to
Ray-Tracing. San Diego, CA: Academic Press; 1989.

33. Globus A. Octree optimization. Technical Report RNR-
90–011, NASA Ames Research Center, July 1990.

34. Whitman S. Multiprocessor Methods for Computer Graphics
Rendering. Sudbury, MA Jones and Bartlett Publishers;
1992.

35. Livnat Y, Shen H, Johnson CR. A near optimal isosurface
extraction algorithm using the span space. IEEE Trans Vis
Comp Graphics. 1996;2(1):73–84.

816 Handbook of Medical Image Processing and Analysis

36. Painter J, Bunge HP, Livnat Y. Case study: Mantle con-
vection visualization on the Cray T3D. In Proceedings of
IEEE Visualization ’96. Los Alamitos, CA IEEE Computer
Society Press; 1996(October).

37. Parker S, Parker M, Livnat Y, Sloan PP, Hansen CD,
Shirley P. Interactive ray-tracing for volume visualization.
IEEE Trans Vis Comp Graph. 1999;5(3):238–250.

38. Ma K, Parker S. Massively parallel software rendering
for visualizing large-scale datasets. IEEE Trans Vis Comp
Graph. 2001(July–August): 72–83.

39. Johnson CR, Brederson D, Hansen C, Ikits M, Kindl-
mann G, Livnat Y, Parker S, Weinstein D, Whitaker R.

Computational field visualization. Computer Graphics.
2001;35(4):5–9.

40. DeMarle DE, Parker SG, Hartner M, Gribble C, Hansen
CD. Distributed interactive ray-tracing for large volume
visualization, IEEE Symposium on Parallel Visualization
and Graphics. 2003(October):87–94.

41. Livnat Y, Tricoche X. Interactive point based isosur-
face extraction. Proceedings of IEEE Visualization 2004.
2004;457–464.

42. Wyman C, Parker S, Shirley P, Hansen CD. Interactive dis-
play of isosurfaces with global illumination. IEEE Trans
Vis Comp Graph. 2006:12(2).

