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Figure 1: An ensemble of air temperatures created by combining the daily temperatures for the month of January (31 days) over a 29 year period
on a three dimensional grid of dimension 256×128×31. (a) The mean data and transfer function. (b)-(e) Screen space accumulated integration
of Gaussian mixture model representations of the data, using one, two, four, and six components, respectively.

ABSTRACT

Representing uncertainty when creating visualizations is becoming
more indispensable to understand and analyze scientific data. Un-
certainty may come from different sources, such as, ensembles of
experiments or unavoidable information loss when performing data
reduction. One natural model to represent uncertainty is to assume
that each position in space instead of a single value may take on a
distribution of values. In this paper we present a new volume ren-
dering method using per voxel Gaussian mixture models (GMMs)
as the input data representation. GMMs are an elegant and compact
way to drastically reduce the amount of data stored while still en-
abling realtime data access and rendering on the GPU. Our renderer
offers efficient sampling of the data distribution, generating render-
ings of the data that flicker at each frame to indicate high variance.
We can accumulate samples as well to generate still frames of the
data, which preserve additional details in the data as compared to
either traditional scalar indicators (such as a mean or a single near-
est neighbor down sample) or to fitting the data with only a sin-
gle Gaussian per voxel. We demonstrate the effectiveness of our
method using ensembles of climate simulations and MRI scans as
well as the down sampling of large scalar fields as examples.
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1 INTRODUCTION

With the ever increasing amount of available computing resources
scientific simulations are able to represent highly complex phenom-
ena at unprecedented scale and resolution. However, each such
simulation only represents one possible outcome of an experiment
which typically depends on numerous assumptions about the ini-
tial conditions, the physical properties of the species involved, or
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the accuracy of the underlying model. In particular, in chaotic and
highly non-linear systems, such as climate or turbulent combustion
simulations, it is becoming increasingly important to instead under-
stand the range of possible outcomes. Currently, the most common
approach to representing the uncertainty in the results is to perform
an ensemble of simulations each with slightly different assumptions
or parameters. However, analyzing and/or visualizing these mas-
sive datasets is challenging and the lack of suitable tools increas-
ingly impacts our ability to gain new insights from such ensembles.
One of the main problems is the data representation: working with
a collection of simulation results one-by-one requires the infeasible
processing of hundreds of ensemble members.

One potential solution is to view an ensemble as samples from
a distribution of possible outcomes or carry out only one stochas-
tic simulation. In both cases the result is a single set of simulation
data in which each point is represented as a (sampled) distribution
of values. This perspective is attractive as it can also incorporate,
for example, data compression through down sampling or exper-
imental errors. However, new techniques are needed to visualize
and analyze such data ideally using paradigms familiar to users and
commodity hardware.

In this paper, we consider volume rendering of stochastic fields,
created from ensembles or by down sampling, using per-voxel
Gaussian mixture models (GMMs). Given a sampled distribution
of values at each voxel we fit a GMM with varying number of
Gaussian kernels as basis functions. GMMs are attractive as they
allow fitting complex data with relatively few parameters. In the
simplest case, fitting a single Gaussian at each position encodes
the mean and variance of the data and thus requires only two val-
ues per voxel. More general, fitting k Gaussians requires 3k values
(the additional third value is necessary to encode the weight of the
Gaussian) compared to a typical ensemble which may contain hun-
dreds of members. In particular, fitting GMMs makes the size of
the representation dependent on the complexity of the data rather
than the size of the ensemble. In practice, we find that typically
fitting around four Gaussian kernels is sufficient and the resulting
12 values per-voxel (encoded as 3 four channel textures) can still be
interactively processed on common desktop computers. From the
data fitting point of view there are several other alternatives such
as polynomial-based model and Fourier-based model that could be
considered. However since all of our rendering methods are base on
sampling arbitrary distribution, a Gaussian representation is key for
efficient random sampling implementation on GPU. In the method
section we will go into details show why GMM is used in our algo-
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rithm and an discussion on the fitting precision is also presented.
We extend basic notions of the volume rendering to efficiently

handle this statistical representation. In particular, we replace a typ-
ical pre-integration table with one indexed by mean and variance of
each Gaussian component for a fast color lookup. We have corre-
spondingly restructured integration of the transfer function. Our
method allows for sampling the probability density function de-
scribed by the GMM on a per frame basis during volume render-
ing. This allows for augmenting the display with direct animations
of the probability—where the data is less certain it flickers and ap-
pears “fuzzy” to the user, similar to the probabilistic animations of
Lundström et al. [8].

We experiment with three types of data: First, we compare large
scale data down sampled using both our technique and more tradi-
tional single-sample per voxel techniques; Second, we experiment
with ensembles of medical image data, in particular highlighting
how automatic registration processes are used in a study of over
300 patients; and third, we investigate massive collections of cli-
mate simulations, highlighting the distinctions between various cli-
mate studies run by scientists through the CMIP5 project hosted by
the PCMDI database. In each case, we show how using GMMs to
model the data allows for informative visualizations which high-
light aggregate statistical behavior while allowing for interactive
frame rates on modern GPUs.

2 RELATED WORK

Uncertainty exists in most scientific data, and consequently it plays
an increasingly important role in visualization. Especially in the
past decade, research has been directed towards augmenting visual-
izations with techniques that directly communicate uncertainty [6].
Incorporating uncertainty into visualization is particularly impor-
tant in domain specific applications, such as seismology [2], geo-
graphical information systems [9], or climate science [13], where
ensembles of data are naturally produced. More generalized ap-
proaches to visualizing uncertainty have focused on the human per-
ception element. For example, the use of animation [5, 8] and
glyphs [11, 12] have been studied and shown to be effective ways
to convey uncertainty when provided appropriate contexts. In this
work, we build upon the use of animation to convey uncertainty.
A state of art report on uncertainty visualization can be found
here [10].

Given its versatility, volume visualization is one of the major
research focus for uncertainty visualization. Djurcilov et al. [4]
present two of the earliest known methods for volume rendering
with uncertain data. In the first they focus on “inline” techniques
(where the uncertainty is pushed into the rendering process) for di-
rect volume rendering, where for example, the user is allowed to
interact with a 2D transfer function where one axis is uncertainty
and the second is scalar value. Their second applies post process-
ing to either dither or texture the volume rendering to highlight un-
certainty. In both of these cases, it is assumed that there is a well
defined scalar field to encode the uncertainty channel, a luxury we
do not explicitly construct here.

As discussed above, the choice of data representation is of key
importance, in particular, to our goal of providing a generalized
framework for volume visualization. Thompson’s hixel represen-
tation [17] uses per-voxel histograms to encode a distribution of
values for each location in volumetric data. They augment these
with contingency information of neighboring voxels. While such
sampled distributions are certainly flexible enough to represent ar-
bitrary distributions, they lack the necessary compactness needed to
work in the memory constraints of the GPU. Instead, the Gaussian
distribution is often a popular choice for representing probability
distributions because of its smooth bell shape and ease of deriving
analytical and explicit form. Gaussian functions have shown some
effectiveness in solving volume rendering integration for high di-
mensional data [7] and a way to generate better down sampling

[18], however are limited in their ability to model complex distri-
butions. Using a weighted sum of Gaussians, or Gaussian mixture
models (GMM) are preferred in clustering methods common in pat-
tern recognition [15]. In visualization literature, GMMs have been
introduced to model uncertainty in visual analytics by Correa et
al. [3]. Using GMMs to model bidirectional reflection distribution
functions is another popular use [16], and this work shares a key
challenge of its own in understanding how to interpolate GMMs.

3 METHODS

Gaussian Mixture Models (GMMs) [1] are one of the most widely
used and versatile probabilistic models. Each component of the
mixture model is a single Gaussian distribution that is combined
through a weighted linear combination into the overall distribution.
The unique numerical and statistical property of Gaussians and the
linearity of the combination make it an ideal method for converting
an arbitrary distribution into a compact yet flexible format. Com-
pactly, at any position x we define a K component GMM p(x) as:

p(x) =
K

∑
i=1

πiN (x|µi,σ
2
i )

where each component i, µi and σ2
i are the mean and variance and

πi is the corresponding weight such that ∑πi = 1.

x

n
ensemble data down sampled data

(a)
(b)

Figure 2: (a) We build GMMs by fitting distributions at the same po-
sition across ensembles of images or blocks of data. (b) GMMs (red
curves) computed by the EM algorithm. Using only a single com-
ponent (top) provides a poor fit, but increasing to six components
(bottom) results in a more accurate fit of the input distribution.

Computing a GMM from a distribution of values is typically ac-
complished using the Expectation Maximization (EM) procedure.
It uses an iterative method to maximize the likelihood function [1]
by estimating the Gaussian parameters. In our work, we have ap-
plied the EM algorithm to per-voxel distribution which model the
behavior of a single voxel across an ensemble of images or a block
of neighboring voxels in an image to be down sampled (see Fig.2).

3.1 Modeling Distributions with GMMs
In addition to its versatility, one of the main advantages of the mix-
ture model is flexibility in controlling the memory footprint of the
representation. Compared to a histogram, which needs to store as
many values as there are ranges of data, the GMM stores exactly
three values per component. Adjusting the number of components
(Fig. 2(b)) improves the fit. Since we are targeting the GPU, mem-
ory constraints make the GMM a more desirable option than per-
voxel histograms. We calculate an error metric in order to guide
us choose suitable number of Gaussian. In our design an arbitrary
number of Gaussian could be used for better accuracy as long as
there is enough video memory, however for most data we tested
four Gaussians were sufficient.

One may wonder why we did not choose methods like Fourier
decomposition or polynomials approximation to represent the dis-
tribution which also have a small storage footprint. The major rea-
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son is the ease of generating random numbers. By exploiting the
properties of Gaussian distributions, one can easily generate a ran-
dom variable that belongs to an arbitrary distribution represented
by the GMM. Generating such a random sample requires only three
steps: (1) generate a uniform random number; (2) select a Gaussian
component based on this value; and (3) generate a random num-
ber in the normal distribution of the selected Gaussian. Since the
CUDA cuRAND library allows for generating both random num-
bers used in (1) and (3) efficiently, this can be done in a massively
parallel fashion. Unfortunately, one can only generate the random
numbers between rendering kernels, i.e. between frames. We over-
come this limitation by adding a random 3D indexing buffer. With
this buffer we have a “random” number at every vertex and though
interpolation at any position in the volume. This buffer is updated
on a per frame basis exploiting the cuRAND massively parallel ran-
dom number generator. However, spatially close positions have
similar numbers (from interpolation), so we use them to index into
a 1D uniform random buffer and 1D Gaussian random buffer for
steps (1) and (3), which are updated each frame.

3.2 Rendering with GMMs

Fuzzy Rendering Given efficient GPU-based random sam-
pling on GPUs, a brute force Monte Carlo sampling approach be-
comes a viable option for volume rendering distributions. Inspired
by the animated renderings of Lundström [8], we modified a stan-
dard GPU raycaster to include a notion of per-frame sampling. In-
stead of storing a single scalar volume, we pack each Gaussian
component into three channels of a texture. This means we can
effectively store a four kernel GMM in three RGBA textures, or
up to eight kernels within six textures. For the standard raycasting
algorithm a scalar value is required to be passed into the transfer
function lookup table, where its color will be accumulated in the
ray integral. At each frame, we sample a new scalar value from the
distribution and perform a lookup. The result of this random sam-
pling gives us a probabilistic rendering of the distribution, where
the color flickers based on variability. A narrow distribution will
result in a small range of possible values producing less “flicker,”
while a wider distribution produces more substantial color varia-
tions. These temporarily changing cues provide an intuitive notion
of the amount of uncertainty in the distribution.

Monte Carlo Integration in Screen Space A disadvantage
of the fuzzy rendering approach is that it requires animation to con-
vey information on the distribution, and thus does not allow for a
high quality static image. To address this problem we apply a screen
space integration scheme to complement the fuzzy rendering. Since
the random sampling is based on a specific distribution, it is pos-
sible to accumulate the randomly generated values, resulting in a
Monte Carlo integration. However, since the rendering domain is
volumetric this accumulation of random samples is expensive and
will suffer severely from transfer function pre-classification arti-
facts. Therefore, instead of accumulating samples in object space
we accumulate samples in image space. This enables our random
sample based algorithm to produce smoother images that provide a
more meaningful description of the data than, for example, simply
using the distribution’s mean.

4 RESULTS

We demonstrate the effectiveness of our techniques on datasets
which are both large ensembles of volumetric images as well as
comparing the effects of down sampling higher resolution data to
smaller sized volumes. Each experiment runs on a desktop machine
with an Intel Core i7-920, 16GB of memory, and a nVidia GTX580
graphics card with 1.5GB of memory. Our implementation uses
CUDA.

(a) (b) (c)

Figure 3: Climate data rendering mode comparison, showing the air
temperature field for the 4 component GMM with (a) mean, (b) sam-
pled, and (c) scale space integrated rendering techniques.

4.1 Ensemble Data
Climate Data We experiment with ensembles of data from two

sources. Our first source of data is an ensemble from climate sci-
ence. We use data from the CMIP5 project hosted by the PCMDI
database. We construct GMM models of daily averages for air
temperature during the month of January over a 29 year period
from 1979-2008 for the CNRM-CM5 model. Each dataset of size
256× 128× 31 (3.88 MB) is aggregated on the per-voxel values.
This produced a dataset with 899 (29× 31) images, for a total of
3.40GB of data. Fig. 1 compares taking the mean of the data to
constructing GMM models with various numbers of components
(one to six). As the number of GMMs increases, we are able to see
additional bands of temperature where there was higher variability.
Using fewer components, this area is blurred further. Interestingly,
comparing Fig. 1(a) to Fig. 1(b) shows that the mean alone fails to
capture the regions where there is high uncertainty near the poles of
the earth. Fig. 3 compares the mean, sampled, and scale space in-
tegrated versions of this data using a four component GMM. Even
in a still frame, the speckling in the sampled rendering indicates the
uncertainty in the data around the poles, producing an effect similar
to Djurcilov et al. [4]. However instead of modulating the data with
a post-process filter, we directly sample on the uncertainty.

(a) (b) (c)

Figure 4: MRI registration ensemble comparison. We can see the (a)
unregistered images produce the most amount of fuzziness on ac-
count of the lack of alignment. Both the (b) relaxation and (c) greedy
optimization of the LDDMM produce less variable results in image
space, with the greedy results appearing the least fuzzy.

MRI Atlas As a second ensemble, we use a collection of reg-
istered brain images. Initially, the 315 images were produced for a
study of mild cognitive impairment, selected from the Alzheimers
Disease Neuroimaging Initiative (ADNI) database. To study these
patients in aggregate, an atlas of registered images has been pro-
duced [14]. Initially, each volume was an MRI scan of size
144×192×160 (16.88MB), and the 315 images together produce a
total dataset of 5.19GB. Registration was performed by optimizing
the large deformation diffeomorphic mapping metric (LDDMM)
using two different approaches, a relaxation procedure as well as
a greedy optimization. One of the goals of our approach was to
help illuminate the efficacy and potentially differences between the
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different registration techniques. Fig. 4 shows three renderings of
the unregistered data as well as registration using both techniques,
built using a four component GMM model. We see that the greedy
approach produces less variability.

4.2 Down Sampling Large-Scale Data

(a)

(b) (c) (d)

Figure 5: Down sampling the nested spheres. Compare (a) original
data with down samplings at 1283 (top row) and 643 (bottom row) of
the (b) mean, (c) single sample, and (d) 4 component GMM. At 643,
neither the mean nor single sample preserve the spherical layers.

Artificial Dataset: Nested Spheres We next compare how
GMMs augment down sampled large-scale data. First, we construct
an artificial dataset with nested spheres. The goal is to simulate the
data with thin layered structures, which are traditionally difficult
to down sample correctly. The original resolution of the dataset is
5123, which has been down sampled to resolutions of 1283 and 643.
Here we use three different down sample schemes taking either the
mean, a single sample, or four component GMM for the distribution
of data stored in each block. Fig. 5 shows a comparison of the
effects of down sampling. We can see that in this example, the
mean produces data values with a lower range (from averaging the
collection of zeros adjacent to each spherical layer) while the single
sample produces a sparse surface with a collection of holes. In
essence, the mean of the data manages to preserve the structure,
but not the values, while the single sample destroys the structure
while retaining some of the correct values. By comparison, even at
a relatively extreme level of down sampling (83 or 512 values per
voxel), the GMM rendering preserves both the structure and values
of the original data.

Richtmyer-Meshkov Instability Finally, we compare down
sampling a volume which was produced as the result of a
Richtmyer-Meshkov instability simulation, shown in Fig. 6. In this
particular example, examining the surface of turbulent mixing pro-
duces a striking result. As the amount of down sampling increases,
the mean field produces larger feature lobes of mixing, amalgamat-
ing the fine-scale features, while taking a single sample of each
block produces a more sporadic representation. Both also produce
a low-frequency orange surface between the blue and green regions,
a feature not existing in the original data. In the four components
GMM, an increasing amount of blurring is shown, preserving the
inherent uncertainty encapsulated by taking large regions of turbu-
lent data and compressing them.

5 CONCLUSIONS

This work presents a technique for modeling per-voxel distributions
of data using GMMs and an efficient volume raycaster that lever-
ages this representation to show uncertainty. All examples run at
interactive frame rates between 5Hz to 30Hz. In comparing our
work to alternatives for down sampling, one interesting thing to
note is that when the data is of high variability, we visualize it us-
ing more natural measurements of uncertainty (either flickering in

(a)

(b) (c) (d)

Figure 6: Down sampling the Richtmyer-Meshkov instability. Com-
pared with the (a) original data at 5123, we look at 3 versions of down
sampled (b) mean, (c) single sample, and (d) 4 component GMM
representations. From top-to-bottom, each row has resolutions 2563,
1283 and 643.

the fuzzy renderer or blurring in the screen space integration). At
first glance, these images may appear of lower quality (comparing
Fig. 6(b) to Fig. 6(d)), however, the blurriness of the data is an in-
herent byproduct of the uncertainty at those positions. In fact, we
consider it a feature that our renderer prefers to not impart a certain
“truth” on the data in these regions.

This work is preliminary in the sense that we have only begun to
experiment with the basic implementation for rendering and manip-
ulating GMMs. A number of open questions remain. During screen
space integration, we aggregate colors, which can produce color
values that are no longer representative of the initial data (e.g., red
+ green = yellow, while the transfer function may not have picked
yellow for the color at the values between red and green). Interpo-
lation is also a challenging question. When ray casting, we linearly
interpolate a GMM at the position along the ray by interpolating
the means, variances, and weights of the aligned mixture models
(similar to Tan et al. [16]). However, it is unclear whether model-
ing the GMM random field this way is always the most appropriate
(as opposed to imparting a more expensive statistical model which
minimized the Fisher information metric). Future work is needed
to find the best compromise between efficiency and accuracy for
interpolating GMMs.
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