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Abstract

Automated segmentation of electron microscopy
(EM) images is a challenging problem. In this paper, we
present a novel method that utilizes a hierarchical struc-
ture and boundary classification for 2D neuron segmen-
tation. With a membrane detection probability map, a
watershed merge tree is built for the representation of
hierarchical region merging from the watershed algo-
rithm. A boundary classifier is learned with non-local
image features to predict each potential merge in the
tree, upon which merge decisions are made with con-
sistency constraints to acquire the final segmentation.
Independent of classifiers and decision strategies, our
approach proposes a general framework for efficient hi-
erarchical segmentation with statistical learning. We
demonstrate that our method leads to a substantial im-
provement in segmentation accuracy.

1. Introduction

Electron microscopy (EM) can generate high res-
olution image volumes with abundant cellular details
for biological research, e.g. neural circuit reconstruc-
tion [5]. However, since images can be obtained from
large volumes (up to 1 mm3) on nanoscale (approxi-
mately 5 × 5 × 25 nm resolution), the amount of gen-
erated data is quite large (1012 to 1013 image pixels)
making manual analysis infeasible [10]. Therefore, re-
liable automated or semi-automated image analysis for
neuron segmentation and neural structure tracking is in
high demand. Along with all the merits of high reso-

lution, the intricate cell textures and structures which
consist of largely varying shapes and topologies, etc.
[7], make the automated image analysis problem very
challenging.

For the 3D neuron reconstruction problem, the
anisotropic resolution suggests 2D segmentations of
each slice be computed first. Among various other
methods, supervised membrane detection approaches
that utilize contextual information from neighborhood
regions have been successful. Jain et al. [7] used con-
volutional neural network to restore neuron membranes
with contextual information. Jurrus et al. [8] proposed
a method that identifies membranes by learning a se-
ries of artificial neural networks (ANN). The work of
Seyedhosseini et al. [9], which exploits multi-scale con-
text, takes advantage of information from a larger area
and improves the overall result of serial ANNs. Over-
segmentation and region merging based methods have
proven useful in general computer vision [2, 3] and are
beginning to be applied to neuron segmentation prob-
lems. Notably, Andres et al. [1] presented a hierarchi-
cal approach that over-segments the image using a wa-
tershed transform over a membrane detection map and
then trains a classifier to determine region merging for
the whole 2D neuron segmentation. This can, in some
degree, address the problem of selecting a fixed good
watershed water level. However, the region fragments
from initial over-segmentation are usually small, which
makes it infeasible to extract meaningful geometric and
texture features. In addition, a fixed cutoff value has to
be chosen throughout the whole image to threshold the
predicted edge probability map. The work of Funke et
al. [6], which motivated our work, used a tree structure



as segmentation hypothesis for simultaneous intra- and
inter-slice segmentation. However, their approach can
only be applied to a 3D volume of consecutive slices
and is not able to segment one single slice at a time.
Also, the final optimization problem in their method can
be huge given a set of complete trees of an image stack.

To address these problems, we propose a method
that utilizes a tree structure to represent the hierarchi-
cal order of region merging from the watershed algo-
rithm and uses a boundary classifier learned from vari-
ous non-local features to predict each potential merge in
the tree. Finally, merge decisions are made via resolv-
ing the tree using a greedy optimization strategy. In this
way, we allow significant flexibility by getting rid of
any pre-chosen fixed threshold. Moreover, our method
describes a framework upon which a variety of decision
strategies on resolving the merge tree can be applied to
get different segmentation results.

2. Watershed Merge Tree

Our work uses a multi-scale context neuron mem-
brane detection algorithm [9] as input. The general idea
is to form a scale-space representation of the context
images from the output of each discriminative model
in the series and thus to extract membrane information
from a large context efficiently. We train a series of
MLP-ANNs by combining stencils of features from the
original input image and patches of features from the
previous classifier. The patch features are computed at
different scales to incorporate diverse contextual infor-
mation.

As shown in figure 1(b), the membrane detection
output is a probability map, on which we can simply
apply thresholding to get a segmentation. However,
small mispredictions about membranes in pixels could
lead to significant under-segmentation errors. To ad-
dress this problem, we propose a watershed tree based
method. Consider a probability map as a 3D terrain map
with pixel probability as ridge height. Regions with low
probabilities make an initial segmentation as shown in
figure 1(c). With the water level rising, small regions
merge into larger ones, and finally into one large region
with the water level above the highest ridge in the map.
This technique produces a hierarchy of segmentations
that can be represented by a tree structure, which we
call a watershed merge tree.

A watershed merge tree T = ({N}, {E}) is defined
as a representation of region merging hierarchy: a node
Nd

i at depth d corresponds to an image region Rd
i ; an

edge from a parent node Nd
i to its child node Nd+1

i′

means region Rd+1
i′ is a subregion of region Rd

i ; a lo-
cal tree structure (Nd

i , N
d+1
i′1

, Nd+1
i′2

, . . .) represents re-

gion Rd
i can be the merging result of all of its subregion

{Rd+1
i′1

, Rd+1
i′2

, . . .}. For simplicity, we here consider the
merge tree as a binary tree.

(a) (b) (c)

Figure 1. Example of (a) original EM im-
age, (b) membrane detection and (c) initial
watershed segmentation.

An initial water level l0 is used to merge some
very small regions beforehand in the initial segmenta-
tion, and a preprocessing is conducted to remove re-
gions smaller than nr pixels by merging them with their
neighbor regions that have the lowest probability bar-
rier.

3. Boundary Classifier

In order to make decisions in a merge tree, we need
to know how confident we are about whether each po-
tential merge could happen. A boundary classifier is
trained to give a prediction. Our classifier takes a set of
141 features extracted from the two merging regions,
including geometric features (region area, boundary
lengths, region contour lengths, etc.) and image statis-
tics features for boundary pixels (intensity statistics)
and regions (EM image texton histogram and watershed
region merging saliency) from original EM images and
membrane detection maps. Here, pixels adjacent to an-
other region are considered as boundary pixels. The wa-
tershed region merging saliency is defined as the differ-
ence between the minimum water level it takes to merge
the two regions and the minimum value in the mem-
brane detection probability map.

Labels indicating whether a region pair should merge
or keep split are obtained by measuring the Rand error
over the ground truth segmentation (see section 5). A
random forest classifier [4] is trained with correspond-
ing weights assigned to positive/negative examples so
as to balance their contributions. For the testing data,
the trained classifier is applied to make a prediction
about how likely a region pair should merge.



4. Resolving Merge Tree

The boundary classifier predicts the probability for
every potential merge in a merge tree, but this is not suf-
ficient for generating a consistent segmentation of the
whole image. We still need to resolve the tree in an op-
timization sense while preserving the consistency. We
define consistency such that any pixel should be only
labeled once. In other words, if a node in the merge tree
is selected, all of its ancestors and descendants cannot
be selected. Figure 2 shows an artificial example. The
watershed algorithm generates an initial segmentation
shown in figure 2(a), from which a merge tree is built as
in figure 2(c). Node 5, 6 and 7 are selected for a consis-
tent final segmentation as shown in figure 2(b). Conse-
quently, the other nodes cannot be picked, because we
can never have both the red region (node 6) and region 1
(or 2) at the same time, otherwise region 1 (or 2) would
be labeled more than once as 1 (or 2) and 6, which is
inconsistent by our definition.

(a) (b) (c)

Figure 2. Example of (a) initial segmen-
tation, (b) consistent final segmentation
and (c) corresponding merge tree.

Let us consider a certain region in the final segmen-
tation: it exists because it neither splits into smaller re-
gions nor merges with others into a larger region. Since
each prediction that the classifier makes depends only
on the two merging regions, we compute the possibility
that a node Nd

i is picked for the final segmentation as
the probability that its two child nodes Nd+1

i′1
andNd+1

i′2

merge and at the same time Nd
i does not merge with its

sibling node Nd
j at the next higher water level to their

parent node Nd−1
k . We define a potential for Nd

i as

P d
i = pd+1

i′1,i
′
2
· (1− pdi,j), (1)

where pd+1
i′1,i

′
2

is the predicted probability that the two

child nodes Nd+1
i′1

and Nd+1
i′2

merge (see section 3), and
pdi,j is the probability that node Nd

i merge with its sib-
ling node Nd

j . In the example shown in figure 2(c), the
potential of node 6 is P6 = p1,2(1 − p6,8). Since leaf
nodes have no children, their potentials are defined as
the probability that they do not merge penalized into

half. Similarly, the root node has no parent, so its poten-
tial is half of the probability that its children will merge.

In this way, every node in the merge tree is assigned
a potential, and the next step is to select a subset of the
nodes to form a complete consistent segmentation. Here
we use a greedy approach. The node with the highest
potential in the merge tree is picked. Then all of its
ancestors and descendants are regarded as inconsistent
choices and removed from the tree. This procedure is
repeated until there are no nodes left in the tree. The set
of all the picked nodes makes up a complete consistent
final segmentation.

5. Experimental Results

We use a set of 70 700× 700 mouse cerebellum EM
images (one slice shown in figure 1(a)) along with the
corresponding ground truth images annotated manually
by an expert. These images are divided into five bins
randomly with 14 images in each bin. A multi-context
MLP-ANN classifier [9] is trained with bin 1, and used
for membrane detection for the other four bins. To test
our method, we train the boundary classifier with four
bins consisting of bin 1 and three bins out of bin 2 to 5.
Then we test on the remaining one bin.

With the membrane probability maps, initial water-
shed segmentations are generated and merge trees are
built. The initial water level l0 for each image is set as
one percent of the maximum value in the corresponding
probability map. Regions smaller than nr = 50 pixels
are removed in the initial segmentations. 7 × 7 texture
patches are extracted from the EM images for generat-
ing the texton dictionary and building texton histograms
as boundary classifier features. A random forest with
255 trees is trained for boundary classification.

To train a boundary classifier, we assign a label from
ground truth segmentations that indicates if a region
pair (Rd

i , R
d
j ) should merge or not. We use the Rand

error to measure whether two regions should merge. It
is defined as

Ek =
1

|Rd
i | · |Rd

j |
∑

xp,xq∈Rd
i∪Rd

j

∣∣σpq − βk
pq

∣∣ , (2)

where (xp, xq) represents any pixel pair from the union
of the two merging regions, and

σpq =

{
1 if xp, xq in same truth region
0 otherwise (3)

β1
pq =

{
1 always
0 never (4)

β2
pq =

{
1 if xp, xq in same merging region
0 otherwise. (5)



The label indicating merge/split for (Rd
i , R

d
j ) is decided

as

ldij =

{
+1 (merge) if E1 < E2

−1 (split) otherwise. (6)

In this way, all the labels for the training data are gener-
ated automatically.

We also use Rand error as the measurement of seg-
mentation quality. The Rand errors of the segmenta-
tions, obtained via thresholding the membrane detec-
tion probability maps with a best threshold for each
bin respectively, are computed as comparison with our
method. The results are shown in table 1, from which
we can see that our method improves the segmentation
substantially by reducing classification mistakes over
more than 10 percent of the total pixel pairs.

Table 1. Segmentation Rand errors. (TH:
thresholding; MT: merge tree method).

bin 2 bin 3 bin 4 bin 5 avg.
TH 0.2749 0.2419 0.2115 0.2717 0.2500
MT 0.1529 0.1113 0.1029 0.1595 0.1316

Figure 3 shows some visual results of our test im-
ages. Our approach for resolving the watershed merge
tree can make most initial over-segmentations merge ac-
curately, and the complete method gives a good final
segmentation.
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Figure 3. Segmentation results of two im-
age regions (zoomed in).
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