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ABSTRACT 

Diffusion tensor MRI (DTI) is now a widely used modality 
to investigate the fiber tissues in vivo, especially the white 
matter in brain. An automatic pipeline is described in this 
paper to conduct a localized voxel-wise multiple-subject 
group comparison study of DTI. The pipeline consists of 3 
steps: 1) Preprocessing, including image format converting, 
image quality check, eddy-current and motion artifact 
correction, skull stripping and tensor image estimation, 2) 
study-specific unbiased DTI atlas computation via affine 
followed by fluid nonlinear registration and warping of all 
individual DTI images into the common atlas space to 
achieve voxel-wise correspondence, 3) voxel-wise statistical 
analysis via heterogeneous linear regression and wild 
bootstrap technique for correcting for multiple comparisons. 
This pipeline was applied to process data from a fitness and 
aging study and preliminary results are presented. The 
results show that this fully automatic pipeline is suitable for 
voxel-wise group DTI analysis. 

Index Terms— Diffusion tensor, MRI, Voxel-wise 
analysis, Group comparison.

1. INTRODUCTION 

Diffusion Tensor Magnetic Resonance Imaging (DT-MRI, 
DTI) [1] is a relatively new but rather fast developing MR 
imaging modality, aiming to measure the diffusivity of 
water in tissue. DTIs have been widely used to investigate 
white matter microstructure and its changes in brain, in vivo 
including normal brain development, aging and pathological 
damages. Unlike traditional medical images, DTI at each 
voxel is a 3x3 symmetric positive definite matrix with 6 
independent elements. Then, scalar indices, such as 
fractional anisotropy (FA), mean diffusivity (MD) and 
eigenvalues, can be calculated from a tensor.  Due to the 
complexity of tensor images, the processing and analysis of 
DTI is still under extensive research.  

Most statistical analyses of DTI are based on region-
of-interest (ROI) methods, which usually involve manual 

ROI delineations and the statistical analysis of the averaged 
tensor indices within the ROIs. This kind of analyses often 
suffers from large intra and inter-person variability and bias 
in defining meaningful ROIs. In some situations when more 
spatially localized properties should be considered, voxel-
wise analysis as an alternative method may perform better.  

Voxel-wise analysis of DTI is characterized by spatial 
normalization of DTI, hypothesis test at each voxel and 
multiple comparison correction. The major challenges in 
voxel-wise DTI analysis include high quality voxel 
correspondence and multiple comparison correction in 
hypothesis test. SungWon Chung [2] described a voxel-wise 
analysis of single-subject serial DTI. This is a longitudinal 
comparison and intra-subject registration is much easier 
than the inter-subject group comparison 

Currently, there are 2 popular DTI group analysis 
methods. One is called Track-Based Spatial Statistics 
(TBSS) [3] method, developed by Stephen M. Smith, et al., 
in FMRIB, Oxford University. The other is a fiber-tract 
based analysis method developed by Casey B. Goodlett [4], 
et al. in University of Utah. In TBSS, B-spline based 
nonlinear registration is used to bring all the FA images into 
a specific template space. All the registered FA images are 
averaged and a skeleton of the mean FA image is created. 
Each subject’s aligned FA values are projected from the 
nearest relevant tract center onto the skeleton, attempting to 
solve the voxel correspondence and smoothing problems. 
Then, statistical analysis is done at each of the voxels on the 
FA skeleton. With TBSS, it is easier to test whole brain than 
ROI based methods. However, only a very small amount of 
“voxels” on the skeleton are tested and this is not a true 
voxel-wise method. Group difference may also be reduced 
or eliminated during the FA based nonlinear registration 
procedure. In the fiber tract based method, a study specific 
unbiased tensor image atlas is first computed via a fluid-
based nonlinear registration method [5]. Fiber tracking is 
done in the atlas tensor image and then, the diffusion 
properties are parameterized along the fiber tracts from all 
the aligned subjects’ tensor images. Finally, group 
comparison is conducted on the on-tract diffusion properties. 
Limitations of this  method  include  manual interventions in  
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specifying ROIs for fiber tracking in atlas and fiber tracts 
cleaning before parameterizing. Both methods do not 
consider the whole brain images. 

We present here a fully automated pipeline for voxel-
based DTI group analysis, with no need to delineate ROIs 
and ability to investigate localized changes anywhere in the 
brain. Correlation studies can also be conducted. This 
pipeline consists of preprocessing, unbiased DTI atlas 
computing, voxel-wise statistical modeling and multiple 
comparison correction. 

2. METHODS 

2.1 Preprocessing 

First, diffusion weighted images (DWI) in dicom format 
were converted into a NRRD file format using 
DicomToNrrdConverter, a 3D Slicer plug-in tool (slicer.org, 
v3.2). The NRRD format stores all the necessary image and 
diffusion information and is used by NAMIC as DWI and 
DTI data format. Second, DWI image quality checking was 
performed on each of the subjects’ DWIs to check if the 
DWIs contained large slice brightness artifacts, intra-
gradient Venetian blind artifacts and motion artifacts using 
a locally developed tool. If slice brightness and/or Venetian 
blind artifacts were/was found, the whole gradient data 
would be discarded. If large motion artifacts were found, 
corresponding gradient data would also be excluded. Only 
small motion artifacts between different gradients were 
allowed to reside in the DWIs fed into an eddy-current and 

motion artifact correction tool (developed by P. Thomas 
Fletcher and Ran Tao at the University of Utah). Fig. 1. 
shows the motion artifact check results before and after 
eddy-current and motion correction, as well as the 
corresponding FA and color coded FA images. After 
artifact correction, all the motion remnants were all at the 
level of subvoxel. Third, diffusion tensor images were 
estimated using a weighted least square method. DTI FA 
and MD maps were computed. Skull stripping is performed 
automatically via a brain mask computed from baseline 
images with itkEMS. Masking out the non-brain tissues 
stabilizes the following registration step. All DTI tools and 
itkEMS are part of the NeuroLib (www.ia.unc.edu/dev/).

2. 2 Unbiased DTI Atlas Building 

All the DTIs needed to be spatially normalized to get voxel 
correspondence across all subjects for group comparison. 
Like most voxel-based analysis methods, registration 
accuracy is crucial for identifying meaningful group 
differences so that a large deformation non-linear 
registration algorithm is needed. We used a nonlinear fluid 
deformation based high-dimensional, unbiased atlas 
computation method [6]. The atlas building procedure is 
initialized by affine registration and followed by nonlinear 
registration of a feature image which is sensitive to the 
geometry of white matter and is similar to methods 
proposed in the literature for modeling white matter by its 
medial sheet [3, 7]. With the deformation field data, we 
warped each of the tensor images into the unbiased space 

a b 

c d 
Fig. 1. DWI quality control and artifact correction. a. Rigid registration parameters between each gradient and baseline
image of the original DWI. b. FA and color coded FA images before eddy-current and motion correction. c. Rigid
registration parameters between each gradient and baseline image of the corrected DWI. d. FA and color coded FA images
after eddy-current and motion correction. 
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and got the aligned DTIs. After averaging all the registered 
DTIs, a study specific unbiased DTI atlas was created. The 
tensor warping and averaging were conducted in a Log-
Euclidean space. Fig. 2 shows the schematic view of the 
DTI atlas computation. 

Fig. 2. Scheme of unbiased DTI atlas computing 

2.3 Voxel-wise analysis 

Scalar indices (FA, MD, et al.) were then calculated from 
the aligned tensor images. After minimal Gauss smoothing 
with variance=1, the images were fed into the statistical 
comparison tool. The brain regions other than white matter 
were masked out before the statistical modeling and testing. 
This reduced not only the unnecessary computation but also 
the number of multiple comparisons, and thus increased the 
statistical power in detecting the group difference. The 
white matter mask was made up by all the voxels where FA 
values were larger than 0.2 in the DTI atlas.  

For the DTI voxel-wise analysis, there is currently no 
standard statistical framework. Due to the non-Gaussian 
nature of DTI data, semiparametric statistical methods 
without assuming any specific parametric distribution are 
more suitable. Two non-parametric techniques were applied 
for the DTI statistical testing. One is bootstrap, and the 
other is permutation-based. Both techniques have shown 
the ability to sample and conduct the group difference 
significance testing. We used a heteroscedastic linear model 
for statistical modeling and a robust test procedure based on 
the wild bootstrap method for correcting multiple 
comparisons developed by Hongtu Zhu [8]. Finally, the 
multiple-comparison corrected significance map was 
produced. Fig. 3. illustrates this statistical procedure. 

Fig. 3. Voxel-wise group comparison scheme 

2.4 Correlation analysis 
Voxel-wise Pearson correlations were calculated between 
FA and the subject’s Oxygen consumption (VO2). The 

correlation significance was also tested with the same wild 
bootstrap technique as for group testing described in 2.1.3. 

3. EXPERIMENTS 

3.1 Subjects 

Fifteen older adults between 60 - 76 years of age (8 males, 
7 females) completed the testing procedures. All were 
college educated, healthy, without orthopedic, metabolic 
cardiopulmonary or cognitive limitations. Subjects reported 
participating in either aerobic exercise for a minimum of 
180 min/wk for the past 10 years or less than 90 min/wk for 
the past 10 years. Aerobic fitness was verified with a peak 
aerobic capacity test on a treadmill. This research was 
approved by UNC’s Biomedical IRB for Human Subjects. 

For this preliminary study and hypothesis generation, 
one subject was excluded and the rest were divided into 2 
groups based on self-reported aerobic activity participation. 
Group 1 is more aerobically active (n=7, 5m, 2f), and 
averaged 65.3 years. Group 2 is less aerobically active (n=7, 
2m, 5f) and averaged 68 years 

3.2 Diffusion Tensor Imaging 

Images were acquired with a head only 3.0 Tesla MRI unit 
(Allegra Siemens Medical Systems) with a maximum 
gradient strength of 40 mT/m and a maximum slew rate of 
40 mT/m/msec. A spin echo diffusion tensor weighted 
sequence was used to acquire the MR images. A baseline 
(b=0) image and 21 directional images (b = 1000s/mm2)
were acquired (4 NEX) at an isotropic resolution of 2mm.  

3.3 VO2Peak Assessment 

Oxygen consumption (VO2) was measured using the 
PARVO TrueMax VO2 Metabolic Cart System 
(ParvoMedics, Salt Lake City, Utah). Subjects underwent a 
physician-supervised, ECG-monitored ramped peak 
exercise stress test on a treadmill (TM) utilizing Duke’s 
Modified Pepper Protocol.  

4. RESULTS 

The pipeline described above was used to analyze this 
aging and fitness study dataset. While doing voxel-wise 
group analysis, age and gender influence were corrected as 
covariants in the heteroscedastic linear model. Pearson 
correlation was computed with the raw FA values and the 
peak VO2, both of which were not corrected for age and 
gender influence as the peak VO2 is highly gender variable. 

Fig. 4. shows the group comparison and correlation 
analysis results of FA images. In 4a., FA group difference 
significance maps (in red, p<0.05) were overlaid on the 
atlas FA images. In 4b., correlation significance maps (in 
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red, p<0.05) were overlaid on the Pearson correlation 
images with non-white matter areas masked out. Group 
differences were found within the areas of cingulum, 
splenium, arcuate, and the corpus callosum (CC). 
Significant positive correlations were found in genu, 
splenium, and CC. 

Due to the low the sample size and self reported 
grouping, much care needs to be taken when drawing any 
conclusions. 

5. CONCLUSIONS 

We have described a complete pipeline for voxel-wise 
group DTI analysis. This pipeline is fully automatic and 
thus is very suitable for DTI data sets as illustrated in a 
fitness and aging study. All processing tools will be made 
available as open source within the UNC NeuroLib. 
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a  b 
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Fig. 4. Voxel analysis results. a. Axial view of significance maps (in red, p<0.05) overlaid on FA images of the unbiased DTI
atlas. b. Axial view of correlation significance maps (in red, p<0.05) overlaid on a white matter masked Pearson correlation
images. Within the correlation maps, correlation equals 0 where the color is gray as in back ground, white equals 1 and black
equals -1. c. and d. are zoomed in views of a. at the Arcuate and Splenium area.
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