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Abstract. Computing failure probability is a fundamental task in many important practical
problems. The computation, its numerical challenges aside, naturally requires knowledge of the prob-
ability distribution of the underlying random inputs. On the other hand, for many complex systems
it is often not possible to have complete information about the probability distributions. In such
cases the uncertainty is often referred to as epistemic uncertainty, and straightforward computation
of the failure probability is not available. In this paper we develop a method to estimate both the
upper bound and the lower bound of the failure probability subject to epistemic uncertainty. The
bounds are rigorously derived using the variational formulas for relative entropy. We examine in
detail the properties of the bounds and present numerical algorithms to efficiently compute them.
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1. Introduction. Probability of failure is an important quantity in many appli-
cations involving system safety, risk management, reliability analysis, etc. Accurate
computation of failure probability is thus of fundamental significance. A large amount
of literature has been devoted to this task, ranging from more mathematically rigorous
studies for model problems to more heuristic ones for engineering systems.

This paper seeks to study the problem in a different context. That is, we study
how to estimate the probability of failure when complete knowledge of the input
probability distribution is not available. When lack of knowledge is the primary
source of the uncertainty, it is often referred to as epistemic uncertainty. Though
different definitions and classifications exist in the literature, in this paper we will
use epistemic uncertainty to refer to the random inputs whose complete information
about the probability distribution is not available and use aleatory uncertainty to refer
to the random inputs whose probability distribution is fully prescribed.

The study of the impacts of epistemic uncertainty is more difficult because many
of the existing probabilistic tools do not readily apply. Some of the existing approaches
include evidence theory [7], possibility theory [3], and interval analysis [6, 12]. These
method have their own advantages, though most do not address efficient numerical
implementations. More recent studies employ approximation theory [1, 5, 13, 8].

This paper is largely motivated by the work of [2], where a method utilizing
the variational formulas of relative entropy is developed to derive upper bounds for
the predictions of epistemic uncertainty computations. In this paper we develop a
methodology, similar to that of [2], for failure probability computation. Most notably
we derive both the upper bound and the lower bound for the failure probability subject
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to epistemic inputs. The bounds are rigorous and tight—there are no constant factors.
In addition to the mathematical derivations, we also discuss numerical algorithms to
effectively compute these bounds. The bounds can be highly useful in practical prob-
lems, in the sense that one will have good estimates of both the “best-case scenario”
and the “worst-case scenario” for the probability of failure. It is worth noting that
a similar problem has been studied in [11], where both the probability distribution
function and the function defining failure can be unknown. This is a broader setup
and is tackled by using concentration-of-measure inequalities. It results in an opti-
mization problem in infinite dimensions and is one of the focuses of [11]. Here we focus
on the problem with only unknown probability distribution functions. Our approach
utilizes variational inequalities of relative entropy and results in an optimization prob-
lem of a single real parameter. The existence of the supremum and infimum of the
optimization problem is established; hence the optimization problem can be solved
easily.

This paper is organized as follows. After setting up the problem and notation
in section 2, we derive both the lower bound and the upper bound in section 3.
The estimates are then extended to the case of mixed-type random inputs with both
epistemic and aleatory uncertainty in section 4. Numerical algorithms for computing
the bounds are briefly discussed in section 5. We then provide numerical examples
in section 6 to illustrate the properties of the bounds, before concluding the paper in
section 7.

2. Problem setup. Throughout this paper we adopt the standard notation
(Q, F,P) to denote a probability space, where 2 is the event space, F the o-algebra,
and P the probability measure, and denote by P () the set of probability measures
on (2, F). Let y = (y1,%2,---,¥Yn,) be an n,-dimensional (n, > 1) random variable
with distribution function p(y). The failure probability, Py, is a multidimensional
integral defined as follows:

(2.1) Py = Probly € ) = [ 1a, p(dy),

where I is the characteristic function satisfying

1, ye€Qy,
HQf(y):{ 0, y¢Q;,

and ) is the failure region defined as

(2.2) Qp ={y:g(y) <0}.

Here the function g is the limit state function, or failure function, that determines
when failure occurs. Note that in most practical systems the random variable y
represents the various kinds of uncertain inputs to a complex system, and the function
g represents a complicated mapping between the input uncertainty y and the output
quantity of interest that defines failure. For example, in a structural design problem, y
may represent the uncertainty in the system parameters, constitutive laws, boundary
and initial conditions, external forcing, etc., and the failure function may be defined as
g(y) = strength(y) — load(y), with g < 0 representing the failure of the system. The
explicit form of g is not known for most systems and can only be simulated numerically
or tested experimentally in a sampling manner. Since most of the practical systems
are highly complex and time-consuming to simulate, accurate computation of failure
probability is a challenging task.
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There exist a large variety of methods for failure probability computation. Roughly
speaking, the methods fall into two categories, sampling-based methods and
nonsampling-based methods, where the former are mostly originated from Monte
Carlo sampling (MCS) and the latter utilize techniques such as response
surface/surrogate or asymptotic approximation such as first-order reliability analy-
sis. We will not engage in an extensive review of these methods, because in this paper
we will study the problem in a different context—epistemic uncertainty.

2.1. Epistemic uncertainty. The calculation of failure probability (2.1) de-
pends obviously on the probability measure p. In almost all the existing methods for
failure probability computation, it is assumed that the probability measure is known.
However, in practice this information is rarely available. Due to our lack of knowledge
of the large variety of input uncertainty, it is very difficult, if not impossible, to fully
specify the probability distribution of all the uncertain inputs. In the literature this
is often referred to as epistemic uncertainty. While it is due to our lack of knowledge,
uncertainty of statistical nature with full probabilistic information is often referred
to as aleatory uncertainty. Here we refrain from more engaging discussions on the
categorization of uncertainty, as it is beyond the scope of this paper.

The epistemic uncertainty considered in this paper is defined as follows: (1) it
is of parametric type, i.e., it stems from uncertainty in the physical parameters of a
system and/or in the hyperparameters characterizing the random inputs of the sys-
tem (e.g., random variables in Karhunen-Lo&ve expansion of certain input random
processes) and (2) its complete probability distribution is unavailable. Some possible
scenarios are as follows: (i) The distribution of a parameter is unknown and there
is no sufficient information/measurement to suggest it is Gaussian, uniform, or any-
thing else. (ii) The distribution of a parameter is known only to a certain degree. For
example, there is enough evidence to suggest that a parameter has a Gaussian distri-
bution. However, its mean and/or variance cannot be specified precisely due to lack
of measurement. (iii) The marginal distributions of a set of parameters are known,
but the joint distributions among them are not known. Note that this is pervasive
in most problems with multiple uncertain parameters, particularly for non-Gaussian
distributions. And certainly one can conjure up many more similar situations. Un-
certainty quantification in this context thus presents a different challenge, for most
of the existing probabilistic tools are not readily applicable because of the lack of
probability information.

In this paper we confine ourselves to the problem of (2.1) and focus on how to
obtain a reliable estimate of Py when the underlying probability measure p is not
known.

3. Bound estimation for epistemic uncertainty. In this section we establish
both the lower bound and the upper bound for the failure probability estimation (2.1).
The results are stated using generic notation of v and p for probability measures.

3.1. Relative entropy. As a measurement of the difference between two prob-
ability measures, relative entropy plays an important role. Once again let (2, F,P)
be a probability space and P(€2) be the set of probability measures on (€2, F). For
p € P(Q), the relative entropy, or the cross entropy, R(:||p) : P(Q) — R U {oo} is
defined as

(3.1) Rol) = [ log(j—z>d7
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whenever v is absolutely continuous with respect to p; otherwise, we set R(7||p) £ oo.
Among the many properties of the relative entropy, we here introduce the following
ones that are relevant in our paper.

LEMMA 3.1. Let v,p € P(Q). Then

(a) R(vllp) >0 and R(v|lp) = 0 if and only if v = p;

(b) if 7y is absolutely continuous with respect to p, then R(v||p) < co.

For other properties such as R(:||-) being a convex, lower semicontinuous function
with compact level sets, etc., readers are referred to [4].

3.2. Lower bound. An important property of the relative entropy is a varia-
tional duality between the exponential integral and the relative entropy. This is the
basis for our derivation of the lower bound for (2.1). Here we restate Proposition 1.4.2
in [4] and leave its details and proof to [4].

PROPOSITION 3.2 ([4]). Let (2, F,P) be a probability space, k be a bounded
measurable function mapping Q into R, and p € P(QQ). Then the following conclusions
hold:

(a) (3.2) —1og/ e *dp=inf [R(ﬂp) +/ kdv] .
Q YEP(Q) Q
(b) Let v € P(R2) be absolutely continuous with respect to p and satisfy
do N e M@
3.3 —(z) & —pr.

Then the infimum in the variational formula (3.2) is uniquely attained at ~o.
A straightforward conclusion from Proposition 3.2 can be presented as follows.
COROLLARY 3.3. Under the same assumptions as in Proposition 3.2, one has

(3.4) / kdy > — log/ e *dp— R(v|lp) for any v € P(Q).
Q Q

Since the characteristic function Ig, in (2.1) is naturally bounded and measurable,
we set the function k in (3.2) to be clg,, ¢ > 0, and immediately obtain the following
result.

COROLLARY 3.4. For any p € P(Q),

(3.5) —log/ e rdp = inf [R('y”p) —l—/ C]IQfd"/:| for any c € (0, 00).
Q 7EP(Q) Q

It follows that
1 e, 1
(3.6) Q]IgfchZ —Elog Qe fdp — ER(7H,0) for any v € P(2).

As a result, we obtain a lower bound of the failure probability (2.1) using an arbitrary
probability measure ~:

1 1
(3.7) / Io,dy > sup [—— log/ e rdp— ZR(v|p) for any v € P(Q).
Q c€(0,00) c Q ¢
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3.3. Upper bound. To obtain the upper bound of the failure probability esti-
mate using a different probability measure, we state Lemma 1.4.3(a) in [4].

LEMMA 3.5 (Donsker—Varadhan variational formula). Let Cp(S2) be the space of

bounded continuous functions mapping ) into R and ¥,(Q) be the space of bounded
Borel-measurable functions mapping ) into R. Then for v, p € P(§2),

(3.8) R(y|lp) = sup [/ gd’y—log/egdp] = sup [/ wd’y—log/ed’dp].
gecy (@) Lo Q e, () LJa Q

It then follows that for any ¢ € ¥;,(),

(3.9) /Q wdy < Riy|lp) +log /Q .

For the failure probability problem (2.1), we let ¢ = clq,, where ¢ € (0, 00), and
obtain

1 1
(3.10) / o, dy < =R(vllp) + = log/ e dp.
Q c c Q

An upper bound immediately follows as

1 1 .
3.11 Io,dy < inf |-R -1 “rdp| .
(3.11) Loy < _nt[Lre00) + iox [ ]

3.4. Properties of the bounds. For notational convenience, we employ the
following definitions for the exponential integrals. For any ¢ > 0, let

1
0 (c) & —Elog/Qe_CH“fdp,

1
- 1og/ e dp.
c Q

Note that by I’'Hopital’s rule, we immediately have

(3.12)

(1>

0" (c)

(3.13)

These naturally allow us to extend the definitions for ©~(¢) and O (¢) to ¢ € [0, o).
We now summarize the established results of the upper bound (3.11) and lower
bound (3.7) into the following statement.
THEOREM 3.6. Let (2, F,P) be a probability space and p € P(Q) be a measure,
and define

(3.14) R* = sup R(v|p),
yEA

where A C P(Q) is a set of probability measures. With the definitions of ©F and ©~
in (3.12), define

1
3.15 pP*42 inf |t -R*
( ) f cEl(IOl,oo) [ (c)+ c }
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and
YN — 1 *
(3.16) Py = sup [@ (¢)— =R } .
c€(0,00) c
Then, the failure probability integral (2.1) satisfies
(3.17) Pf < /Hgfd’y < Py for any v € A.

Important properties of the upper bound involving ©F have been established in
[2]. Here we generalize the properties to the lower bound involving O~ .

PROPOSITION 3.7. Let D = {c: ©F(¢c) < o0} and E = {c: O (¢) > —o0},
where OF and ©~ are defined in (3.12). Denote by D° the interior of D and E° the
interior of E, and assume D° # () and E° # (). Let R* be a positive constant. Then
the following conclusions hold:

(a) ©T(c) is differentiable on D° and nondecreasing for ¢ > 0. There is a unique
¢ € (0,00] at which ©F(c) + 1R* attains a local minimum. The minimum
occurring at ¢ = oo means that ©F(c) + LR* > lim._o ©F(c) for a well-
defined lim,_, o, O (c).

(b) ©(c) is differentiable on E° and nonincreasing for ¢ > 0. There exists a
unique ¢ € (0,00] at which ©~(c) — LR* achieves a local mazimum. The
mazimum occurring at ¢ = oo means that ©~(c) — 1R* < lime_,00 O (c) for
a well-defined lim.—,o, ©(c).

Proof. Part (a) is a direct consequence of Proposition 3 in [2], by using the fact

that Io, is bounded and positive. We will leave the details of the proof to [2].

For part (b), let H(c) £ ¢- 07 (c) = —log [ ¢~ p(dz). Then 0 < H(c) < 1 for

any ¢ > 0 and H(0) = 0. Consider

_ [To e p(da)
[ e p(d)

H'(c)

and

() — (fllnfedj"fp(d:v)>2 _ Jloge " pld)
[ e~ pda) J e~ pldr)
— (H'(¢)* - H'(0)

Since 0 < Ig, < 1, it follows that 0 < H'(c) < 1; then H"(c) < 0. As a result, H(c)
is a nondecreasing and concave function and H’(c¢) is nonincreasing. The fact that

1 1 1 ¢

(3.18) —-H(c)=—(H(c) — H(0)) = —/ H'(t)dt
c c ¢ Jo

implies ©~ (c) = 1 H(c) is nonincreasing for ¢ > 0.

To establish the local unique maximum, let us first assume M £ sup F = oo.
Taking the derivative of ©~(c) — 1R* then gives

&3O - iR = Sl - HEO + R
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Define a mapping f : [0,00) — R as f(c) = c¢H'(¢) — H(c); then f(0) = 0. Ob-
serving that f'(c) = ¢H"(c) <0, then f(c) is monotonically decreasing on [0, c0). If
lim. o f(¢) < —R*, then there is a unique solution to cH'(c) — H(c) + R* = 0
and the claim is satisfied. If lims o f(c) > —R*, then 1H(c) — 1R* is mono-
tonically increasing on [0,00). It follows from (3.18) that 1H(c) < H'(0) < 1,
as H'(c) is nonincreasing for ¢ € [0,00). Then there exists a well-defined limit
1H(c) = lim, 00 [ H(c) — 2 R*], which is the required maximum.

Next let us consider the case of M € (0,00). It is straightforward to see that
H(c) T oo and H'(¢) | —o0 as ¢ T M because of the monotonic convergence. Let
0 < b < ¢ < M; then the relation

lime—s 00

Hic) = /O H(t)dt > bH'(b) + (c — b)H'(c)

implies ¢cH'(¢) — H(c) < b(H'(c) — H'(b)). By fixing b and letting ¢ 1 M, it follows
that ¢cH'(¢) — H(c) } —oo0 as ¢ 1 M. By applying the same argument in the case of
M = oo, the conclusion can be established. O

A direct consequence of Proposition 3.7 is that the minimum of the upper bound
and the maximum of the lower bound in Theorem 3.6 exist and can be computed by
a particular optimization algorithm.

3.5. Short summary and remarks. Here we collect the above results into a
short summary and provide an itemized algorithm to illustrate the implementation of
the results. For a practical problem where the probability function of the input vari-
ables are unknown, the procedure for computing the bounds on the failure probability
is as follows:

(1) Identify a set of probability measures A C P(2). In practice, this set corre-
sponds to the possible/allowable probability distributions that the uncertain
inputs may possess.

(2) Choose a nominal probability measure p. In principle, this nominal probabil-
ity can be arbitrary. However, it is desirable to choose p to be in the set A
based on the best available information about the probability distribution of
the inputs.

(3) Compute R* by (3.14). This step is usually carried out analytically or with
negligible numerical error.

(4) Compute both the upper bound and the lower bound using Theorem 3.6 via
the optimization problems (3.15) and (3.16). Here the quantities ©~ (¢) and
©1(c) are defined in (3.12).

We remark that the computation of ©~(¢) and ©1(c) using (3.12) involves eval-
uating integrals in the failure domain. It requires simulation or experimentation of
the underlying stochastic system and can be expensive. However, this kind of forward
stochastic problem is pervasive in most stochastic problems, and it is reasonable to
conduct at least one set of forward problem computations. The optimization prob-
lems (3.15) and (3.16), however, do not add more simulation cost, as the same samples
can be used for all values of c. This will become clearer in section 5 when numerical
methods are discussed.

We also remark that the “allowable” set A of probability measures should be
chosen as small as possible, using the best available information, to obtain tight
bounds. From a mathematical point of view, the set A can be arbitrarily large.
However, the larger the set A4 is, the wider the bounds of the failure probability
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will be. This is a natural reflection of less available information about the inputs,
regardless of the technique one utilizes to estimate the bounds.

4. Bound estimation for mixed aleatory and epistemic uncertainty. We
now generalize the above results to the case of mixed aleatory and epistemic uncer-
tainty. From this point on we will reserve the variable x for the aleatory variable
with known probability measure u(x) and the variable y for the epistemic variable
whose probability distribution is not completely known. We also denote the domain
of the aleatory variable = as £2; and that of the epistemic variable y as (23. Obviously,
Q1 ®Q = Q and (Q1, F1,P(Q1)) and (Qq, Fa, P(Q2)) are probability spaces. The
failure probability Py in (2.1) is then rewritten as

(4.1) Py = /Q /Q Io, (2, y)u(dc)p(dy).

where p is known and p is unknown.

We employ a similar technique as in [2] and generalize the definitions (3.12) to
the case of mixed-form uncertainty. Two forms of generalizations can be constructed.
The first form is a straightforward separation of the aleatory and epistemic variables
in the exponential integral. That is, for ¢ > 0, let

1
= log / / e Y 1 (da) p(dy)
c Qo J
1
—=log / / e~ M0 )y (d) p(dy).
¢ Qo J

1>

A*(c)
(4.2)

1>

A~ (¢)

The second form of generalization integrates the aleatory variable in the exponential
function first and takes the following form, for ¢ > 0:

1 C. xr X
Af () £ ~log | elonor et ay),
(4.3) . o
A7 (c) 2 —Zlog oo, —loy (wxy)u(dw)p(dy).
C Qo

Since the limits of these quantities are well defined,

c—0t

lim A (AT AY@AT @) = [ [ T, @ utdn)otay)

their definitions can be easily extended onto [0,00) by setting A~ (0), AT (0), A7 (0),
and A} (0) to be the aforementioned limit.

Upon applying Jensen’s inequality to the exponential function, we obtain Af (c) <
A*(c) and Aj (c) > A7 (c).By setting ¢ = [, clo,u(dz), ¢ > 0, in (3.9), we obtain
the following inequality:

@) [ [ To e nudop(ds) < LR ) +AT(0)  for any ¥ € P()

where R(p|7y) is the relative entropy between measures p and +, defined in (3.1).
Similarly, by setting k = [, clo,u(dz), ¢ >0, in (3.4), we obtain
(4.5)

| [ o Geapntalptin) = =R E0) + A7 () for any 5 € P(E).
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Since c is an arbitrary positive constant, (4.4) and (4.5) immediately result in an
upper bound and a lower bound for the failure probability (4.1), summarized in the
following statement.

THEOREM 4.1. Let (1, F1,P(1)) and (Qa, Fa, P(22)) be the probability spaces
as defined above. Let p € P(2y) and p € P(Q2) and define

(4.6) R* = sup R(y(dy)|lp(dy)),

where A C P(Qg) is a set of probability measures. With the definitions of AT and Ay
n (4.3), define

Sl
>
-
B
£

[1R@uwmwwm>+Ar@ﬂ,

(4.7) ‘

1 _
t £ sup [—ER(p(dy)ll'y(dy)) + A (0)] :
Then, the failure probability integral (4.1) satisfies

(4.8) Py < /Q /Q Lo, (z,y)u(dx)y(dy) < Pf  for any v € A.

Similar to the epistemic uncertainty case, statements regarding the minimum and
maximum of the failure probability can be made.

PROPOSITION 4.2. Let D = {c : Af(c) < oo} and E = {c: A](c) > —o0},
where AT and A} are defined in (4.2). Denote D° as the interior of D and E° as the
interior of E and assume D° # () and E° # 0. Let R* be a positive constant. Then
the following conclusions hold:

(a) Af(e) is differentiable on D° and nondecreasing for ¢ > 0. There is a unique
¢ € (0,00] at which A (c) + LR* attains a local minimum. The minimum
occurring at ¢ = oo means that Af (c) + 1R* > lim._,o0 Af (c) for a well-
defined lim,_, o, Af (c).

(b) A7 (¢) is differentiable on E° and nonincreasing for ¢ > 0. There exists
a unique ¢ € (0,00] at which A] — %R* achieves a local mazimum. The
mazimum occurring at ¢ = oo means that Ay (¢) — 1R* < lime_o0 A7 () for
a well-defined lim._, A7 (c).

Proof. Part (a) is a direct consequence of Proposition 3 in [2] by setting the

nonnegative function F' there to be F(y) = [, Ia,u(d).

For part (b), let us define

H©) 2 e A7(0) = ~log | el 0,0 p(ay),
Q2
It follows immediately that 0 < H(c¢) <1, H(0)=0,0< H'(¢) <1, and H"(c) <0.
With these preparations and by following the same steps as in the proof of Proposition
3.7(b), we establish the claim here. O

By exploring the behavior of the hybrid forms A (¢) and Aj (c) when ¢ goes to
00, we obtain the following result.

THEOREM 4.3. With all assumptions stated as before and AT and A] defined in

(4.3), assume Q1 and Qo are finite-dimensional spaces. Then the following relations
hold:
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ess sup / Lo, (z,y)u(dz) = lim Af(c),
yGQQ Ql Cc— 00

(4.9)

ess inf o, Lo, (z,y)p(dz) = lim Ay (c).

Proof. For notational convenience, let us define

(4.10) Viy) = /Q Lo, (z, y)p(dz),

which is the volume of the failure domain projected on the y-plane. Naturally V (y)
is bounded and nonnegative for any y € 5. Then,

1
Af(c) = = log / eV W) p(dy)
C Qs

(4.11) ~ log </Q2 ecV(y)p(dy))%

=logle" ™| (a)-

As a result,
lim A (¢) = log le" ¥

(4.12) — log(ellV @)

=ess sup V(y).
yeQ2

Similarly, for A7 (¢), we have

_ 1 e
) —glog/ﬂ e VW p(dy)

19 —log </92 ecv(y)p(dy)) ’

= —log|le” ™1 (-

Then, because of the nonnegativity and boundedness of V (y),
; - — -V(y)
Tim A7 (€) = log e~ |

(4.14) = —log(ell=VWl=)
= ess ylenéz V(y). O

Theorem 4.3 ensures that lim. . Af (¢) is the tightest upper bound for
le Io, (x, y)pu(dz) for any epistemic variable y and lim. ., A (c) is the tightest lower
bound.

5. Numerical methods. After introducing and establishing the bounds for the
failure probability, we investigate efficient numerical algorithms for computing these
bounds. Since the bounds are defined via the exponential integrals in ©1, ©~, Af,
and A7, it suffices to discuss the computation of these terms. These quantities in-
volve integration of exponential functions in the irregular failure domain, and we will
primarily discuss the basic algorithms based on sampling. Other types of methods
used in the traditional failure probability computation can potentially be employed,
and we will leave those choices to future research.
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5.1. MCS. MCS is a straightforward way to compute the multidimensional inte-
grals involved in the bounds. For the epistemic case, based on the definitions of ©F(c)
and ©~(c¢) in (3.12), we assign a probability measure p to the epistemic variable. By
doing so, we give the measure p the role of the nominal, or reference, probability
measure. Let z(), i =1,..., M, be a set of samples drawn from p, where M > 1 is
the number of samples. Then for any ¢ > 0,

1 1 & @
@Jr(c) ~ p log (M Zecﬂaf(z )) ’

=1

- 1 1 - —clg, (z2(9)
(] (c)m—glog MZe s .

i=1

Numerical convergence is achieved by increasing the number of samples, i.e., M — co.
Note that the same set of samples can be used for any constant c. This implies that the
optimization problems (3.15) and (3.16) do not incur repeated MCS when c is varied.

For the mixed aleatory and epistemic uncertainty case, we consider A} (c) and
AT (¢), defined in (4.3). Let W i =1,...,M,, be samples drawn from the known
probability measure p(z) for the aleatory variable z and y@ j=1,..., M,, be sam-
ples drawn from an assigned nominal probability measure p(y) for the epistemic vari-
able y. The following numerical estimates can be readily employed:

M
1 1 o L yMe (@) ()
Af(e) ~ = log _E ez 2i=i clay @y
c M, e

M

1 1 2 L Mo _ oS

Ay () m ——log | 5= D e T einy ()
yj:1

Once these quantities are computed, the bounds from Theorem 3.6 and Theorem 4.1
can be computed via a proper optimization procedure.

5.2. Surrogate-based hybrid algorithm. One of the main difficulties of MCS
is its simulation cost, as typically a large number of samples are required to obtain
accurate estimates of the underlying integrals. Each sample requires a full-scale simu-
lation of a potentially very complex system to decide whether it is “safe” or a “failure.”
And one can usually not afford too many samples. In many cases, though, there exists
a surrogate model that can approximate the failure function g, which defines the fail-
ure domain Qy (2.2) with reasonable accuracy. That is, one has an explicitly known
function g =~ g. It is then possible to improve the performance of MCS via the use of g,
because sampling of g incurs no simulation cost of the underlying system. However,
a direct MCS sampling on the surrogate g, which is the standard approach of the
response surface method (RSM), is fundamentally flawed and can lead to erroneous
results [10]. To take advantage of the surrogate g, a hybrid algorithm that combines
the standard MCS and RSM can be used. The main idea is to use the samples of §
(which require no simulation effort of the underlying system) “away” from the failure
mode g = 0 and then use the samples of the real system “close” to zero. The details
of the algorithm, along with its convergence proof and numerical performance, can
be found in [10, 9]. Here we only outline its implementation for computing the terms
Ot, 07, Af, and A}
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For ©"(c) and ©~ (c¢) in (3.12), let p be a nominal probability measure assigned

to the epistemic variable. Let z(), i = 1,... M, be a set of samples drawn from p,
where M > 1 is the number of samples. Then for any ¢ > 0, we have the following:
Initialization:
(a) Evaluate §(z?), i = 1,..., M, and sort the results in ascending order
of |g(=™)].
(b) Set PO = L S™M 15 01(2™) as the initial estimate of the failure prob-
ability.

(¢) Let 1 < dM < M be the number of samples to be evaluated by the true
model in each iterative step and n > 0 be an error control. Let 3S7 be
the set of the ((j — 1)0M + 1)th sample to the (j0M)th sample in the

sorted sample set, where j =1,..., f%}
At the kth iterative step (k > 1):
(d) (5.3) PE =P 4 > [Igcoy(2) — Iggeoy (2)).
2€08k
(e) If |P*— PF=1| <, exit; otherwise, let k <— k+1, and repeat the iterative
step.
Upon the completion of the iteration, set
- i k J-
(5.4) fi(z) = Iigcoy(2) ifz€ 9]2158 ;
I5<01(2), otherwise.
Then
M
1 1 = (d)
0+ (c) ~ Log [ L 3 ez
0= b (332,
(5.5) X M
_ ~ L ,cﬁ(z(i))
07 (c) = Clog<lee )
For the mixed aleatory and epistemic case, let ()i = 1,..., M,, be samples
drawn from the known probability measure u(x) for the aleatory variable z and
y @D j=1,..., M, be samples drawn from an assigned nominal probability measure

p(y) for the epistemic variable y. We then repeat the above procedure to determine
[ in (5.4). The terms of Aj and A] can then be readily approximated by

My ~ . .
Af(0) ~ tlog | = 3 et DA G0 |
c My

j=1

M,
1 1 J x T i j
A7 (c) = - log T E :eﬁ St —cl(@® y)

6. Numerical examples. In this section we provide a few examples of comput-
ing the bounds for failure probability. For benchmarking purposes, the examples here
all have analytical expressions for the failure function, as our goal is to examine the
behavior of the bounds rather than the performance of the numerical algorithms. All
numerical results are obtained by using algorithms based on MCS using a sufficiently
large number of samples so that the numerical errors are negligible.
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Throughout this section we use A to denote the set of probability measures that
the epistemic variable can take and p the nominal, or reference, probability measure
from which the bounds are computed. The set A in all examples is assumed to
be a parameterized family of distributions, for example, Gaussian distributions with
varying mean and variance. This corresponds to the practical cases where one has a
rough idea of the type of distribution of the epistemic variable and is unsure about its
precise parameter setting. Note that one can always make A a large set to reflect the
severe lack of knowledge of the problem. The bounds of the failure probability would
inevitably become large. When A is sufficiently large, we will obtain the bound
of 0 < Py < 1 without resorting to any estimation techniques, because this is, by
definition, the natural bound for P;.

6.1. Example 1: Ordinary differential equation. Consider a random ODE

(6.1) Z—TZ = —Xu, u(0) = uo,
where X is a random variable representing the uncertain input and wug is the initial
condition. The problem admits a trivial analytical u(t) = uge™**, though its avail-
ability is immaterial to the computation task we perform here. The failure function
is defined as g(X) = uq — u(1), where ug > 0 is a constant. In all the examples here
we fix ug = 1 and consider two cases:
e Regular probability. Here we set uq = 4 and the failure probability P; ~
O(1).
e Small probability. Here we set uq = 70 and the failure probability P; ~
0(1072).

6.1.1. Epistemic uncertainty. In the first set of tests we treat the variable X
as an epistemic variable and restrict its distribution to a set of Gaussian distributions.
More specifically, we consider the set of probability measures A associated with the
following three cases:

(la) N(m,1):m e [-2.2,1.8],

(1b) N (=2,0): 0 €]0.9,1.1],

(1c) N(m,o) :m e [-2.2,—-1.8],0 € [0.9,1.1].
The nominal distribution p is set as N'(—2,1). The bounds are then computed based
on Theorem 3.6. The results are summarized in Table 6.1, where R* is defined in
(3.14). Among these three cases, case (1c) has the “most” uncertainty, as the knowl-
edge of both the mean and the variance is lacking. Naturally case (1c) has the
widest bounds compared to the other two cases. In Figure 6.1 we plot the curves of
O©T(c)+1R* and © (c) — L R*, which define the upper bound (3.15) and lower bound
(3.16), respectively, for all three cases. The existence of the minima in ©%(c) + L R*
(the upper set of curves) and the maxima in ©~(c) — 1 R* (the lower set of curves) is
clearly visible, as guaranteed by Proposition 3.7.

Similar cases but with small failure probability are considered, where all the
settings in cases (1a), (1b), and (1lc) are retained, except that ug is set to ug = 70 so

TABLE 6.1
Ezxzample 1 with epistemic uncertainty for the reqular probability case.

Case number | (la) (1b) (1c)
R* 0.02 | 0.0104 | 0.0304

Lower bound | 0.639 0.665 0.617

Upper bound | 0.816 0.793 0.835
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1.2 T

Fic. 6.1. Ezample 1 with regular probability.

A2959

Curves of ©%(c) + %R* (upper set) and

0~ (¢) — %R* (lower set) for case (la) in circles (o), case (1b) in asterisks (*), and case (1c) in

squares (1J).

TABLE 6.2
Ezample 1 with epistemic uncertainty for the small-probability case (uqg = 70).

0.25p1

Case number | (la) (1b) (1c)
R* 0.02 | 0.0104 | 0.0304
Lower bound 0 0.0004 0
Upper bound | 0.039 0.031 0.047
I ‘ ‘ ‘ ‘ ‘ /”
p
p
&
&
//a/
P
&
3 4 5 6
c

F1G. 6.2. Example 1 with small probability. Curves of @Jr(c)—i-%R* (upper set) and O~ (¢)— %R*
(lower set) for case (1a) in circles (o), case (1b) in asterisks (*), and case (1c) in squares (O).

that the failure probability is of O(10~2). The results are tabulated in Table 6.2 and

also shown in Figure 6.2.

6.1.2. Mixed aleatory and epistemic uncertainty. We now modify the set-
tings of the previous section so that the input uncertainty consists of both aleatory and
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Fi1G. 6.3. Ezample 1. Mized aleatory and epistemic inputs with regular probability (uq = 4).
Curves of AT (c) (upper set) and Ay (c) (lower set) for case (2a) in circles (o), case (2b) in asterisks
(*), and case (2¢) in squares (O).

TABLE 6.3
Ezample 1. Mized aleatory and epistemic inputs with regular probability (uq = 4).

Case number (2a) (2b) (2¢)
Lower bound: lime—oo A7 (¢) | 0.674 0.729 0.66
Upper bound: lim¢— o Al+ (¢) | 0.8007 | 0.7687 | 0.824

epistemic uncertainty. More specifically, we write the input variable as X = m+ o2,
where Z is an aleatory variable with Gaussian distribution A(0,1). The following
three cases are considered:

(2a) m € [-2.2,—1.8] is epistemic and o =1 is fixed.

(2b) m = —2 is fixed and o € [0.9, 1.1]} is epistemic.

(2¢) Both m and o are epistemic with m € [-2.2,—1.8],0 € [0.9,1.1].
Note that even though these three cases are very similar to those in section 6.1.1, they
are different—here the input variable X might not be Gaussian any more.

For the estimation of the bounds, we employ Theorem 4.3 and compute
lim. oo AT (¢) and lim. ,o, A] (c), which are the tightest upper bound and lower
bound, respectively, for [Iq,(z,y)u(dz). In all computations we employ uniform
distribution as the nominal distribution p. Figure 6.3 shows curves of A] (the upper
set) and A7 (the lower set) for all three cases with regular failure probability (uq = 4
and Py ~ O(1)). The bounds are tabulated in Table 6.3. Again we observe that the
bounds of case (2c) are wider because it contains the most uncertainty.

Similar results for the small-probability case, where we set uq = 70 and Py ~
0O(1072), are shown in Figure 6.4 and Table 6.4.

6.2. Example 2: Bivariate function. We now consider a relatively more prac-
tical example. The failure function is defined as

(6.2) g=u(X1,X2,1)/2—-1—ga,
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Fic. 6.4. Example 1. Mized aleatory and epistemic inputs with small probability (uq = 70).
Curves of AT (c) (upper set) and Ay (c) (lower set) for case (2a) in circles (o), case (2b) in asterisks
(*), and case (2¢) in squares (O).

TABLE 6.4
Ezample 1. Mized aleatory and epistemic inputs with regular probability (uq = 70).

Case number (2a) (2b) (2¢)
Lower bound: limc— 00 A7 (¢) | 0.006 | 0.0053 | 0.0037
Upper bound: lim¢— o0 Al+ (¢) | 0.022 0.023 0.0323

where X3, X2 are two random variables and u is defined by the following nonlinear
system of equations:

u(X1, Xo,m) =X12+77—0.2’U(X1,X2,77),
v(X1, Xo,n) = Vu(X1, Xo,n) + X1 + Xo.

We set n = 1.5 and assume X is an aleatory random variable of A(0.9,0.5) and X5
is an epistemic variable taking values on the interval [0, 1]. We employ two values for
gd: ga = 0 results in the regular probability case Py ~ O(1), and gq = —0.45 results
in the small-probability case Py ~ 0O(1072). We also construct high-order polynomial
expansions to the functions v and v, using the generalized polynomial chaos strategy
(see [14] for details), and use the polynomial approximations as surrogate models to
facilitate the computation of the bounds (see section 5.2).

We first compute the quantities A (c) and Aj (c), as defined in (4.3), by set-
ting the nominal probability measure p to be uniform in [0,1]. The curves of A]
and A] are shown in Figure 6.5. By taking the limit of ¢ — oo, we obtain the
tightest bounds for [Iq,(z1,z2)u(dzy) for any X, € [0,1]. For the regular proba-
bility case, 0.580 < [Iq,(x1,x2)u(dz1) < 0.655, and for the small-probability case,
0 < [Iq,(x1,22)pu(dry) < 0.068.

Next we assume that the “true” distribution «y of the epistemic variable X5 belongs
to the set of probability measures A associated with the beta distribution B(c, )
with o € [1,1.5] and 8 € [1,1.5]. We employ Theorem 4.1 to compute the bounds
and plot the curves of Af(c) + 1R* and Ay (c) — 1R* in Figure 6.6, where R* =
sup, ¢ 4 R(v(dza)|p(dz2)) ~ 0.0721. The bounds are the minima and maxima of
these curves—for the regular probability case, 0.611 < Py < 0.627, and for the small-
probability case, 0.0005 < Py < 0.012.

(6.3)
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FIG. 6.5. Ezample 2. Curves of AJ(c) (dashed line) and A7 (c) (solid line). Left: regular
probability case with g4 = 0; right: small-probability case with g4 = —0.45.
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Fi1G. 6.6. Ezample 2. Curves of AT (e)+ %R* (dashed line) and A} (c) — %R* (solid line). Left:
regular probability case with gq = 0; right: small-probability case with gq = —0.45.

6.3. Example 3: Multivariate example. We now consider a multivariate
example, which was used in [10] as well. The failure function is defined as

6
(6.4)  g(X)= X1 +2X5+2X3+ X4 — 5X5 — 5Xg +0.001 > _sin(100X;) — ga,
i=1

where X; ~ LN (m;,0;) for i = 1,...,6 are log-normal random variables and g4 is a
real parameter.

We assume that Z; = log(X;),i =1,...,5 are aleatory variables; my = 120,07 =
12;me = 120,09 = 12;mg = 120,03 = 12;my4 = 120,04 = 12;m5 = 50,05 = 5; and
Zg is an epistemic variable. Let Zg = log(Xg) ~ N (g, 56). We choose a Gaussian
distribution N (m*,c*) as the nominal probability measure p of Zg such that Xj is
LN(40,6). We then construct the following three cases:

TABLE 6.5
Ezxzample 3 for reqular probability case with gq = 250.

Case number (3a) (3b) (3c)
R* 0.0022 0.0189 0.0211
Bounds by (3.17) 0.321,0.385 0.262,0.488 0.257,0.453
Bounds by (4.9) 0.339, 0.366 0.342,0.363 0.326,0.373
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Fic. 6.7. Ezample 3. Regular probability with g4 = 250, for case (3a) in circles (o), case
(3b) in asterisks (*), and case (3c) in squares (O). Left: curves of ©1(c) + %R* (upper set) and
O~ (c) — %R* (lower set); right: curves of A'l"(c) (upper set) and A7 (c) (lower set).

TABLE 6.6
Ezxzample 3 for small-probability case with gq = 150.

Case number (3a) (3b) (3¢)
R* 0.0022 0.0189 0.0211
Bounds by (3.17) | [0.0076,0.0238 [0,0.044] [0, 0.040]
Bounds by (4.9) | [0.0127,0.0163] | [0.0093,0.0213] | [0.0087, 0.0237]
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F1a. 6.8. Ezample 3. Small probability with g4 = 150, for case (3a) in circles (o), case (3b) in
asterisks (*), and case (3c) in squares (0). Left: curves of ©F (c)—i—%R* (upper set) and O~ (c)— %R*
(lower set); right: curves of AY (c) (upper set) and AT (c) (lower set).

(3a) e € [m* —0.01,m* 4+ 0.01] and 66 = o*.
(3b) e = m*, and 66 € [0* — 0.02,0* + 0.02].
(3¢) (e, 66) € [m™ — 0.01,m* 4+ 0.01] x [0* — 0.02,0* 4 0.02].

To compute the bounds, we construct a multidimensional Hermite polynomial
approximation to X7 + 2Xs 4+ 2X3 + X4 — 5X5 — 5X¢ and employ it as a surrogate.
(Note that the surrogate model neglects the summation term.) The surrogate-based
hybrid algorithm is then used to compute the bounds, as described in section 5.2.

Once again, we compute two types of bounds. The first set of bounds are from
Theorem 3.6, obtained by finding the minimum of ©%(c) + 1 R* and the maximum of
0~ (¢)— %R*. The second set of bounds are obtained by considering the mixed aleatory
and epistemic uncertainty and using Theorem 4.3 to find the limits of A (c) and
A7 (¢). The results are shown in Table 6.5 and Figure 6.7 for the regular probability
case with gg = 250, and in Table 6.6 and Figure 6.8 for the small-probability case
with gq = 150.
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7. Summary. In this paper we develop rigorous methods to estimate both the
upper and lower bounds for failure probability computation in the presence of epis-
temic uncertainty. The results will be useful in practical situations where one does
not have sufficient information about the probability distributions of the uncertain
inputs. The proposed methods will enable practitioners to reliably estimate the “best-
case scenario” and the “worst-case scenario” for failure probability computations.
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