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a b s t r a c t

We describe the first formal specification of a non-trivial subset of MPI, the dominant
communication API in high performance computing. Engineering a formal specification
for a non-trivial concurrency API requires the right combination of rigor, executability,
and traceability, while also serving as a smooth elaboration of a pre-existing informal
specification. It also requires the modularization of reusable specification components to
keep the length of the specification in check. Long-lived APIs such as MPI are not usually
‘textbook minimalistic’ because they support a diverse array of applications, a diverse
community of users, and have efficient implementations over decades of computing
hardware. We choose the TLA+ notation to write our specifications, and describe how
we organized the specification of around 200 of the 300 MPI 2.0 functions. We detail a
handful of these functions in this paper, and assess our specification with respect to the
aforementioned requirements. We close with a description of possible approaches that
may help render the act of writing, understanding, and validating the specifications of
concurrency APIs much more productive.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Application Programming Interfaces (API) (also known as libraries) are an important part of modern programming —
especially concurrent programming. APIs allow significant new functionality (e.g., communication and synchronization) to
be provided to programmers without changing the underlying programming language. APIs such as the Message Passing
Interface (MPI, [1]) have been in existence for nearly two decades, adapting to the growing needs of programmers for new
programming primitives, and growing in the number of primitives supported. The immense popularity ofMPI is attributable
to the balance it tends to achieve in terms of portability, performance, simplicity, symmetry, modularity, composability, and
completeness [2]. While MPI itself has evolved, its basic concepts have essentially remained the same. This has allowed the
creation of important long-lived codes — such as weather simulation codes [3]. Despite these successes,MPI does not have a
formal specification. This is a drastic shortcoming from the point of view of advances in the Science of Programming. In this
paper, we present the first formal specification for a significant subset of MPI 2.0.

MPI [4] has become a de facto standard in High Performance Computing (HPC) and is being actively developed and
supported through several implementations [5–7]. However, for several reasons, even experiencedprogrammers sometimes
misunderstandMPI calls. First,MPI calls are traditionally described in natural languages. Suchdescriptions are prone to being
misinterpreted. Another common approach among programmers is to discover MPI’s ‘‘intended behavior’’ by conducting ad
hoc experiments using MPI implementations. Such experiments cannot reveal all intended behaviors of an MPI call, and
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may even be misleading. A formalization of the MPI standard can potentially help avoid these misunderstandings, and also
help define what is an acceptable MPI implementation.

Engineering a formal specification for a non-trivial concurrency API requires the right combination of rigor, executability,
and traceability. A formal specificationmust also bewritten as an elaboration of awell-written informal specification. Itmust
also be as direct and declarative in nature, i.e., it must not be described in terms of what a specific scheduler might do or rely
upon detailed data structures that suggest an actual implementation. Our formal semantics for MPI is written with these
goals in mind. At first glance, it may seem that creating a formal specification for MPI which has over 300 fairly complex
functions is almost an impossible task. However, as explained in [2], the large size of MPI is somewhat misleading. The
primitive concepts involved in MPI are, relatively speaking, quite parsimonious. Our formal specification attempts to take
advantage of this situation by first defining a collection of primitives, and then definingMPI calls in terms of these primitives.

Besides contributing directly to MPI, we hope that our work will address the growing need to properly specify and
validate future concurrency APIs. In a modern context, APIs allow programmers to harness the rapidly growing power and
functionality of computing hardware through new message transfer protocols such as one-sided communication [1] and
new implementations of MPI over modern interconnects [8]. Given the explosive growth in concurrency and multi-core
computing, one can witness a commensurate growth in the number of concurrency APIs being proposed. Among the more
recently proposed APIs are various Transactional Memories [9], OpenMP [10], Ct [11], Thread Building Blocks [12], and Task
Parallel Library [13]. There is also a high degree of interest in light weight APIs such as the Multicore Communications API
(MCAPI) [14] intended to support core-to-core communication in a systems-on-chip multi-core setting. One could perhaps
draw lessons from exercises such as ours and ensure that for these emerging APIs, the community would create formal
specifications contemporaneously with informal specifications. As opposed to this, a formal specification for MPI has been
late by nearly two decades in arriving on the scene, because none of the prior work described in Section 2 meets our goals
for a rigorous specification for MPI.

Besides developing formal specifications, we must also constantly improve the mechanisms that help derive value from
formal specifications. For instance, formal specifications can helpminimize the effort to understand an API. Concurrency APIs
possess many non-intuitive but legal behaviors: how can formal specifications help tutor users of the API as to what these
are? Second, it is quite easy to end up with an incorrect or incomplete formal specification. How do we best identify the
mistakes or omissions in a formal specification? Third, it is crucial that formal specifications offer assistance in validating or
verifying API implementations, especially given that these implementations tend to changemuchmore rapidly than the API
semantics themselves change. While we only provide preliminary answers to these issues in this paper, our hope is that the
availability of a formal specification is the very first step in being able to approach thesemore formidable problems. Last but
not least, many scientists believe that the growth in complexity of APIs can have undesirable or unexpected consequences
with respect to the more tightly controlled growth of programming language semantics; see [15] for related discussions.
We strongly believe that these discussions point to an even stronger need for formal specifications of concurrency APIs, and
as a next step to our work suggest examining how API formal specifications interact with language and compiler semantics.

Background. In our previous work [16], we presented the formal specification of around 30% of the 128 MPI-1.0 functions
(mainly for point-to-point communication) in the specification language TLA+ [17]. TLA+ enjoys wide usage in industry by
engineers (e.g. in Microsoft [18] and Intel [19]), and is relatively easy to learn. Additionally, in order to help practitioners
access our specification, we built a C front-end in the Microsoft Visual Studio (VS) environment, through which users
can submit and run short MPI programs with embedded assertions (called litmus tests). Such tests are turned into TLA+
code and run through the TLC model checker [17], which searches all the reachable states to check properties such as
deadlocks and user-defined invariants. This permits practitioners to play with (and find holes in) the semantics in a formal
setting. In [16], we show that this rather simple approach is surprisingly effective for querying a standard and obtaining all
possible execution outcomes (some of which are entirely unexpected), as computed by the underlying TLC model checker.
In comparison, a programmer experimenting with an actual MPI implementation will not have the benefit of search that a
model checker provides, and be able to check assertions only on executions that materialize in a given MPI implementation
along with its (fixed) scheduler.

In order tomake our specification faithful to the English description, we (i) organize the specification for easy traceability:
many clauses in our specification are cross-linked with [4] to particular page/line numbers; (ii) provide comprehensive unit
tests for MPI functions and a rich set of litmus tests for tricky scenarios; (iii) relate aspects of MPI to each other and verify
the self-consistency of the specification (see Section 4.6); and (iv) provide a programming and debugging environment
based on TLC, Phoenix, and Visual Studio to help engage expert MPI users (who may not be formal methods experts) into
experimenting with our semantic definitions.

In this work, we expand on the work reported in [16,20], and in addition cover considerably more ground. In particular,
we now have a formal specification for nearly 200 MPI functions, including point to point calls, MPI data types, collective
communication, communicators, process management, one-sided communication, and IO.

Space restrictions prevent us from elaborating on all these aspects: this paper covers the first three aspects, and a
companion technical report [21] covers the rest. (Note: We have not extended the C front-end described in [16] to cover
these additional MPI functions.) We have extensively tested our formal specification, as discussed in Section 4.6. Using our
formal specification, we have justified a tailored Dynamic Partial Order Reduction algorithm (see [21]).
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Organization of the paper. The structure of this paper is as follows. Section 2 discusses related work. Then we give a
motivating example to illustrate that vendor MPI implementations do not capture the nuances of the semantics of an MPI
function. As the main part of this paper, the formal specification is given in Section 4. Next we describe a front-end that
translates MPI programs written in C into TLA+ code, plus a verification framework enabling the execution of the semantics.
Finally we give the concluding remarks.

2. Related work

The IEEE Floating Point standard [22] was initially conceived as a standard that helped minimize the danger of non-
portable floating point implementations, and now has incarnations in various higher order logic specifications (e.g., [23]),
finding routine applications in formal proofs of modern microprocessor floating point hardware circuits. Formal specifica-
tions using TLA+ include Lamport’sWin32 Threads API specification [18] and the RPCMemory Problem specified in TLA+ and
formally verified in the Isabelle theorem prover by Lamport et al. [24]. In [25], Jackson presents a lightweight object model-
ing notation called Alloy, which has tool support [26] in terms of formal analysis and testing based on Boolean satisfiability
methods. The approach taken in Alloy is extremely complementary to what we have set out to achieve through our formal
specifications. In particular, their specification of the JavaMemoryModel is indicative of the expressiveness of Alloy. Abstract
State Machines (ASMs) [27] have been used for writing formal specifications of concurrent systems, for instance [28].

Bishop et al. [29,30] formalized in the HOL theorem prover [31] three widely-deployed implementations of the TCP
protocol: FreeBSD 4.6-RELEASE, Linux 2.4.20-8, andWindows XP Professional SP1. Analogous to our work, the specification
of the interactions between objects are modeled as transition rules. The fact that implementations other than the standard
itself are specified requires repeating the same work for different implementations. They perform a vast number of
conformance tests to validate the specification. We also rely on testing for validation check. As it is the standard that we
formalize, we need to write all the test cases by hand.

Norrish [32] formalized in HOL [31] a structural operational semantics and a type system of the majority of the C
language, covering the dynamic behavior of C programs. Semantics of expressions, statements and declarations aremodeled
as transition relations. The soundness of the semantics and the type system is proved formally. In addition, a set of Hoare
rules are derived from the operational semantics to assist property verification. In contrast, our specification defines the
semantics in a more declarative style and does not encode the correctness requirement into a type system.

Two other related works in terms of writing executable specifications are the Symbolic Analysis Laboratory (SAL)
approach [33] and the use of the Maude rewrite technology [34]. The use of these frameworks may allow us to employ
alternative reasoning techniques: using decision procedures (in case of SAL), and using term rewriting (in case of Maude).
These will be considered during our future work.

Georgelin and Pierre [35] specify some of the MPI functions in LOTOS [36]. Siegel and Avrunin [37] describe a finite state
model of a limited number of MPI point-to-point operations. This finite state model is embedded in the SPINmodel checker
[38]. They [39] also support a limited partial-order reduction method — one that handles wild-card communications in a
restricted manner, as detailed in [40]. Siegel [41] models additional ‘non-blocking’ MPI primitives in Promela. Our own past
efforts in this area are described in [42–45]. None of these efforts: (i) approach the number of MPI functions we handle,
(ii) have the same style of high level specifications (TLA+ is much closer to mathematical logic than finite-state Promela
or LOTOS models), (iii) have a model extraction framework starting from C/MPI programs, and (iv) have a practical way of
displaying error traces in the user’s C code.

3. Motivating example

MPI is a portable standard and has a variety of implementations [5–7]. MPI programs are oftenmanually or automatically
(e.g., [46]) re-tunedwhenported to another hardware platform, for example by changing its basic functions (e.g.,MPI_Send)
to specialized versions (e.g., MPI_Isend). In this context, it is crucial that the designers performing code tuning are aware
of the very fine details of the MPI semantics. Unfortunately, such details are far from obvious. For illustration, consider the
following MPI pseudo-code involving three processes:

P0 MPI_Irecv(rcvbuf 1, ∗, req1);
MPI_Irecv(rcvbuf 2, from 1, req2);
MPI_Wait(req1);
MPI_Wait(req2);
MPI_Bcast(revbuf 3, root = 1);

P1 sendbuf 1 = 10;
MPI_Bcast(sendbuf 1, root = 1);
MPI_Isend(sendbuf 2, to 0, req);
MPI_Wait(req);

P2 sendbuf 2 = 20;
MPI_Isend(sendbuf 2, to 0, req);
MPI_Bcast(recvbuf 2, root = 1);
MPI_Wait(req);
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Table 1
Size of the specification (excluding comments and blank lines).
Main module #funcs(#lines)

Point to point communication 35(800)
Userdefined datatype 27(500)
Group and communicator management 34(650)
Intra collective communication 16(500)
Topology 18(250)
Environment management in MPI 1.1 10(200)
Process management 10(250)
One sided communication 15(550)
Inter collective communication 14(350)
I/O 50(1100)
Interface and environment in MPI 2.0 35(800)

Process 1 and 2 are designed to issue immediate mode sends to process 0, while process 0 is designed to post two
immediate-mode receives. The first receive is awildcard receive thatmaymatch the send fromP1 or P2. These processes also
participate in a broadcast communication with P1 as the root. Consider some simple questions pertaining to the execution
of this program:

1. Is there a case where a deadlock is incurred? If the broadcast is synchronizing such that the call at each process is blocking,
then the answer is ‘yes’, since P0 cannot complete the broadcast before it receives themessages from P1 and P2, while P1
will not isend themessage until the broadcast is complete. On the other hand, this deadlockwill not occur if the broadcast
is non-synchronizing. As in an actual MPI implementation MPI_Bcast may be implemented as synchronizing or non-
synchronizing, this deadlockmay not be observed through ad hoc experiments on a vendorMPI library. Our specification
takes both bases into consideration and always gives reliable answers.

2. Suppose the broadcast is non-synchronizing, is it possible that a deadlock occurs? The answer is ‘yes’, since P0 may first
receive a message from P1, then get stuck waiting for another message from P1. Unfortunately, if we run this program
in a vendor MPI implementation, P1 may receive messages first from P2 and then from P1, which incurs no deadlock.
Thus it is possible that we will not encounter this deadlock even we run the program for 1000 times. In contrast, the TLC
model checker enumerates all execution possibilities and is guaranteed to detect this deadlock.

3. Suppose there is no deadlock, is it guaranteed that rcvbuf1 in P0 will eventually contain the message sent from P2? The answer
is ‘no’, since the incomingmessagesmay arrive out of order such that rcvbuf 1 gets themessage fromP1. However, vendor
implementation may give the wrong answer when the message delivery delay from P1 to P0 is greater than that from P2
to P0. To check this in our framework, we can add in P0 an assertion rcvbuf1 == 2θ right before the broadcast call.

4. Suppose there is no deadlock, when can the buffers be accessed? Since all sends and receives use the immediate mode, the
handles that these calls return have to be tested for completion using an explicit MPI_Test or MPI_Wait. While vendor
implementations may not give reliable answer for this question, we can move the above assertion to any other point
before the corresponding MPI_Waits and have the model checker find violations, which means that the data cannot be
accessed until after the wait.

5. Will the first receive always complete before the second at P0?No such guarantee exists, as these are immediatemode receives
which are guaranteed only to be initiated in program order. To check this, we can reverse the order of the MPI_Wait
commands. If the model checker does not find a deadlock then the operations may complete in either order.

The MPI reference standard [4] is a non machine-readable document that offers English descriptions of the individual
behaviors ofMPI functions. It does not support any executable facility that helps answer the above kinds of simple questions
in any tractable and reliable way. Running test programs, using actual MPI libraries, to reveal answers to the above kinds
of questions is also futile, given that (i) various MPI implementations exploit the liberties of the standard by specializing
the semantics in various ways, and (ii) it is possible that some executions of a test program are not explored in these actual
implementations. Thus we are motivated to write a formal, high-level, and executable standard specification for MPI 2.0.
The entire specification including tests and examples and the verification framework are available online [47].

4. Specification

TLA+ provides built-in support for sets, functions, records, strings and sequences. To model MPI objects, we extend the
TLA+ library by defining advanced data structures includingmaps and ordered sets (oset). For instance, MPI groups and I/O
files are represented by ordered sets.

The approximate sizes (excluding comments and blank lines) of the major parts in the current specification are shown in
Table 1, where #funcs and #lines give the number of MPI primitives and code lines respectively. We do not model functions
whose behavior depends on the underlying operating system. For deprecated items, we only model their replacement.
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Fig. 1. MPI objects and their interaction.

4.1. Data structures

The data structures modeling explicit and opaque MPI objects are shown in Fig. 1. Each process contains a set of local
objects such as the local memory object mems. Multiple processes coordinate with each other through shared objects
rendezvous, wins, and so on. The message passing procedure is simulated by the MPI system scheduler (MSS), which
matches requests at origins and destinations and performsmessage passing. MPI primitive calls at different processes make
transitions non-deterministically.

Request object reqs is used in point-to-point communications. A similar file request object freqs is for parallel I/O
communications. Objects groups and comms model the groups and (intra- or inter-) communicators respectively. In
addition to the group, a communicator also includes virtual topology and other attributes. Objects rendezvous and frend
objects are for collective communications and shared file operations respectively. Objects epos and wins are used in one-
sided communications.

OtherMPI objects are represented as components in a shared environment shared_envs and local environments envs.
The underlying operating system is abstracted as os in a limited sense, which includes the objects visible to the MPI system
such as physical files on the disk. We define a separate object mems for the physical memory at processes.

4.2. Notations

Our presentation uses notations extended and abstracted from TLA+. The basic concept in TLA+ is functions. We write
f [v] for the value of function f applied to v; this value is specified only if v is in f ’s domain DOM f . Notation [S → T ] specifies
the set of all functions f such that DOM f = S and f [v] ∈ T for all v ∈ S. For example [int → nat] denotes all functions
from integers to natural numbers. This notation is usually used to specify the type of a function.

Functions may be described explicitly with the construct [x ∈ S → e] such that f [x] = e for x ∈ S. For example,
the function fdouble that doubles input natural numbers can be specified as [x ∈ nat → 2x]. Obviously fdouble[1] = 2 and
fdouble[4] = 8. Notation [f EXCEPT ![e1] = e2] defines a function f ′ such that f ′ is the same as f except f ′

[e1] = e2. An @
appearing in e2 represents the old value of f [e1]. For example, [fdouble EXCEPT ![3] = @ + 10] is the same as fdouble except
that it returns 16 for input 3.

Tuples, arrays, records, sequences and ordered sets are special functions with finite domains. They differ mainly in the
operators defined over these data structures. An n-tuple is written as ⟨e1, . . . , en⟩, which defines a function f with domain
{1, . . . , n} such that f [i] = ei for 1 ≤ i ≤ n. Its ith component is given by ⟨e1, . . . , en⟩[i]. An array resembles a tuple
except that its index starts from 0 rather than 1 so as to conform to the convention of the C language. Records can be
written explicitly as [h1 → e1, . . . , hn → en], which is actually a function mapping field hi to value ei. For instance tuple
⟨1, 4, 9⟩, record [1 → 1, 2 → 4, 3 → 9], and function [x ∈ {1, 2, 3} → x2] are equivalent. Similar to function update,
[r EXCEPT !.h = e] represents a record r ′ such that r ′ is the same as r except r ′.h = e, where r.h returns the h-field of
record r .

A (finite) sequence is represented as a tuple. Operators are provided to obtain the head or tail elements, append elements,
concatenate two sequences, and so on. An ordered set is analogous to a usual set except it consists of distinct elements. It
may be interpreted as a function too: its domain is [0, n − 1] where n is the number of elements (i.e. the cardinality), and
its range contains all the elements.

The basic temporal logic operator used to define transition relations is the next state operator, denoted using ′ or prime.
For example, s′ = [s EXCEPT ![x] = e] indicates that the next state s′ is equal to the original state s except that x’s value is
changed to e.

For illustration, consider a stop watch that displays hour and minute. A typical behavior of the clock is a sequence
[hr → 0,mnt → 0], [hr → 0,mnt → 1], . . . , [hr → 0,mnt → 59], [hr → 1,mnt → 0], . . . , where [hr → i,mnt → j]
is a state with hour i and minute j. Its next-state relation is a formula expressing the relation between the values of hr and
mnt . It asserts that mnt equals mnt + 1 if mnt ≠ 59. Whenmnt is 59,mnt is reset to 0, and hr increased by 1.

time′
= let c = (time[mnt] ≠ 59) in

[time EXCEPT ![mnt] = if c then @ + 1 else 0, ![hr] = if ¬c then @ + 1 else @]
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To make the specification succinct, we introduce some other commonly used notations. Note that ⊤ and ⊥ denote
boolean value true and false respectively; and ϵ and α denote the null value and an arbitrary value respectively. Notation
Γ1 � xk � Γ2 specifies a queue where x is the kth element, Γ1 contains the elements before x, and Γ2 contains the elements
after x. When it appears in the precondition of a transition rule it should be interpreted in a pattern-matching manner such
that Γ1 returns the first k − 1 elements, x is the kth element and Γ2 returns the remaining elements.

Γ1 � Γ2 the concatenation of queue Γ1 and Γ2
Γ1 � xk � Γ2 the queue with x being the kth element
Γ1 ⊑ Γ2 Γ1 is a sub-queue (sub-array) of Γ2
⊤, ⊥, ϵ and α true, false, null value and arbitrary value
f1 = f ⊎ (x, v) DOM(f1) = DOM(f ) ∪ {x} ∧ x /∈ DOM(f ) ∧ f1[x] = v

∧ ∀y ∈ DOM(f ) : f1[y] = f [y]
f |x the index of element x in function f , i.e. f [f |x] = x
c ? e1 : e2 An abbreviation for if c then e1 else e2
size(f ) or |f | the number of elements in function f

Similar to the separating operator ∗ in separation logic [48], operator ⊎ divides a function into two parts with disjoint
domains. For example, function [x ∈ {1, 2, 3} → x2] can bewritten as [x ∈ {1, 2} → x2]⊎(3, 9) or [x ∈ {1, 3} → x2]⊎(2, 4).
This operator is especially useful when representing the content of a function.

TLA+ allows the specification of MPI primitives in a declarative style. For illustration we show below a helper (auxiliary)
function used to implement the MPI_COMM_SPLIT primitive, where group is an ordered set of processes, colors and keys
are arrays. Here DOM, RNG, CARD return the domain, range and cardinality of an ordered set respectively. This code directly
formalizes the English description (see page 147 in [4]): ‘‘This function partitions the group into disjoint subgroups, one
for each value of color. Each subgroup contains all processes of the same color. Within each subgroup, the processes are
ranked in the order defined by key, with ties broken according to their rank in the old group. When the process supplies
the color value MPI_UNDEFINED, a null communicator is returned’’. In contrast, it is impossible to write such a declarative
specification in the C language.

Comm_split(group, colors, keys, proc) .
=

1 : let rank = group|proc in
2 : if (colors[rank] = MPI_UNDEFINED) then MPI_GROUP_NULL
3 : else
4 : let same_colors = {k ∈ DOM(group) : colors[k] = colors[rank]} in
5 : let sorted_same_colors =

6 : choose g ∈ [DOM(same_colors) → RNG(same_colors)] :

7 : ∧ RNG(g) = same_colors
8 : ∧ ∀i, j ∈ same_colors : g|i < g|j ⇒ (keys[i] < keys[j] ∨ (keys[i] = keys[j] ∧ i < j))
9 : in [i ∈ DOM(sorted_same_colors) → group[sorted_same_colors[i]]]

After collecting the color and key information from all other processes, a process proc calls this function to create the
group of a new communicator. Line 1 calculates proc ’s rank in the group; line 4 obtains an ordered set of the ranks of all the
processes with the same color as proc; lines 5–8 sort this rank set in the ascending order of keys, with ties broken according
to the ranks. Specifically, lines 6–7 pick an ordered set g with the same domain and range as same_colors; line 8 indicates
that, in g , rank i shall appear before rank j (i.e. g|i < g|j) if the key at i is less than that at j. This specification may be a
little tricky as we need to map a process to its rank before accessing its color and key. This merits our formalization which
explicitly describes all the details. For illustration, suppose group = ⟨2, 5, 1⟩, colors = ⟨1, 0, 0⟩ and keys = ⟨0, 2, 1⟩, then
the call of this function at process 5 creates a new group ⟨1, 5⟩.

4.2.1. Operational semantics
The formal semantics of an MPI primitive is modeled by a state transition. A system state consists of explicit and opaque

objects mentioned in 4.1. An object may involve multiple processes; we write objp for the object obj at process p. For
example, reqsp refers to the request object (for point-to-point communications) at process p.

We use notation $ to define the semantics of an MPI primitive, and .
= to introduce a helper function. The precondition

cond of a transition, if it exists, is specified by ‘‘requires {cond}’’. An error is reported if this precondition is violated. The
body of a transition is expressed by a rule of format guard

action , where guard specifies the requirement for the transition to be
triggered, and action defines how the MPI objects are updated after the transition. When the guard is satisfied, the action is
enabled and may be performed. Otherwise the rule is blocked and the action will be delayed. A true guard will be omitted,
meaning that the transition is always enabled.

For instance, the semantics of MPI_Buffer_detach is shown below. A buffer object contains several fields: buff and
size record the start address in the memory and the size respectively; capacity and max_capacity record the available space
and maximum space respectively. The values of these fields are set when the buffer is created. The precondition of the
MPI_Buffer_detach rule enforces that process p’s buffer must exist; the guard indicates that the transition will block
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until all messages in the buffer have been transmitted (i.e. the entire space is available); the action is to write the buffer
address and the buffer size into p’s local memory, and deallocate the space occupied by the buffer.

MPI_Buffer_detach(buff , size, p) $
requires {bufferp ≠ ϵ}

bufferp.capacity = bufferp.max_capacity

mems′
p = [memsp EXCEPT ![buff ] = bufferp.buff , ![size] = bufferp.size] ∧ buffer′

p = ϵ

It may be desirable to specify only the objects and components that are affected by the transition such that those not
appeared in the action are assumed to be unchanged. Thus the action of the above rule can be written as follows. We will
use this lighter notation throughout the rest of Section 4.

mems′

p[buff ] = bufferp.buff ∧ mems′

p[size] = bufferp.size ∧ buffer′

p = ϵ

4.3. Quick overview of the methodology

We first give a simple example to illustrate how MPI programs and MPI primitives are modeled. Consider the following
program involving two processes:

P0 : MPI_Send(bufs, 2, MPI_INT, 1, 10, MPI_COMM_WORLD)
MPI_Bcast(bufb, 1, MPI_FLOAT, 0, MPI_COMM_WORLD)

P1 : MPI_Recv(bufr , 2, MPI_INT, 0, MPI_ANY_TAG, MPI_COMM_WORLD)
MPI_Bcast(bufb, 1, MPI_FLOAT, 0, MPI_COMM_WORLD)

This program is converted by our compiler into the following TLA+ code (i.e. the model of this program), where the TLA+
code of MPI primitives will be presented in subsequent sections. An extra parameter is added to an MPI primitive to specify
the process it belongs to. In essence, a program model is a transition system consisting of transition rules. When the guard
of a rule is satisfied, this rule is enabled and ready for execution. Multiple enabled rules are executed in a non-deterministic
manner. The control flow of a program at process p is represented by the pc values: pc[p] stores the current values of the
program pointer. The pc values are integer-value labels such as L1, L2, and so forth. A blocking call is modeled by its non-
blocking version followed by a wait operation, e.g. MPI_Send $ (MPI_Isend; MPI_Wait). The compiler treats request0
and status0 as references to memory locations. For example, suppose reference request0 has address 5, then the value it
points to is memsp[request0] (i.e. memsp[5]). As all variables in the source C program are mapped to memory locations.

p0’s transition rules
∨ ∧ pc[0] = L1 ∧ pc ′

[0] = L2 ∧ MPI_Isend(bufs, 2, MPI_INT, 1, 10, MPI_COMM_WORLD, request0, 0)
∨ ∧ pc[0] = L2 ∧ pc ′

[0] = L3 ∧ MPI_Wait(request0, status0, 0)
∨ ∧ pc[0] = L3 ∧ pc ′

[0] = L4 ∧ MPI_Bcastinit(bufb, 1, MPI_FLOAT, 0, MPI_COMM_WORLD, 0)
∨ ∧ pc[pid] = L4 ∧ pc ′

[0] = L5 ∧ MPI_Bcastwait(bufb, 1, MPI_FLOAT, 0, MPI_COMM_WORLD, 0)
p1’s transition rules
∨ ∧ pc[1] = L1 ∧ pc ′

[1] = L2
∧ MPI_Irecv(bufr , 2, MPI_INT, 0, MPI_ANY_TAG, MPI_COMM_WORLD, request1, 1)

∨ ∧ pc[1] = L2 ∧ pc ′
[1] = L3 ∧ MPI_Wait(request1, status1, 1)

∨ ∧ pc[1] = L3 ∧ pc ′
[1] = L4 ∧ MPI_Bcastinit(bufb, 1, MPI_FLOAT, 0, MPI_COMM_WORLD, 1)

∨ ∧ pc[1] = L4 ∧ pc ′
[1] = L5 ∧ MPI_Bcastwait(bufb, 1, MPI_FLOAT, 0, MPI_COMM_WORLD, 1)

An enabled rule may be executed at any time. Suppose the program pointer of process p0 is L1, then the MPI_Isend
rule may be executed, modifying the program pointer to L2. As indicated below, it creates a new send request of format
⟨destination, communicator_id, tag, value⟩request_id, and appends it to p0’s request queue reqs0. Value v is obtained by
read_data(mems0, bufs, 2,MPI_INT), which reads from the memory two consecutive integers starting from address bufs.

process p0 process p1
reqs . . . � ⟨1, cid, 10, v⟩request0 . . .

Similarly, when the MPI_Irecv rule at process p1 is executed, a new receive request of format ⟨buffer, source,
communicator_id, tag, _⟩request_id is appended to reqs1, where _ indicates that the data value is yet to be received.

p0 p1
reqs . . . � ⟨1, cid, 10, v⟩request0 . . . � ⟨bufr , 0, cid,ANY_TAG, _⟩request1

The MPI System Scheduler matches the send request and the receive request, and transfers the data value v from p0 to
p1. After the transferring, the value fields in the send and receive requests become _ and v respectively.

p0 p1
reqs . . . � ⟨1, cid, 10, _⟩request0 . . . � ⟨bufr , 0, cid,ANY_TAG, v⟩request1
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If the send is not buffered at p0, then the MPI_Wait call will be blocked until the data v is sent. After that the send
request is removed from the queue. Analogously, the MPI_Wait rule at p1 is blocked until the incoming value arrives. Then
v is written into p1’s local memory and this request is removed.

p0 p1
reqs . . . . . .

In our formalization, each process divides a collective primitive call into two phases: an ‘‘init’’ phase that initializes the
call, and a ‘‘wait’’ phase that synchronizes the communication with other processes. Processes synchronize with each other
through the rendezvous (or rend for short) object which records the status of the communication (denoted byΨ ) and the
data sent by the processes (denoted by Sv). For a communicator with context ID cid there exists an individual rendezvous
object rend[cid]. In the ‘‘init’’ phase, process pi is able to proceed only if it is not in the domain of the status component (i.e.
pi is not participating the communication). It updates its status to ‘‘e’’ (‘‘entered’’) and store its data in the rendezvous. In the
given example, after the ‘‘init’’ phases of the broadcast at process 0 and 1 are over, the rendezvous pertaining to communi-
cator MPI_COMM_WORLD becomes ⟨[0 → ‘‘e’’, 1 → ‘‘e’’], [0 → val]⟩, where val = read_data(mems0, bufb, 1, MPI_FLOAT).

syninit(cid, val, pi)
.
= process pi joins the communication and stores data v in rend
pi /∈ DOM(Ψ )

rend′
[cid] = ⟨Ψ ⊎ (pi, ‘‘e’’), Sv ⊎ (pi, val)⟩

In the ‘‘wait’’ phase, if the communication is synchronizing, then process pi has to wait until all other processes finish
their ‘‘init’’ phases. If pi is the last process that leaves the communication, then the rend object will be deleted; otherwise
pi just updates its status to ‘‘l’’ (‘‘left’’).

before wait after wait
Ψ Ψ

rend[cid] ‘‘l’’ . . . ‘‘l’’ ‘‘e’’ ‘‘l’’ . . . ‘‘l’’
p1 . . . pi−1 pi pi+1 . . . pn

synwait(cid, pi)
.
= process p leaves the synchronizaing communication

rend[cid] = ⟨Ψ ⊎ (pi, ‘‘e’’), Sv⟩ ∧ ∀k ∈ commspi [cid].group : k ∈ DOM(Ψ )

rend′
[cid] = if ∀k ∈ commspi [cid].group : Ψ [k] = ‘‘l’’ then ϵ else ⟨Ψ ⊎ (pi, ‘‘l’’), Sv⟩

These simplified rules illustrate howMPI point-to-point and collective communications are modeled. The standard rules
are given in Sections 4.4 and 4.5.

4.4. Point-to-point communication

The semantics of core point-to-point communication primitives are shown in Figs. 3–5. Readers should refer to the
semantics when reading through this section. An example illustrating the ‘‘execution’’ of an MPI program according to the
semantics is shown in Fig. 2.

New send and receive requests are appended to the request queues. A send request contains information about the desti-
nation process (dst), the context ID of the communicator (cid), the tag to be matched (tag), the data value to be sent (value),
and the status (omitted here) of the message. This request also includes boolean flags indicating whether the request is
persistent, active, live, canceled and deallocated or not. For brevity we do not show the last three flags when presenting
the content of a request in the queue. In addition, in order to model the ready send, we include in the send request a field
prematch of format ⟨destination, request_index⟩ which points to the receive request matching this send request. A receive
request contains similar fields plus the buffer address and a field to store the incoming data. Initially the data value ismissing
(represented by the ‘‘_’’ in the data field); an incoming message from a sender will replace the ‘‘_’’ with the data it carries.
Notation v_ denotes either data value v arrives or the data is still missing. For example, ⟨buf , 0, 10, ∗, _, ⊤, ⊤, ⟨0, 5⟩⟩recv2 is a
receive request such that: (i) the source process is process 0; (ii) the context id and the tag are 10 and MPI_ANY_TAG respec-
tively; (iii) the incoming data is still missing; (iv) the request is persistent and active; (v) the request has been prematched
with the send request with index 5 at process 0; and (vi) the index of this receive request in the request queue is 2.

MPI offers four send modes. A standard send may or may not buffer the outgoing message (represented by a global flag
use_buffer). If buffer space is available, then it behaves the same as a send in the buffered mode; otherwise it acts as a
synchronous send. We show below the specification of MPI_IBsend. As dtype and comm are the references (pointers) to
datatype and communicator objects, their values are obtained by datatypesp[dtype] and commsp[comm]. Helper function
ibsend creates a new send request, appends it to p’s request queue, and puts the data in p’s send buffer bufferp. The
request handle points to the last request in the queue.

MPI_IBsend(buf , count, dtype, dest, tag, comm, request, p) $ top level definition
let cm = commsp[comm] in the communicator
∧ ibsend(read_data(memsp, buf , count, datatypesp[dtype]), cm.group[dest], cm.cid, tag, p)
∧ mems′

p[request] = size(reqsp) set the request handle
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p0 p1 p2
Issend(v1, dst = 1, cid = 5, Irecv(b, src = 0, cid = 5, Irecv(b, src = ∗, cid = 5,

tag = 0, req = 0) tag = ∗, req = 0) tag = ∗, req = 0)
Irsend(v2, dst = 2, cid = 5, Wait(req = 0) Wait(req = 0)

tag = 0, req = 1)
Wait(req = 0)
Wait(req = 1)
step reqs0 reqs1 reqs2
1 ⟨1, 5, 0, v1, ⊥, ⊤, ϵ⟩ss0
2 ⟨1, 5, 0, v1, ⊥, ⊤, ϵ⟩ss0 ⟨b, 0, 5, ∗, _, ⊥, ⊤, ϵ⟩

3 ⟨1, 5, 0, v1, ⊥, ⊤, ϵ⟩ss0 ⟨b, 0, 5, ∗, _, ⊥, ⊤, ϵ⟩rc0 ⟨b, ∗, 5, ∗, _, ⊥, ⊤, ϵ⟩rc0
4 ⟨1, 5, 0, v1, ⊥, ⊤, ϵ⟩ss0 � ⟨b, 0, 5, ∗, _, ⊥, ⊤, ϵ⟩rc0 ⟨b, ∗, 5, ∗, _, ⊥, ⊤, ⟨0, 1⟩⟩rc0

⟨2, 5, 0, v2, ⊥, ⊤, ⟨2, 0⟩⟩rs1
5 ⟨1, 5, 0, _, ⊥, ⊤, ϵ⟩ss0 � ⟨b, 0, 5, ∗, v1, ⊥, ⊤, ϵ⟩rc0 ⟨b, ∗, 5, ∗, _, ⊥, ⊤, ⟨0, 1⟩⟩rc0

⟨2, 5, 0, v2, ⊥, ⊤, ⟨2, 0⟩⟩rs1
6 ⟨2, 5, 0, v2, ⊥, ⊤, ⟨2, 0⟩⟩rs1 ⟨b, 0, 5, ∗, v1, ⊥, ⊤, ϵ⟩rc0 ⟨b, ∗, 5, ∗, _, ⊥, ⊤, ⟨0, 1⟩⟩rc0
7 ⟨2, 5, 0, _, ⊥, ⊤, ⟨2, 0⟩⟩rs1 ⟨b, 0, 5, ∗, v1, ⊥, ⊤, ϵ⟩rc0 ⟨b, ∗, 5, ∗, v2, ⊥, ⊤, ⟨0, 1⟩⟩rc0
8 ⟨b, 0, 5, ∗, v1, ⊥, ⊤, ϵ⟩rc0 ⟨b, ∗, 5, ∗, v2, ⊥, ⊤, ⟨0, 1⟩⟩rc0
9 ⟨b, 0, 5, ∗, v1, ⊥, ⊤, ϵ⟩rc0
10

1 : issend(v1, 1, 5, 0, p0) 2 : irecv(b, 0, 5, ∗, p1) 3 : irecv(b, ∗, 5, ∗, p2) 4 : irsend(v2, 2, 5, 0, p0)
5 : transfer(p0, p1) 6 : wait(0, p0) 7 : transfer(p0, p2) 8 : wait(1, p0) 9 : wait(0, p2) 10 : wait(0, p1)

Fig. 2. A point-to-point communication program and one of its possible executions. Process p0 sends messages to p1 and p2 in synchronous sendmode and
ready send mode respectively. The scheduler first forwards the message to p1 , then to p2 . A request is deallocated after the wait call on it. Superscripts ss,
rs and rc represent ssend, rsend and recv respectively. The execution follows from the semantics shown in Figs. 3–5.

MPI_Recv is specified in a similar way. The MPI System Scheduler transfers values from a send request to its matching
receive request. Relation P defines the meaning of ‘‘matching’’. Two cases are considered:

• The send is in ready mode. When a send request reqs is added into the queue, it is prematched to a receive request reqr
such that the prematch field (abbreviated as ω) of reqs stores the tuple ⟨destination process, destination request index⟩,
and reqr ’s prematch field stores the tuple ⟨source process, source request index⟩. reqs and reqr match iff these two tuples
match.

• The send is in other modes. The send request and receive request are matched if relevant information (e.g. source,
destination, context ID and tag) matches. The source and tag in the receive request may be MPI_ANY_SOURCE and
MPI_ANY_TAG respectively.

It is the transfer rule (see Fig. 4) that models message passing. Messages from the same source to the same destination
must be matched in a FIFO order: only the first send request in the send queue and the first matching receive request in
the receive queue will participate in the transferring. The FIFO requirement is enforced by the following predicate which
indicates that there exist no prior send requests and prior receive requests that match.

@⟨dst, cid, tag1, v, pr1, ⊤, ω1⟩
send
m ∈ Γ

p
1 : @⟨buf , src2, cid, tag2, _, pr2, ⊤, ω2⟩

recv
n ∈ Γ

q
1 :

∨ ⟨p, dst, tag1, ω1,m⟩ P ⟨src, q, tagq, ωq, j⟩ ∨ ⟨p, dst, tagp, ωp, i⟩ P ⟨src2, q, tag2, ω2, n⟩
∨ ⟨p, dst, tag1, ω1,m⟩ P ⟨src2, q, tag2, ω2, n⟩

When the transfer is done, the value field in the receive request reqj is filled with the incoming value v, and that in the
send request reqi becomes _ to indicate that the value has been sent out. If the request is not persistent and not live (i.e. the
corresponding MPI_Wait has been called), then it will be removed from the request queue.

The MPI_Wait call returns when the operation associated with request request is complete. If request is a null handle,
then an empty status is returned; otherwise the helper function wait_one is invoked to pick the appropriate wait function
according to the request’s type. Let us look closer at the definition of recv_wait (see Fig. 4). First of all, after the call the
request is not ‘‘live’’ any more, thus the live flag becomes false. When the call is made with an inactive request, it returns
immediately with an empty status. If the request is persistent and not marked for deallocation, then the request becomes
inactive after the call; otherwise it is removed from the request queue and the corresponding request handle is set to
MPI_REQUEST_NULL.

If the request has been marked for cancellation, then the call completes without writing the data into memory. If the
source process is a null process, then the call returns immediately with a null status where source = MPI_PROC_NULL, tag
= MPI_ANY_TAG, and count = 0. Finally, if the value has been received (i.e. v_ ≠ _), then the value v is written to process
p’s local memory and the status object is updated accordingly.

The completion of a request is modeled by the has_completed predicate. A receive request completes when the value has
been received. A send request in the buffer mode completes when the value has been buffered or transferred. This function
is used to implement multiple communication primitives. For instance, MPI_Waitany blocks until one of the requests
completes.
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Data Structures
send request : important fields + less important fields

⟨dst : int, cid : int, tag : int, value, pr : bool, active : bool, prematch⟩mode
+

⟨cancelled : bool, dealloc : bool, live : bool⟩
recv request : important fields + less important fields

⟨buf : int, src : int, cid : int, tag : int, value, pr : bool, active : bool, prematch⟩recv
+ ⟨cancelled : bool, dealloc : bool, live : bool⟩

ibsend(v, dst, cid, tag, p) $ buffer send
requires {size(v) ≤ bufferp.vacancy} check buffer availability

reqs′
p = reqsp � ⟨dst, cid, tag, v,⊥, ⊤, ϵ⟩bsend ∧ append a new send request

buffer′

p.vacancy = bufferp.vacancy − size(v) allocate buffer space

issend(v, dst, cid, tag, p) $ synchronous send
reqs′

p = reqsp � ⟨dst, cid, tag, v,⊥, ⊤, ϵ⟩ssend

(⟨p, dst, tagp, ωp, kp⟩ P ⟨src, q, tagq, ωq, kq⟩)
.
= match send and receive requests

if ωp = ϵ ∧ ωq = ϵ then tagq ∈ {tagp, ANY_TAG} ∧ q = dst ∧ src ∈ {p, ANY_SOURCE}

else ωp = ⟨q, kq⟩ ∧ ωq = ⟨p, kp⟩ prematched requests

irsend(v, dst, cid, tag, p) $ ready send

requires {
∃q : ∃⟨src, cid, tag1, _, pr1, ⊤, ϵ⟩recvk ∈ reqsq :

⟨p, dst, tag, ϵ, size(reqsp)⟩ P ⟨src, q, tag1, ϵ, k⟩
} a matching recv exists?

reqs′
p = reqsp � ⟨dst, cid, tag, v,⊥, ⊤, ⟨q, k⟩⟩rsend ∧ reqs′

q.ω = ⟨p, size(reqsp)⟩

isend $ if use_buffer then ibsend else issend standard mode send

irecv(buf , src, cid, tag, p) $ reqs′
p = reqsp � ⟨buf , src, cid, tag, _, ⊥, ⊤, ϵ⟩recv

MPI_Isend(buf , count, dtype, dest, tag, comm, request, p) $ standard immediate send
let cm = commsp[comm] in the communicator
∧ isend(read_data(memsp, buf , count, dtype), cm.group[dest], cm.cid, tag, p)
∧ mems′

p[request] = size(reqsp) set the request handle

MPI_Irecv(buf , count, dtype, source, tag, comm, request, p) $ immediate receive
let cm = commsp[comm] in the communicator
irecv(buf , cm.group[dest], cm.cid, tag, p) ∧ mems′

p[request] = size(reqsp)

wait_one(request, status, p) .
= wait for one request to complete

if reqsp[memsp[request]].mode = recv
then recv_wait(request) for receive request

else send_wait(request) for send request

MPI_Wait(request, status, p) $ the top level wait function
if memsp[request] ≠ REQUEST_NULL then wait_one(request, status, p)
else mems′

p[status] = empty_status the handle is null, return an empty status

Fig. 3. Modeling point-to-point communications (I).

4.5. Collective communication

Processes participating in a collective communication coordinate with each other through rendezvous objects. Each
communicator with context id cid is associated with object rend[cid], which consists of a sequence of communication slots.
In each slot, the status field records the status of each process: ‘‘e’’ (‘‘entered’’) or ‘‘l’’ (‘‘left’’); the shared_data field stores
the data shared among all processes; and data stores the data sent by each process. We use notation Ψ to represent status’s
content.

Many collective communications are synchronizing, while the rest (such as MPI_Bcast) can be either synchronizing
or non-synchronizing. A collective primitive is implemented by a loose synchronization protocol: in the first ‘‘init’’ phase
synput , process p checks whether there exists a slot in which p has not participated. A negative answer means that p is
initializing a new communication, thus p creates a new slot, sets its status to be ‘‘e’’, and stores its value v in this slot. If there
are multiple slots that p has not joined into (i.e. p is not in the domains of these slots), then p registers itself in the first one.
This phase is the same for both synchronizing and non-synchronizing communications. Rules syninit and synwrite are the
simplified cases of synput .
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transfer(p, q) $ message transferring from process p to process q
∧ reqsp = Γ

p
1 � ⟨dst, cid, tagp, v, prp, ⊤, ωp⟩

send
i � Γ

p
2

∧ reqsq = Γ
q
1 � ⟨buf , src, cid, tagq, _, prq, ⊤, ωq⟩

recv
j � Γ

q
2 ∧

∧ match the requests in a FIFO manner
⟨p, dst, tagp, ωp, i⟩ P ⟨src, q, tagq, ωq, j⟩ ∧

@⟨dst, cid, tag1, v, pr1, ⊤, ω1⟩
send
m ∈ Γ

p
1 :

@⟨buf , src2, cid, tag2, _, pr2, ⊤, ω2⟩
recv
n ∈ Γ

q
1 :

∨ ⟨p, dst, tag1, ω1,m⟩ P ⟨src, q, tagq, ωq, j⟩
∨ ⟨p, dst, tagp, ωp, i⟩ P ⟨src2, q, tag2, ω2, n⟩
∨ ⟨p, dst, tag1, ω1,m⟩ P ⟨src2, q, tag2, ω2, n⟩

∧ reqs′
p = send the data

let b = reqsp[i].live in
if ¬b ∧ ¬reqsp[i].pr then Γ

p
1 � Γ

p
2

else Γ
p
1 � ⟨dst, cid, tagp, _, prp, b, ωp⟩

send
� Γ

p
2

∧ reqs′
q = receive the data

let b = reqsq[j].live in
if ¬b ∧ ¬reqsq[j].pr then Γ

q
1 � Γ

q
2

else Γ
q
1 � ⟨buf , p, cid, tagq, v, prq, b, ωq⟩

recv
� Γ

q
2

∧ ¬reqsq[j].live ⇒ mems′
q[buf ] = v write the data into memory

recv_wait(request, status, p) $ wait for a receive request to complete
let req_index = memsp[request] in
∧ reqs′

p[req_index].live = ⊥ indicate the wait has been called
∧

∨ (¬reqsp[req_index].active ⇒ mems′
p[status] = empty_status)

∨ the request is still active
let Γ1 � ⟨buf , src, cid, tag, v_, pr, ⊤, ω⟩

recv
req_index � Γ2 = reqsq in

let b = pr ∧ ¬reqsp[req_index].dealloc in
let new_reqs =

if b then Γ1 � ⟨buf , src, cid, tag, v_, pr, ⊥, ω⟩
recv

� Γ2 deactivate the request

else Γ1 � Γ2 remove the request
in
let new_req_index = if b then req_index else REQUEST_NULL in update the handle
if reqsq[req_index].cancelled then

mems′
p[status] = get_status(reqsp[req_index]) ∧

reqs′
p = new_reqs ∧ mems′

p[request] = new_req_index
else if src = PROC_NULL then

mems′
p[status] = null_status ∧ reqs′

p = new_reqs ∧ mems′
p[request] = new_req_index

else
wait until the data arrive, then write it to the memory

v_ ≠ _
mems′

p[status] = get_status(reqsp[req_index]) ∧ mems′
p[buf ] = v_ ∧

reqs′
p = new_reqs ∧ mems′

p[request] = new_req_index

Fig. 4.Modeling point-to-point communications (II).

After the ‘‘init’’ phase, process p proceeds to its ‘‘wait’’ phase. Among all the slots, p locates the first one it has entered
but not left. If the communication is synchronizing, then p has to wait until all other processes finish their ‘‘init’’ phases;
otherwise it proceeds. If p is the last process that leaves, then the entire collective communication is over and the
communication slot can be removed from the queue; otherwise p just updates its status to ‘‘left’’.

These protocols are used to specify collective communication primitives (Fig. 7). For example, MPI_Bcast is
implemented by two transitions: MPI_Bcastinit and MPI_Bcastwait . The root first sends its data to the rendezvous in
MPI_Bcastinit , then it calls either theasynwait rule or thesynwait rule depending onwhether the primitive is synchronizing.
In the synchronizing case the wait returns immediately without waiting for the completion of other processes. On the
other hand, a non-root process always calls the synwait rule because it must wait for the data from the root to ‘‘reach’’ the
rendezvous.

bcastinit(buf , v, root, comm, p) $ the root broadcasts data to processes
(comm.group[root] = p) ? synput(comm.cid, v, ϵ, p) : syninit(comm.cid, p)

bcastwait(buf , v, root, comm, p) $

if comm.group[root] = p then need_syn is a global flag whose value is set by the user
need_syn ? synwait(comm.cid, p) : asynwait(comm.cid, p)

else synwait(comm.cid, p) ∧ mems′
p[buf ] = rendp[comm.cid].sdata
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send_wait(request, status, p) $ wait for a receive request to complete
let req_index = memsp[request] in
∧ reqs′

p[req_index].live = ⊥ indicate the wait has been called
∧

∨ (¬reqsp[req_index].active ⇒ mems′
p[status] = empty_status)

∨ the request is still active
let Γ1 � ⟨dst, cid, tag, v_, pr, ⊤, ω⟩

mode
req_index � Γ2 = reqsq in

let b = pr ∧ ¬reqsp[req_index].dealloc ∨ v_ ≠ _ in
let new_reqs =

if ¬b then Γ1 � Γ2 remove the request

else Γ1 � ⟨buf , src, cid, tag, v_, pr, ⊥, ω⟩
recv

� Γ2 deactive the request
in
let new_req_index = if b then req_index else REQUEST_NULL in
let action = update the queue, the status and the request handle

∧ mems′
p[status] = get_status(reqsp[req_index])

∧ reqs′
p = new_reqs ∧ mems′

p[request] = new_req_index
in
if reqsq[req_index].cancelled then action
else if dst = PROC_NULL then

mems′
p[status] = null_status ∧ reqs′

p = new_reqs ∧ mems′
p[request] = new_req_index

else if mode = ssend then synchronous send, the guard requires a matching receive
∃q : ∃⟨src1, cid, tag1, _, pr1, ⊤, ω1⟩

recv
k ∈ Γ1 : ⟨dst, p, tag, ω, req⟩ P ⟨src1, q, tag1, ω1, k⟩

action
else if mode = bsend then
action ∧ buffer′.capacity = buffer.capacity − size(v_)

else if no buffer is used then wait until the value is sent
¬use_buffer ⇒ (v_ = _)
action

has_completed(req_index, p) .
= whether a request has completed

∨ ∃⟨buf , src, cid, tag, v, pr, ⊤, ω⟩
recv

= reqsp[req_index] the data v have arrived
∨ ∃⟨dst, cid, tag, v_, pr, ⊤, ω⟩

mode
= reqsp[req_index] :

∨ mode = bsend the data are buffered
∨ mode = rsend ∧ (use_buffer ∨ (v_ = _)) the data is out
∨ mode = ssend ∧ there must exist a matching receive

∃q : ∃⟨buf1, src1, cid, tag1, _, pr1, ⊤, ω1⟩
recv
k ∈ reqsq : ⟨dst, p, tag, ω, req⟩ P ⟨src1, q, tag1, ω1, k⟩

wait_any(count, reqarray, index, status, p) $ wait for any request in reqarray
if ∀i ∈ 0 .. count − 1 : reqarray[i] = REQUEST_NULL ∨ ¬reqsp[reqarray[i]].active
then mems′

p[index] = UNDEFINED ∧ mems′
p[status] = empty_status

else
∃ i : has_completed(reqarray[i], p)

mems′
p[index] = choose i : has_completed(reqarray[i], p) ∧

mems′
p[status] = get_status(reqsp[reqarray[i]])

wait_all(count, req_array, status_array, p) $ wait for all requests to complete
∀i ∈ 0 .. count − 1 : wait_one(reqarray[i], status_array[i], p)

Fig. 5.Modeling point-to-point communications (III).

MPI-2 extends many MPI-1 collective primitives to intercommunicators. An intercommunicator contains a local group
and a remote group. To model this, we replace commsp[cid].group with commsp[cid].group ∪ commsp[cid]. remote_group
in the rules shown in Fig. 6.

4.6. Evaluation and discussion

How to ensure that our formalization is faithful with the English description? To attack this problem we rely heavily on
testing in our formal framework.We provide comprehensive unit tests and a rich set of short litmus tests of the specification.
Generally it suffices to test local, collective, and asynchronous MPI primitives on one, two and three processes respectively.
These test cases, which include many simple examples in the MPI reference, are hand-written directly in TLA+ and model
checked using TLC. Although typically test cases are of only dozens of lines of code, they are able to expose most of the
formalization errors.

Another set of test cases are built to verify the self-consistency of the specification modeled after [49] where self-
consistency rules are used as performance guidelines. It is possible to relate aspects of MPI to each other, e.g. explain certain
MPI primitives in terms of other MPI primitives.
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Data Structures
rendezvous for a communication :

⟨status : [int → {‘‘e’’, ‘‘l’’}], sdata, data : [int → value]⟩ array

process p joins the communication and stores the shared data vs and its own data v in the rendevous
synput(cid, vs, v, p) .

=

if cid /∈ DOM rend then rend′
[cid] = ⟨[p → ‘‘e’’], vs, [p → v]⟩

else if ∀slot ∈ rend[cid] : p ∈ DOM (slot.status) then
rend′

[cid] = rend[cid] � ⟨[p → ‘‘e’’], vs, [p → v]⟩

else
rend[cid] = Γ1 � ⟨Ψ , α, Sv⟩ � Γ2 ∧ p /∈ DOM Ψ ∧ ∀slot ∈ Γ1 : p ∈ DOM (slot.status)

rend′
[cid] = Γ1 � ⟨Ψ ⊎ (p, ‘‘e’’), vs, Sv ⊎ (p, v)⟩ � Γ2

syninit(cid, p)
.
= syn_put(cid, ϵ, ϵ, p) no data are stored

synwrite(cid, v, p) .
= syn_put(cid, ϵ, v, p) no shared data are stored

synwait(cid, p)
.
= process p leaves the synchronizaing communication

rend[cid] = Γ1 � ⟨Ψ ⊎ (p, ‘‘e’’), vs, Sv⟩ � Γ2 ∧

∀k ∈ commsp[cid].group : k ∈ DOM Ψ ∧ ∀slot ∈ Γ1 : slot.status[p] ≠ ‘‘e’’
rend′

[cid] = if ∀k ∈ commsp[cid].group : k ∈ DOM Ψ ∧ Ψ [k] = ‘‘l’’ then Γ1 � Γ2
else Γ1 � ⟨Ψ ⊎ (p, ‘‘l’’), vs, Sv⟩ � Γ2

asynwait(cid, p)
.
= process p leaves the non-synchronizaing communication

rend[cid] = Γ1 � ⟨Ψ ⊎ (p, ‘‘e’’), vs, Sv⟩ � Γ2 ∧ ∀slot ∈ Γ1 : slot.status[p] ≠ ‘‘e’’
rend′

[cid] = if ∀k ∈ commsp[cid].group : k ∈ DOM Ψ ∧ Ψ [k] = ‘‘l’’ then Γ1 � Γ2
else Γ1 � ⟨Ψ ⊎ (p, ‘‘l’’), vs, Sv⟩ � Γ2

Fig. 6. The basic protocol for collective communications.

p0 p1 p2
synput(cid = 0, sdata = vs, data = v0) syninit(cid = 0) synwrite(cid = 0, data = v2)

asynwait(cid = 0) synwait(cid = 0) synwait(cid = 0)
syninit(cid = 0)

step event rend[0]
1 synput(0, vs, v0, p0) ⟨[0 → ‘‘e’’], vs, [0 → v0]⟩

2 syninit(0, p1) ⟨[0 → ‘‘e’’, 1 → ‘‘e’’], vs, [0 → v0]⟩

3 asynwait(0, p0) ⟨[0 → ‘‘l’’, 1 → ‘‘e’’], vs, [0 → v0]⟩

4 syninit(0, p0) ⟨[0 → ‘‘l’’, 1 → ‘‘e’’], vs, [0 → v0]⟩ � ⟨[0 → ‘‘e’’], ϵ, ϵ⟩
5 synwrite(0, v2, p2) ⟨[0 → ‘‘l’’, 1 → ‘‘e’’, 2 → ‘‘e’’], vs, [0 → v0, 2 → v2]⟩ � ⟨[0 → ‘‘e’’], ϵ, ϵ⟩
6 synwait(0, p2) ⟨[0 → ‘‘l’’, 1 → ‘‘e’’, 2 → ‘‘l’’], vs, [0 → v0, 2 → v2]⟩ � ⟨[0 → ‘‘e’’], ϵ, ϵ⟩
7 synwait(0, p1) ⟨[0 → ‘‘e’’], ϵ, ϵ⟩

Fig. 7. An example using the collective protocol. Three processes participate in collective communications via a communicator with cid = 0. Process p0 ’s
asynchronouswait returns even before p2 joins the synchronization; it also initializes a new synchronization after it returns. Process p2 , the last one joining
the synchronization, deallocates the slot. The execution follows from the semantics shown in Fig. 6.

For example, a message of size k × n can be divided into k sub-messages sent separately; a collective primitive can be
replaced by the combination of several point-to-point or one-sided primitives. We introduce relation MPI_A ≃ MPI_B to
indicate that A and B have the same functionality. This relation helps us to design test cases to test the specification of some
MPI primitives. To verify these relations we design test cases with concrete inputs and run the TLC to make sure that the
same outputs are obtained. We plan to prove them formally in the Isabelle/TLA tool [17].

MPI_A(k × n) ≃ (MPI_A(n)1; . . . ; MPI_A(n)k)
MPI_A(k × n) ≃ (MPI_A(k)1; . . . ; MPI_A(k)n)

MPI_Bcast(n) ≃ (MPI_Send(n); . . . ; MPI_Send(n))
MPI_Gather(n) ≃ (MPI_Recv(n/p)1; . . . ; MPI_Recv(n/p)p)

It should be noted that we have not modeled all the details of the MPI standard, which include:

• Implementation details. To the greatest extent we have avoided asserting implementation-specific details in our formal
semantics. One obvious example is the info object is ignored.

• Physical hardware. The underlying physical hardware is invisible in our model. Thus we do not model hardware related
primitives like MPI_Cart_map.

• Profiling interface. The MPI profiling interface is to permit the implementation of profiling tools. It is irrelevant to the
semantics of MPI primitives.

Issues raised bymodeling. While creating themodelwe became aware of some specific issues that have not been discussed in
the standard. For example, MPI_Probe on process j becomes enabledwhen there is amatching request posted on process j;
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Fig. 8. Architecture of the verification framework. The left (right) one indicates the flow (hierarchical) relation of the components.

MPI_Cancel attempts to cancel the corresponding communication. The standard says themessagemay still complete, and
it is up to the user to program appropriately. In this context, we identify some specific issues: (i) There are numerous ways
that MPI_Probe and MPI_Cancel can interact, resulting in an undefined system state. In particular, any time a message
is probed successfully, it is not specified whether it is still possible for the message to be canceled or if the message must
at that point be delivered. (ii) MPI_Cancel also creates an undefined state when used with ready mode send. Consider
an execution trace: MPI_Irecv; MPI_Irsend; MPI_Cancel; . . .. If the ready send is successful, can the receive still be
canceled? and (iii) Continuing with Cancel, what happens if the null request is canceled?

5. Verification framework

In our previous work [16], we developed a C front-end for supporting direct execution against our semantics. The
modeling framework uses the Microsoft Phoenix Compiler [50] as the front-end. Of course other front-end tools such as
GCC can also be used. The Phoenix framework allows developers to insert a compilation phase between existing compiler
phases in the process of lowering a program from language independent MSIL (Microsoft Intermediate Language) to device
specific assembly. We place our phase at the point where the input program has (i) been simplified into a single static
assignment (SSA) form, with (ii) a homogenized pointer referencing style that is (iii) still device independent.

From Phoenix intermediate representation (IR) we build a state-transition system by converting the control flow graph
into TLA+ relations andmappingMPI primitives to their names in TLA+. Specifically, assignments aremodeled by their effect
on thememory. Jumps aremodeled by transition rulesmodifying the values of the program counters. This transition system
completely captures the control skeleton of the input MPI program.

The architecture of the verification framework is shown in Fig. 8. The input program is compiled into an intermediate
representation, the Phoenix IR. We read the Phoenix IR to produce TLA+ code. The TLC model checker integrated in our
framework enables us to perform verification on the input C programs. If an error is found, the error trail is then made
available to the verification environment, and can be used by our tool to drive the Visual Studio debugger to replay the trace
to the error. In the following we describe the simplification, code generation and replay capabilities of our framework.

Simplification. In order to reduce the complexity of model checking, we perform a sequence of transformations: (i) inline
all user defined functions (currently function pointers and recursion are not supported); (ii) remove operations foreign to
the model checking framework, e.g. printf; and (iii) slice the model with respect to communications and user assertions:
the cone of influence of variables is computed using a chaotic iteration over the program graph, similar to what is described
in [51].

Code generation. During the translation from Phoenix IR to TLA+, we build a record map to store all the variables in the
intermediate language. The address of a variable x is given by the TLA+ expression map.x; and its value at the memory is
returned by mems[map.x]. Before running TLC, the initial values of all constants and variables are specified in a configuration
file. The format of the main transition relation is shown below, where N is the number of processes, and predefined_nxt is
the ‘‘system’’ transition which performs message passing for point-to-point communications, one-sided communications,
and so on. In addition, ‘‘program’’ transitions transition1, transition2, . . . are produced by translating MPI primitive calls and
IR statements.

∨ predefined_nxt ∧ UNCHANGED map transitions performed by the MSS
∨ transition1 ∨ transition2 ∨ · · · ∨ transitionN−1 execute an enabled transition at a process
∨ eliminate spurious deadlocks

∀pid ∈ 0..(N − 1) : pc[pid] = last_label ∧ UNCHANGED all_variables

Error trail generation. In the event that the model contains an error, an error trail is produced by the model checker and
returned to the verification environment. Tomap the error trail back onto the actual programwe observeMPI primitive calls
and the changes in the error trail to variable values that appear in the program text. For each change on a variable, we step
the Visual Studio debugger until the corresponding value of the variable in the debugger matches. We also observe which
processmoves at every step in the error trail and context switch between processes in the debugger at corresponding points.
When the error trail ends, the debugger is within a few steps of the error with the process that causes the error scheduled.
The screenshots in Fig. 9 show the debugger interface and the report of an error trace.
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Fig. 9. Two screenshots of the verification framework. The upper one shows the development environment extended from Visual Studio; the lower one
displays the result on the ‘‘TRAP’’ example taken from [52].

Examples. A simple C program containing only one statement
if (rank == 0) MPI_Bcast (&b, 1, MPI_INT, 0, comm1);

is translated to the following code. Here the variable appearing in the source is prefixed by a ‘‘_’’.
∨ pc[pid] = L1 ∧ pc ′

= [pc EXCEPT ![pid] = L2] ∧

mems′
= [mems EXCEPT ![pid] = [@ EXCEPT ![map.t1] = (mems[pid][map._rank] = 0)]]

∨ pc[pid] = L2 ∧ pc ′
= [pc EXCEPT ![pid] = L3] ∧ mems[pid][map.t1]

∨ pc[pid] = L2 ∧ pc ′
= [pc EXCEPT ![pid] = L5] ∧ ¬(mems[pid][map.t1])

∨ pc[pid] = L3 ∧ pc ′
= [pc EXCEPT ![pid] = L4] ∧ MPI_Bcast_init(map._b, 1, MPI_INT, 0,map._comm1, pid)

∨ pc[pid] = L4 ∧ pc ′
= [pc EXCEPT ![pid] = L5] ∧ MPI_Bcast_wait(map._b, 1, MPI_INT, 0,map._comm1, pid)

At label L1, the value of rank == 0 is assigned to a temporary variable t1, and the pc advances to L2. In the next step, if
the value of t1 is true, then the pc advances to L3; otherwise to the exit label L5. The broadcast is divided into an ‘‘init’’ phase
(where pc advances from L3 to L4) and a ‘‘wait’’ phase (where pc advances from L4 to L5). Fig. 10 shows a more complicated
example.

6. Discussions and conclusions

To help reason about programs that use MPI for communication, we have developed a formal TLA+ semantic definition
of MPI 2.0 primitives to augment the existing standard. We described this specification, as well as our framework to extract
models from SPMD-style C programs.
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The source C program:

int main(int argc, char* argv[]) {
int rank; int data; MPI_Status status;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
if (rank == 0)

{ data = 10; MPI_Send(&data,1,MPI_INT,1,0,MPI_COMM_WORLD); }
else

{ MPI_Recv(&data,1,MPI_INT,0,0,MPI_COMM_WORLD, &status); }
MPI_Finalize();
return 0;

}

The TLA+ code generated by the compiler:

∨ ∧ pc[pid] = _main ∧ pc ′
= [pc EXCEPT ![pid] = L1] ∧ MPI_Init(map._argc,map._argv, pid)

∨ ∧ pc[pid] = L1 ∧ pc ′
= [pc EXCEPT ![pid] = L2]

∧ MPI_Comm_rank(MPI_COMM_WORLD,map._rank, pid)
∨ ∧ pc[pid] = L2 ∧ pc ′

= [pc EXCEPT ![pid] = L5] ∧ changed(mems)

∧ mems′
= [mems EXCEPT ![pid] = [@ EXCEPT ![map.t277] = (mems[pid][map._rank] = 0)]]

∨ ∧ pc[pid] = L5 ∧ pc ′
= [pc EXCEPT ![pid] = L6] ∧ ¬(mems[pid][map.t277])

∨ ∧ pc[pid] = L5 ∧ pc ′
= [pc EXCEPT ![pid] = L7] ∧ mems[pid][map.t277]

∨ ∧ pc[pid] = L6 ∧ pc ′
= [pc EXCEPT ![pid] = L14]

∧ MPI_Irecv(map._data, 1,MPI_INT, 0, 0,MPI_COMM_WORLD,map.tmprequest1, pid)
∨ ∧ pc[pid] = L7 ∧ pc ′

= [pc EXCEPT ![pid] = L9]
∧ mems′

= [mems EXCEPT ![pid] = [@ EXCEPT ![map._data] = 10]] ∧ changed(mems)

∨ ∧ pc[pid] = L9 ∧ pc ′
= [pc EXCEPT ![pid] = L13]

∧ MPI_Isend(map._data, 1,MPI_INT, 1, 0, MPI_COMM_WORLD,map.tmprequest0, pid)
∨ ∧ pc[pid] = L13 ∧ pc ′

= [pc EXCEPT ![pid] = L11] ∧ MPI_Wait(map.tmprequest0,map.tmpstatus0, pid)
∨ ∧ pc[pid] = L14 ∧ pc ′

= [pc EXCEPT ![pid] = L11] ∧ MPI_Wait(map.tmprequest1,map._status, pid)
∨ ∧ pc[pid] = L11 ∧ pc ′

= [pc EXCEPT ![pid] = L12] ∧ MPI_Finalize(pid)

Fig. 10.An example C programand its corresponding TLA+ code. Notation changed(mems) specifies that all objects other thanmem are unchanged. Statement
‘‘return 0’’ is not translated since we do not model procedure calls (functions are inlined during compilation).

It is advantageous to have both declarative and executable specifications for APIs. While we have been relatively happy
with TLA+ as a specification language, much of the valuewe derived from TLA+ is from the accompanyingmodel checker TLC
which uses the explicit state enumeration technology to calculate reachable states. Such tools cannot be used to calculate the
outcome of general scenarios such as these: ‘‘whatwill happen ifwe initialize anMPI runtime to a state satisfying a high level
predicate and some partially specified symbolic inputs are applied?’’ It is well known that the technology underlying tools
such as Alloy [25] (namely Boolean satisfiability) and SAL [33] (namely decision procedures) would be more appropriate for
such calculations. Therefore, it would also be of interest to explore the use of symbolic reasoning capabilities in conjunction
with API specifications.

The experience gained in our effort makes us firmly believe that a formal semantic definition and exploration approach
as described here should accompany every future effort in creating parallel and distributed programming APIs. Following
this belief, we are currently involved in writing a formal specification for MCAPI, an API of growing interest for multi-core
communication [14]. This exercise is expected to be much more tractable and timely: (i) MCAPI is in its inception with
few (or no) widely used MCAPI library implementations, (ii) MCAPI is much smaller than MPI — a 40-page printout of the
specification document, as opposed to a 600-page printout, and (iii) the correctness of MCAPI implementations will bemore
critical than that of MPI in the sense that some of these implementations may be committed to silicon, where bug-fixing is
far more expensive. We also plan to derive additional value from our formalization by generating valuable platform tests
for MCAPI implementations, in a manner similar to [53].

In conclusion, our effort with respect to formalizing MPI has been a major learning experience. For practical reasons, we
could not influence theMPI community asmuch as an idealized viewwould suggest: (i) theMPI specification is already large,
and is growing even larger with the new additions to MPI currently under discussion, (ii) our efforts have been fairly late
considering when MPI was initially introduced. That said, our effort has helped identify a few omissions and ambiguities in
the originalMPI reference standard document [16].While thesewere brought to the attention ofmembers of theMPI forum,
they have been independently addressed by subsequent revisions to the published MPI standard documents. Nevertheless,
the genuine interest (and even admiration) expressed by the MPI community encourages us to pursue formalization in a
more timely fashion for future efforts.
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