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In this paper, we present an efficient numerical method for evaluating rare failure proba-
bility. The method is based on a recently developed surrogate-based method from Li and
Xiu [J. Li, D. Xiu, Evaluation of failure probability via surrogate models, J. Comput. Phys.
229 (2010) 8966–8980] for failure probability computation. The method by Li and Xiu is
of hybrid nature, in the sense that samples of both the surrogate model and the true
physical model are used, and its efficiency gain relies on using only very few samples of
the true model. Here we extend the capability of the method to rare probability computa-
tion by using the idea of importance sampling (IS). In particular, we employ cross-entropy
(CE) method, which is an effective method to determine the biasing distribution in IS. We
demonstrate that, by combining with the CE method, a surrogate-based IS algorithm can be
constructed and is highly efficient for rare failure probability computation—it incurs much
reduced simulation efforts compared to the traditional CE-IS method. In many cases, the
new method is capable of capturing failure probability as small as 10�12 � 10�6 with only
several hundreds samples.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Uncertainties in specifying material properties, geometric parameters, boundary conditions and applied loadings are
unavoidable in describing real-life engineering systems. Traditionally, this has been catered for in an ad hoc way through
the use of safety factors at the design stage. Such an approach is becoming less satisfactory in today’s competitive design
environment, for example, in minimum weight design of aircraft structures. Therefore, accurate evaluation of failure prob-
ability of a given system is becoming increasingly important and a fundamental problem in many fields such as risk man-
agement, structural design, reliability based optimization, etc.

Since in most cases the function separating the safe and failure domains is not known explicitly and can be highly irreg-
ular in high dimensional spaces, the standard integration rules such as Gauss quadrature, cubature, sparse grids, etc., are not
directly applicable. The most commonly used method is Monte Carlo simulation (MCS), which requires one to simulate, also
known as to sample, the underlying system repetitively. Though straightforward to implement, MCS can be highly time-con-
suming when the underlying system is complex, for each sample requires a full-scale numerical simulation of the system. To
reduce the computational effort, many alternative non-sampling based methods have been developed, such as FORM/SORM
(first-order/second-order reliability method) [13,9,6,12,20,27,26], RSM (response surface method) [29,8,3,21,10,11,19], etc.
These methods usually incur much less simulation cost, compared to MCS, at the expense of reduced accuracy.

For systems with rare failure probability, which in this paper is defined as failure probability less than 10�5, the problem
becomes drastically more difficult. To this end, one needs to employ methods with sufficiently high accuracy so that the rare
. All rights reserved.
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failure probability in the small tails of the distribution can be captured. And to this date none of the non-sampling methods
can be highly effective in a general setting, due to their lack of high accuracy. Probably the most reliable method is based on
MCS. To this end, the computational cost becomes much higher. As a rule-of-thumb, one usually needs about 10 samples in
the failure domain to reliably estimate the failure probability. For rare probability this translates to prohibitively large num-
ber of samples. For example, for probability of O(10�6), it is not uncommon to use O(107), or even O(108), number of samples
for good accuracy.

To reduce the number of samples, one of the most widely used methods is importance sampling (IS). (See, for exam-
ple, [22,28,4,25]). In IS, one seeks to sample the random variables from a different distribution, called biasing distribu-
tion, rather than the original one. The biasing distribution is constructed in such a way that more samples will land in
the failure domain and thus results in (much) less total number of samples. The use of the biasing distribution, essen-
tially a change of measure approach, is incorporated in the sampling estimate by adjusting the weight of each sample
to ensure that the final estimate is unbiased. A successfully constructed IS method can significantly increase the effi-
ciency of MCS. For the aforementioned example, for probability of O(10�6), a carefully constructed IS method can re-
duce the total number of samples by several orders, e.g., O(104), a drastic reduction from the O(107) samples by the
brute force MCS.

For practical engineering systems, computer simulations can be extremely time consuming. In many cases, one can only
afford very limited number of simulations—nothing beyond a few hundreds. In this case, even the most effective IS method is
not applicable. And one often has to resort to some highly problem dependent and/or ad hoc approaches to estimate the rare
probability and then use safety factor to mitigate the impacts caused by the inaccuracy. It should be noted that the idea of
combining IS with techniques such as FORM/SORM has been pursued and resulted in several interesting strategies. Also
there are other types of approaches that do not employ IS, e.g., sequential Monte Carlo method ([15]), etc. These methods
have their own specific strength and limitations, and will not be discussed in this paper. For detailed discussions, see, for
example, [7,20,27,26,15].

The purpose of this paper is to present a new algorithm for computing rare probability, with significantly enhanced effi-
ciency so that it can capture rare probability of less than 10�5 with (in many cases) a few hundreds of samples. A key feature
of the method is that it is in a general setting and does not require approximations, transformations, or manipulations of the
underlying systems. The method relies on a recently developed method by Li and Xiu [17], where a fundamental flaw in the
traditional RSM was identified and an improvement – a surrogate-based hybrid method – was proposed. The method utilizes
samples of the response surface, which hereafter will be referred to as surrogate, in the majority of the probability space and
samples of the real system only in the region surrounding the failure mode. It achieves high accuracy in the failure proba-
bility estimation while incurring much reduced number of samples of the real system. In this paper the hybrid method from
[17] is extended to the case of rare failure probability by incorporating the idea of importance sampling. In particular, the
cross-entropy (CE) method for IS is adopted. The CE method ([24,5]) is a relatively new Monte Carlo technique for both esti-
mation and optimization. In the estimation setting, the CE method provides an adaptive way to find a good biasing distri-
bution for quite general problems. The biasing distribution is obtained by an optimization procedure that minimizes its
distance, measured by cross-entropy between two distributions, from the optimal biasing distribution, which exists in theory
but is unavailable in practice. Furthermore, an adaptive multilevel iterative algorithm is available to effectively compute the
biasing distribution. In this paper we present a new algorithm based by combining the ideas of both the CE method and the
hybrid method. The surrogate model is utilized in both the CE optimization step and the final IS integral evaluation. And the
result is a highly efficient algorithm where the simulation cost is significantly reduced further, compared to the direct CE-IS
method. In many test cases, the new algorithm is able to resolve failure probability as low as 10�6 with only several hun-
dreds samples.

It should be emphasized that the purpose of this paper is not to compare different IS methods or other types of methods
for rare probability. This is impossible to do owing to the large amount of existing methods. Rather, the paper presents an
approach of enhancing certain IS strategies, by using the surrogate-based hybrid idea from [17], and demonstrates that the
new method is rigorous, efficient, and more importantly, easy to implement. We restrict our discussion to the CE method,
and leave the potential extension to other IS strategies to future research.

Throughout this paper, we assume that a surrogate model is available to use. The surrogate model can be constructed
by simulations or given by physics laws or literature. Therefore we do not count the construction of the surrogate as part
of the computational cost. Also, the proposed method does not seek to improve the accuracy of the surrogate, which is
impossible to do if the surrogate is obtained from literature or physics laws. It should also be noted that improving
the accuracy of the surrogate may not be useful at all [17]. In fact, the method does not require the surrogate model
to be of high accuracy.

The rest of this paper is organized as the following. After presenting the formulation of rare failure probability computa-
tion in Section 2, we briefly review the key ingredients of the present method. These include importance sampling, cross-
entropy method, and the hybrid method of [17]. The details of the new method are presented in Section 4, where two numer-
ical algorithms are presented. Numerical examples are presented in Section 5 to demonstrate the effectiveness of the new
algorithms.
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2. Problem setup

In this paper we consider the problem of failure probability evaluation. In a general setting, the problem can be described
as the following. Let Z ¼ ðZ1; . . . ; ZnZ Þ be a nZ-dimensional random vector with distribution function FZ(z) = Prob(Z 6 z), where
z 2 RnZ is a real vector. Here we restrict the discussion to the case of continuous distribution, where a probability density
function (PDF) q(z) exists in the sense that dFZ(z) = q(z)dz. We then consider the following integral
Pf ¼ ProbðZ 2 Xf Þ ¼
Z

Xf

qðzÞdz ¼
Z

IXf
ðzÞqðzÞdz; ð2:1Þ
where I is the characteristic function satisfying
IAðxÞ ¼
1; x 2 A;

0; x R A;

�
ð2:2Þ
and Xf is the failure domain defined as
Xf , fZ : gðZÞ < 0g: ð2:3Þ
Here g(z) is a (scalar) limit state function, also called performance function, that defines the failure domain Xf. More precisely,
the domain where g < 0 is the failure domain, whereas the domain of g P 0 is the safe domain. This is a general definition for
failure probability, which is used widely in many disciplines involving reliability analysis and risk management. From now on
we will use the shorthanded notation of {g(Z) < 0} to stand for the set (2.3) and (2.1) will be frequently written as
Pf ¼
Z

IfgðzÞ<0gðzÞqðzÞdz; ð2:4Þ
unless confusion arises.
In this paper, we will consider the case of rare failure probability, which refers to Pf < 10�5. (Note in different application

areas, different measures of ‘‘rare’’ are used.)
It is obvious that the limit function g is important, because it separates the safe and failure domain. The difficulty is that in

almost all practical cases, the limit state function is not known explicitly. Instead, usually the random vector Z represents
uncertain inputs to a complex stochastic system, and the limit state function g depends on the solution of the stochastic sys-
tem, often in a nonlinear and/or implicit manner. Hence g(Z) can only be evaluated by solving the underlying stochastic sys-
tem which can be time consuming. Here in this paper we will not explicitly define the underlying stochastic system.

3. Preliminaries

This section is devoted to the introduction of the core components of the new method. These include importance sam-
pling (IS) method, particularly cross-entropy (CE) method, and the surrogate-based hybrid method for failure probability
computation from [17].

3.1. Importance sampling

The most reliable and straightforward approach for (2.4) is Monte Carlo sampling (MCS), where random samples are gen-
erated according to the distribution of Z and those land in the failure region are counted to estimate the failure probability.
Let zðiÞ 2 RnZ ; i ¼ 1; . . . ;M, be a set of samples drawn from the distribution q(z), then the MCS estimate of the failure prob-
ability (2.4) is
Pmc
f ¼

1
M

XM

i¼1

IfgðzÞ<0gðzðiÞÞ: ð3:1Þ
Although easy to implement, the MCS approach can be costly in practice, for each sample point requires a full-scale sim-
ulation of the underlying stochastic system. And usually a large number of samples is required to obtain an accurate estimate
of the failure probability. This is especially challenging for the rare failure probability considered in this paper. For failure
probability less than 10�5, the required number of samples would be so large that it is beyond the reach of most practical
complex systems, for which one can usually afford at most a few hundreds simulations.

An effective way to simulate rare probability is importance sampling (IS). The idea is that, instead of sampling (2.4) using
the density q(z) directly, one introduces a biasing distribution p(z) and rewrites (2.4) as
Pf ¼
Z

Ifg<0gðzÞ
qðzÞ
pðzÞpðzÞdz ¼

Z
Ifg<0gðzÞWðzÞpðzÞdz; ð3:2Þ
where W(z) = q(z)/p(z) is the likelihood ratio. One then conducts MCS estimation for (3.2) by drawing samples {z(i)} from the
distribution p(z) and obtains
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Pis
f ¼

1
M

XM

i¼1

IfgðzÞ<0gðzðiÞÞWðzðiÞÞ: ð3:3Þ
The key in designing an effective IS method is to construct a ‘‘good’’ biasing distribution p(z) so that more samples will land
in the failure domain. (The contributions of the samples will be adjusted by the likelihood ratio.) The successful design of the
biasing distribution is, however, not a trivial task. And this is where different IS methods differ from each other. See, for
example, [22,28,4,25]. It should be noted that the ‘‘optimal’’ biasing distribution exists,
p�ðzÞ ¼ 1
Pf

IfgðzÞ<0gðzÞqðzÞ: ð3:4Þ
It will result in zero variance in (3.2) and therefore require only a single sample to evaluate the integral. The problem is that
it depends on the unknown Pf and thus can not be evaluated.

3.2. Cross-entropy method

There exist several different approaches for IS, some of which are problem dependent. Here we employ the cross-entropy
(CE) method, which was motivated by an adaptive algorithm for estimating probabilities of rare events in complex stochastic
networks ([23]). It is a quite general IS strategy and has been under intense development since its introduction. For general
overviews of the method, see [24,5]. The key ingredient of the CE method is the use of cross-entropy, also known as
Kullback–Leibler divergence (KLD) [16], between two probability distributions to optimally determine the biasing distribu-
tion in (3.2). For two distributions p1 and p2, the CE, or KLD, takes the following form,
Dðp1; p2Þ ¼ Ep1
ln

p1ðzÞ
p2ðzÞ

� �
¼
Z

p1ðzÞ ln
p1ðzÞ
p2ðzÞ

dz: ð3:5Þ
It is easy to verify that Dðp1; p2ÞP 0, where equality is achieved when p1 = p2 a.e.
In the CE method, the biasing distribution p(z) in (3.2) is determined by requiring p(z) to be ‘‘close’’ to p⁄, the optimal and

yet unavailable biasing distribution (3.4). The CE distance from p⁄ to p can be written in two parts:
Dðp�; pÞ ¼
Z

p�ðzÞ ln p�ðzÞdz�
Z

p�ðzÞ ln pðzÞdz: ð3:6Þ
Minimizing (3.6) is equivalent to maximize the second integral on the right-hand-side. Often it is possible to search for the
biasing distribution from a parameterized family of distribution {p(z;v)}v2V, where V is the parameter set. By using (3.4), the
optimization problem (3.6) becomes solving for
v ¼ argmaxv

Z
IfgðzÞ<0gðzÞ lnðpðz; vÞÞqðzÞdz:
However, the same difficulty caused by the rareness of {g < 0} in term of the distribution q(z) persists. To circumvent the
difficulty, the idea of IS is again utilized. By adopting another biasing distribution p(z; w) we obtain the following optimiza-
tion problem
v ¼ argmaxv

Z
IfgðzÞ<0gðzÞWðz; wÞ lnðpðz; vÞÞpðz; wÞdz; ð3:7Þ
where W(z; w) = q(z)/p(z; w) is the likelihood ratio. In practice, the stochastic counterpart of (3.7) is usually employed. Let
fzðiÞgM

i¼1 be samples drawn from the distribution p(z; w), we solve
v̂ ¼ argmaxv
1
M

XM

i¼1

IfgðzÞ<0gðzðiÞÞWðzðiÞ; wÞ lnðpðzðiÞ; vÞÞ: ð3:8Þ
This optimization problem can be effectively solved by a multilevel iterative method, where one generates a sequence of ref-
erence parameters vk, k = 0,1,2, . . . and a sequence of decreasing levels ck > 0. These sequences are then used to define inter-
mediate failure domains Ifg<ckg under distribution p(z; vk), instead of p(z; w) as in (3.7), whose probability is not rare. The
iteration terminates when the level ck drops to zero, which is the original failure domain, and the converged vk defines
the biasing distribution p(z; v) in the IS integral (3.2).

The CE method is quite general, so long as one can choose a proper parameterized family for the choice of the biasing
distribution. It should be noted that implementation of non-parametric CE method has been investigated [14,2]. Also, many
studies have been conducted on CE methods, and we will not engage in more discussions here.

3.3. Hybrid method

The hybrid method from [17] utilizes surrogate models for the limit state function to enhance the performance of MCS.
The basic requirement is the availability of a surrogate model ~g that approximates the original limit state function g. The
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surrogate can be constructed either by numerical simulations or by physical laws. Very often surrogate models take the form
of (multi-dimensional) polynomials of Z. In general, we require that the surrogate is an approximation in Lp norm. That is,
�g ¼ kgðZÞ � ~gðZÞkLp ¼
Z
jgðzÞ � ~gðzÞjpqðzÞdz

� �1=p

; p P 1; ð3:9Þ
exists. Note that the existence of this error is a mathematical necessity to ensure the rigorousness of the approach. In practice
the knowledge of this error is not required. For a detailed discussion, see [17].

Given the surrogate ~g, instead of evaluating the failure probability (2.4) directly, one can evaluate
ePf ¼
Z

If~gðzÞ<0gðzÞqðzÞdz; ð3:10Þ
where the surrogate ~g is used to approximate the failure domain. The motivation is that (3.10) is easier to approximate by
MCS. That is, let fzðiÞgM

i¼1 be samples drawn from the distribution q(z), then
ePmc
f ¼

1
M

XM

i¼1

If~gðzÞ<0gðzðiÞÞ; ð3:11Þ
is an approximation of (3.10) and easy to carry out, because sampling ~g requires only repetitive evaluations of the explicitly
known functional form of the surrogate and does not incur any simulation effort of the underlying system. Hence one can
employ extremely large number of samples to conduct the estimate.

This is essentially the idea behind response surface method (RSM), which has been under development for a long time. Its
accuracy and robustness have not been consistent, and the reason was largely associated with the lack of high accuracy in
most surrogate models. And efforts have been made to improve the performance of RSM ([1,21,11,18]). However, in the work
of [17], it was shown that such a straightforward sampling of the surrogate is fundamentally flawed and may lead to erro-
neous results, no matter how accurate the surrogate ~g is. To address the flaw, the hybrid method was proposed in [17], where
the direct surrogate sampling result is ‘‘corrected’’ by using samples of the true limit state function g. The key of the method
is to replace the samples that are ‘‘close’’ to ~g ¼ 0 by g so that most of the samples of the surrogate ~g are kept. To this end, the
hybrid method seeks to estimate the failure probability via the following two integrals,
Pd ¼
Z

If~g<�dgðzÞqðzÞdz;

Q d ¼
Z

If�d6~g6dg\fg<0gðzÞqðzÞdz;
ð3:12Þ
where d P 0 is a (small) real number, and the hybrid estimate is the summation of the two integrals
Ph
f ¼ Pd þ Q d: ð3:13Þ
It was proved in [17] that with properly chosen parameter d, the error of hybrid estimate Ph
f � Pf

��� ��� can be controlled by any

prescribed accuracy threshold, and the choice of d is directly related to the Lp norm (p P 1) of the error of the surrogate ~g.
To facilitate the following discussion, we discuss the hybrid estimate in a slightly more general setting by considering a

failure domain {g(Z) < c}, where c is a real parameter.
For a given limit state function g, its surrogate model ~g, and a real parameter c, we define
ProbðhÞðc; g; ~gÞ , Probðf~g < c� dgÞ þ Probðfj~g � cj 6 dg \ fg < cgÞ: ð3:14Þ
Or, equivalently, we write it in the following form,
Z
I
ðhÞ
f~g<cgðzÞqðzÞdz ,

Z
If~g<c�dgðzÞqðzÞdzþ

Z
Ifj~g�cj6dg\fg<cgðzÞqðzÞdz; ð3:15Þ
where the indicator function I
ðhÞ
f~g<cg is implicitly defined as
I
ðhÞ
f~g<cgðzÞ , If~g<c�dgðzÞ þ Ifj~g�cj6dg\fg<cgðzÞ: ð3:16Þ
The stochastic sampling counterpart of (3.14) is as the following. Let fzðiÞgM
i¼1 be samples drawn from the distribution q(z),

then
dProbðhÞðc; g; ~gÞ , 1
M

XM

i¼1

I
ðhÞ
f~g<cgðz

ðiÞÞ ¼ 1
M

XM

i¼1

ðIf~g<c�dgðzðiÞÞ þ Ifj~g�cj6dgðzðiÞÞ � Ifg<cgðzðiÞÞÞ: ð3:17Þ
Note the hybrid failure probability estimate (3.13) is a special case of c = 0, i.e.,
Ph
f ¼ ProbðhÞð0; g; ~gÞ ¼

Z
I
ðhÞ
f~g<0gðzÞqðzÞdz: ð3:18Þ
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And the MCS estimate of the hybrid integral is
bPh
f ¼ dProbðhÞð0; g; ~gÞ ¼ 1

M

XM

i¼1

I
ðhÞ
f~g<0gðz

ðiÞÞ: ð3:19Þ
To effectively apply the method in practice and eliminate the explicit specification of the parameter d, an efficient iter-
ative algorithm was proposed in [17]. Let dM be an integer, much smaller than total number of samples M, as the ‘‘step size’’
of the iteration.

� Initialization: Estimate the failure probability using the surrogate model via (3.11), and sort fj~gðzðiÞÞjgM
i¼1 in ascending

order.
� Iteration: At kth iteration (k > 0), do the following.

– Identify the (k � 1) ⁄ dM + 1 to k ⁄ dM samples in the sorted sequence of j~gj, re-evaluate these samples by g, and update
the probability estimate.

– Repeat the iteration till the probability estimate is converged.

This is a prediction–correction type of algorithm, where the estimate by the surrogate model ~g plays the role of the pre-
diction, and the dM samples of ~g that are ‘‘closest’’ to zero are updated by g to ‘‘correct’’ the failure probability estimate until
a convergence is established. More details can be found in [17], where the efficiency gain of the method was demonstrated
by several examples.

4. Surrogate-based importance sampling: the main algorithms

In this section we present the main algorithm for computing rare failure probability using surrogate model. The current
method utilizes the CE optimization to determine a biasing distribution for the IS integral. And the idea of the hybrid method
from [17] is employed to enhance the performance of both the CE optimization and the IS integration. A direct algorithm is
presented first, to illustrate the idea of the approach. An iterative algorithm, easy to implement and much more practical, is
then presented.

4.1. Direct algorithm

The major components for the current method are the CE optimization procedure to determine a good biasing distribu-
tion, and the IS procedure to evaluate the failure integral. We now present details of both procedures and explain how the
usage of a surrogate model can improve the efficiency of the traditional CE–IS method.

4.1.1. Surrogate-based cross-entropy optimization
To improve the performance of the CE optimization problem (3.7), we conduct the CE optimization on the surrogate ~g

instead of the true limit state function g. However, to avoid the potentially severe loss of accuracy, pointed out by Li and
Xiu [17], we employ the hybrid idea by using information of g when ~g is close to zero. That is, we seek to solve the following
surrogate-based CE optimization problem
~v ¼ argmaxv

Z
I
ðhÞ
f~g<0gðzÞWðz; wÞ lnðpðz; vÞÞpðz; wÞdz; ð4:1Þ
where again W(z; w) = q(z)/p(z; w) is the likelihood ratio and I
ðhÞ
f~g<0g is defined in (3.16). To effectively solve the optimization

problem, we employ the multilevel adaptive iteration from [24,5], with the difference in that the algorithm now operates on
both the surrogate ~g and the true model g. The details of the algorithm are as follows. Let k P 0 be the iteration count and
{p(z; v)}v2V be the parameterized family of distributions from which the biasing distribution will be determined.

� Initialization:
– Set k = 0, and choose the initial parameters v0 in the family of distributions of {p(z; v)} and set ~v0 ¼ v0.
– Choose a not-so-small real number q, say 10�2

6 q 6 10�1, and let c0 be the smallest real number such that, for Z with
distribution pðz; ~v0Þ,
ProbðhÞðc0; g; ~gÞP q; ð4:2Þ
where the operator Prob(h) is defined in (3.14).
� Iteration: At kth iteration, do the following:

– Updating of ck. For a fixed ~vk�1, find the smallest real number ck such that, for Z with distribution pðz; ~vk�1Þ,
ProbðhÞðck; g; ~gÞP q: ð4:3Þ

– Updating of ~vk. For fixed ~vk�1 and ck, derive ~vk from
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~vk ¼ argmaxv

Z
I
ðhÞ
f~g<ckg

ðzÞWðz; ~vk�1Þ lnðpðz; vÞÞpðz; ~vk�1Þdz: ð4:4Þ
The iteration terminates at certain iteration count K > 0, when the cK reaches the level of zero, which is the original critical
value of failure. This implies that the distribution pðz; ~vKÞ can now generate not-too-rare samples, with probability at least q,
and hence can be used as a good biasing distribution. Upon convergence we set ~v ¼ ~vK as the solution of (4.1) and the biasing
distribution as pðzÞ ¼ pðz; ~vÞ.

In practice, the stochastic counterpart of the CE optimization is often more useful, and it takes the following form.
~̂v ¼ argmaxv
1
M

XM

i¼1

I
ðhÞ
f~g<0gðz

ðiÞÞWðzðiÞ; wÞ lnðpðzðiÞ; vÞÞ; ð4:5Þ
where fzðiÞgM
i¼1 are samples drawn from the distribution p(z; w), and the sampling with respect to I

ðhÞ
f~g<0g is defined in (3.17).

The multilevel adaptive iteration algorithm used in the traditional CE optimization can now be adapted to the current
stochastic formulation.

� Initialization:
– Set k = 0, and choose the initial parameters v0 in the family of distributions of {p(z; v)} and set ~̂v0 ¼ v0.

– Choose a not-so-small real number q, say 10�2
6 q 6 10�1. Let zð0Þi

n oM

i¼1
be samples drawn from the distribution

pðz; ~̂v0Þ and find ĉ0 such that
dProbðhÞðĉ0; g; ~gÞP q; ð4:6Þ
where the operator dProbðhÞ is defined in (3.17).
� Iteration: At kth iteration, do the following:

– Updating of ĉk. For fixed ~̂vk�1, draw random samples fzðiÞgM
i¼1 from the distribution pðz; ~̂vk�1Þ, and find ĉk such that
dProbðhÞðĉk; g; ~gÞP q; ð4:7Þ

– Updating of ~̂vk. For fixed ~̂vk�1 and ĉk, derive ~̂vk from

~̂vk ¼ argmaxv
1
M

XM

i¼1

I
ðhÞ
f~g<ĉkg

ðzðiÞÞWðzðiÞ; ~̂vk�1Þ lnðpðzðiÞ; vÞÞ; ð4:8Þ

where fzðiÞgM
i¼1 are the same samples drawn from the distribution pðz; ~̂vk�1Þ. Obviously, this is the stochastic version of (4.4).

The iteration terminates at certain iteration count K > 0, when the ĉK reaches the level of zero. Upon convergence we set
~̂v ¼ ~̂vK as the solution of (4.5), and the biasing distribution as pðzÞ ¼ pðz; ~̂vÞ.

4.1.2. Surrogate-based importance sampling
Once the optimal parameter ~v is determined from the surrogate-based CE optimization (4.1), or ~̂v from its stochastic

counterpart (4.5), the biasing distribution p(z) is determined, via either pðz; ~vÞ or pðz; ~̂vÞ, respectively. We then proceed to
estimate the IS integral (3.2). Here we employ the surrogate-based hybrid method by Li and Xiu [17] and compute the rare
failure probability by
ePf ¼
Z

I
ðhÞ
f~g<0gðzÞWðzÞpðzÞdz; ð4:9Þ
where W(z) = q(z)/p(z) is the likelihood ratio. The convergence of this estimate to the true rare probability (3.2) is a trivial
extension of the theorem in [17].

Let fzðiÞgM
i¼1 be samples from the distribution p(z). Then the stochastic version of (4.9) is
êPf ¼
1
M

XM

i¼1

I
ðhÞ
f~g<0gðz

ðiÞÞWðzðiÞÞ: ð4:10Þ
This estimate converges to (4.9) as one increases the sample size M.

4.2. Iterative algorithm

The aforementioned method for both the CE optimization and the IS integral utilizes the hybrid sampling idea of [17]. A
major requirement is the specification of the parameter d, which is used to separate the probability space into two sub-do-
mains. The specification of d is directly related to the Lp error of the surrogate ~g, and in many practical simulations will not be
available. Here we extend the iterative algorithm from [17] to the current CE-IS method. The advantage of the iterative algo-
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rithm is that it does not require the explicit knowledge of the parameter d. Since the iterative algorithm is based on sampling,
we will focus on the stochastic version of the CE optimization (4.5) and the IS computation (3.3).

4.2.1. Surrogate-based cross-entropy optimization
Let us consider the stochastic version of the CE optimization (4.5). The same multilevel procedure presented for (4.5) will

be retained, except the probability conditions (4.6) and (4.7) and the sampling in the optimization (4.8) are to be computed
by the iterative algorithm.

4.2.1.1. Computation of (4.6). We first present the iterative algorithm for (4.6). (Note that (4.7) is the same as (4.6), except
with a different parameter value ck.) Let j P 0 be an iteration count, dM�M be an integer denoting the ‘‘step size’’, and
g P 0 be a small number for the stopping criterion, for the following iteration.

� Initialization:
– Set j = 0, M(j) = 0, and SðjÞz ¼ ;.
– Generate fzðiÞgM

i¼1, samples drawn from the distribution pðz; ~̂v0Þ. Denote Sz as the sample set.
– Compute the surrogate realizations of the samples to obtain the set GðjÞ ¼ f~gðzðiÞÞgM

i¼1 ¼ f~gðzÞ; z 2 Szg.
– Approximate ĉ0 by the q-quantile, i.e.,
ĉðjÞ0 ¼ GðjÞdqMe; ð4:11Þ
where d � e is the ceiling function.
– Sort fj~gðzðiÞÞ � ĉ0jgM

i¼1 in ascending order.
� Iteration: At jth iteration (j > 0), do the following.

– Identify the (M(j) + 1) to (M(j) + dM) elements in the sorted sequence of j~g � ĉ0j and their corresponding sample points z.
Denote dSðjÞz the set for these samples.

– Evaluate the original limit state function g at the sample points in the set dSðjÞz , and let SðjÞz ¼ Sðj�1Þ
z [ dSðjÞz .

– Let GðjÞ ¼ gðzÞ; z 2 SðjÞz

n o
[ ~gðzÞ; z 2 Sz n SðjÞz

n o
, and find the q-quantile so that
ĉðjÞ0 ¼ GðjÞdqMe; ð4:12Þ

– If ĉðjÞ0 � ĉðj�1Þ
0

��� ��� 6 g, exit; if not, let j j + 1, M(j) = M(j�1) + dM, and repeat the iteration.

Note in this procedure it is natural to set g = 0, since all operations are on samples with finite size. Also, even though the
procedure is of iterative nature, the same sequence of random samples are used throughout the iterations.

4.2.1.2. Computation of (4.8). The problem of (4.8) is an optimization problem. To this end, one can adopt any standard opti-
mization algorithm that has been well tested for the standard CE optimization. Hence we will not focus on the particular
choice of the optimization algorithm for (4.8). Rather, we focus on the implementation of the sampling part of (4.8), using
an iterative algorithm. We now consider the computation of
Rðĉk; vÞ , 1
M

XM

i¼1

I
ðhÞ
f~g<ĉkg

ðzðiÞÞUðzðiÞ; vÞ; ð4:13Þ
where U(z(i); v) = W(z(i))ln(p(z(i); v)) and fzðiÞgM
i¼1 are samples drawn from pðz; ~̂vk�1Þ. By using these notations, (4.8) can be

written as
~̂vk ¼ argmaxvRðĉk; vÞ:
The iterative algorithm for computing (4.13) is as follows. Once again, let j P 0 be iteration count, dM�M be an integer
denoting the ‘‘step size’’, and g P 0 be a small number for the stopping criterion.

� Initialization:
– Set j = 0, M(j) = 0.
– Estimate (4.13) using the surrogate model ~g. That is, for the samples fzðiÞgM

i¼1, let
RðjÞ ¼ 1
M

XM

i¼1

If~g<ĉkgðz
ðiÞÞUðzðiÞ; vÞ: ð4:14Þ

– Sort fj~gðzðiÞÞ � ĉkjgM
i¼1 in ascending order.

� Iteration: At jth iteration (j > 0), do the following.
– Identify the (M(j) + 1) to (M(j) + dM) elements in the sorted sequence of j~g � ĉkj and their corresponding sample points z.

Denote dSðjÞz the set for these samples.
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– Evaluate the original limit state function g at the sample points in the set dSðjÞz .
– Update the estimate for R using the values of g on dSðjÞz .

RðjÞ ¼ Rðj�1Þ þ 1
M

X
zðiÞ2dSðjÞz

½�If~g<ĉkgðz
ðiÞÞ þ Ifg<ĉkgðz

ðiÞÞ�UðzðiÞ; vÞ: ð4:15Þ

– If jR(j) � R(j�1)j 6 g, exit; if not, let j j + 1, M(j) = M(j�1) + dM, and repeat the iteration.

Once again, as a feature of the hybrid sampling method, the same sequence of the random samples are used throughout
this iterative algorithm. However, we shall emphasize that when this iterative algorithm is implemented in a chosen opti-
mization algorithm for (4.8), the random samples cannot be re-used during the optimization iteration steps. Each step of the
optimization would require a new sequence of random samples to conduct the iterative computation of (4.13).

4.2.2. Surrogate-based importance sampling
Let us now focus on the hybrid sampling estimate (4.10), where fzðiÞgM

i¼1 are the samples generated from the biasing dis-
tribution p(z) determined by the CE optimization step. The iterative algorithm for the IS will be similar to that of (4.13). In
fact, it is essentially a special case of (4.13) with ĉk ¼ 0. Again, let j P 0 be the iteration count, dM be an integer (much) smal-
ler than M for the ‘‘step size’’, and g P 0 a small number for the stopping criterion.

� Initialization:
– Set j = 0, M(j) = 0.
– Estimate the failure probability (3.2) using the surrogate model ~g. That is, let fzðiÞgM

i¼1 be samples drawn from the dis-
tribution p(z), for j = 0, let
PðjÞf ¼
1
M

XM

i¼1

If~g<0gðzðiÞÞWðzðiÞÞ: ð4:16Þ

– Sort fj~gðzðiÞÞjgM
i¼1 in ascending order.

� Iteration: At jth iteration (j > 0), do the following.
– Identify the (M(j) + 1) to (M(j) + dM) elements in the sorted sequence of j~gj and their corresponding sample points z.

Denote dSðjÞz the set for these samples.
– Evaluate the original limit state function g at the sample points in the set dSðjÞz .
– Update the failure probability estimate using the values of g on dSðjÞz .
PðjÞf ¼ Pðj�1Þ
f þ 1

M

X
zðiÞ2dSðjÞz

½�If~g<0gðzðiÞÞ þ Ifg<0gðzðiÞÞ�WðzðiÞÞ: ð4:17Þ

– If PðjÞf � Pðj�1Þ
f

��� ��� 6 g, exit; if not, let j j + 1, M(j) = M(j�1) + dM, and repeat the iteration.

This is essentially the same algorithm presented in [17], with the difference in the introduction of the likelihood function
in the current IS formulation. For more detailed discussion of the algorithm, see [17].

5. Numerical examples

In this section we provide several numerical examples to demonstrate the performance of the new algorithm. For bench-
marking purpose, in all examples the evaluation of the true limit state function g is trivial so that we can obtain ‘‘numerical
exact solution’’, which is termed as reference solution Pr

f . These reference solutions are obtained by using the traditional CE-
IS method, and we consider the following cases.

� ‘‘Rare’’ failure probability with Pf � 10�6. Here we employ 5000 samples in the CE optimization procedure and 10,000
samples in the final IS estimation. In all the examples the CE optimization converges in three steps. This implies that
the simulation costs to obtain the reference solutions are 25,000 samples.
� ‘‘Very rare’’ failure probability with Pf � 10�9. Here we employ 50,000 samples in the CE optimization procedure and

100,000 samples in the final IS estimation. In all the examples the CE optimization converges in four steps. This implies
that the simulation costs to obtain the reference solutions are 300,000 samples.
� ‘‘Extremely rare’’ failure probability with Pf � 10�12. Here we employ 500,000 samples in the CE optimization procedure

and 1,000,000 samples in the final IS estimation. In all examples the CE optimization converges in four steps. This implies
that the simulation cost to obtain the reference solutions are 3,000,000 samples.

Obviously, the adjectives ‘‘very’’ and ‘‘extremely’’ are used here only to distinguish the three cases on a relative scale.
Extensive numerical tests are conducted to verify that the choices of the sampling size result in failure probability estimates
Pr

f that are accurate for at least two significant digits for the first two cases. In the last case of extremely rare probability, our
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reference solutions are accurate for at least one significant digit. (More accurate estimation can be obtained by increasing the
size of sampling, which is hard to do in the last case. This is, however, not the purpose of our tests. In many practical cases,
results with two accurate significant digits are quite adequate.) In all of the examples, it is sufficient to use Gaussian distri-
bution as the parameterized family of distributions in the CE step.

To examine the properties of the new surrogate-based CE-IS algorithm, we employ the same random sequences used in
obtaining the reference solutions. By doing so, the new algorithm could in principle re-produce exactly the same results by
matching every digits of the reference solutions. We define the relatively error as
Table 5
Exampl
steps in
orders

CE s
Pf 	
Erro
#

Error ¼
Ph

f � Pr
f

��� ���
Pr

f

; ð5:1Þ
where Ph
f is our estimate by the hybrid method and Pr

f is the reference solution. Note our examination of error is somewhat
different from the traditional way, where the mean and variance of the estimates are usually presented. Since the hybrid
method here can be considered as a direct improvement over the traditional CE-IS, we seek to recover precisely the same
estimates of CE-IS by using the same sampling sequences. The solution statistics are properties of the CE-IS. They have been
studied extensively and are not the focus of this paper.

The simulation costs of the new algorithm will be reported as the total number of samples of the true limit state function
g in the entire procedure.

5.1. Ordinary differential equation

We first consider a simple random ODE
du
dt
¼ �Zu; uð0Þ ¼ u0; ð5:2Þ
where the decay rate coefficient Z is a random variable with a prescribed probability distribution q(z). The exact solution of
(5.2) is u(t, Z) = u0e�Zt. Suppose the failure probability is Pf = Prob[g(u(t, Z)) < 0], where the limit state function g is, for a pre-
scribed value ud,
gðuðt; ZÞÞ ¼ ud � uðt; ZÞ: ð5:3Þ
We first fix u0 = 1, t = 1, and assume Z � Nð0;1Þ, a Gaussian random variable with mean value of 0 and standard deviation of
1. Let ud = 100, and the reference solution of the failure probability is Pr

f ¼ 2:06059	 10�6, obtained by the traditional CE-IS
algorithm with a total of 25,000 samples.

For the surrogate model ~g, we employ the generalized polynomial chaos (gPC) approximation gn, where n is the order of
the gPC expansion, obtained by solving (5.2) via stochastic Galerkin approach. (For details of the gPC methods, see [31,30].

The results for this rare probability case are tabulated in Table 5.1, with different orders (n) of the gPC expansions. In all
cases, the CE optimization converged in at most four steps. The final failure probability estimates are all highly accurate, with
almost all errors less than 1%. It can be seen that when the gPC model has reasonable accuracy (n P 3), the number of sam-
ples is reduced drastically. Starting with n P 7, only a few hundreds of samples are required to produce extremely accurate
estimate of the failure probability. In fact, all simulations with n P 11 can produce the reference solution exactly, i.e., with no
errors, by using only 500 samples.

The results for the second case, ‘‘very rare’’ probability, are tabulated in Table 5.2. The reference solution
Pr

f ¼ 1:04149	 10�9, which is obtained by fixing ud = 400 and using the traditional CE-IS with a total of 300,000 samples.
It is clear that all hybrid estimates are highly accurate—all errors are less than 1%. And again, when the gPC model has rea-
sonable accuracy (n P 3), the number of samples is reduced drastically. For all simulations with n P 11, the current method
can produce the extremely rare reference solution almost exactly by using only 600 samples.

For the ‘‘extremely rare probability’’ case, we fix ud = 1000 and obtain the reference solution of Pf = 2.45457 	 10�12 with a
total of 3,000,000 samples by CE-IS. The results obtained by the new hybrid algorithm are tabulated in Table 5.3. For this
case, the failure is so exceedingly small that the lower-order gPC surrogate models with n 6 3 lack of sufficient accuracy
.1
e 1 with Pr

f ¼ 2:06059	 10�6. Simulation results by the present algorithm, where n is the gPC expansion order, ‘‘CE steps’’ is the number of iteration
the CE optimization, and # is the total number of samples of the true limit state function g required by the present algorithm. All simulations with gPC

n > 11 have zero error with 400 samples.

n

2 3 4 5 7 9 11

teps 4 4 3 3 3 3 3
106 2.04952 2.05621 2.02532 2.09455 2.05687 2.06962 2.06059
r 0.54% 0.21% 1.71% 1.65% 0.18% 0.44% 0

12,200 12,200 5500 2300 600 500 500



Table 5.2
Example 1 with Pr

f ¼ 1:04149	 10�9. Simulation results by the present algorithm, where n is the gPC expansion order and # is the total number of samples of
the true limit state function g required by the present algorithm. All simulations with gPC orders n > 11 have error less than 0.01% with 600 samples.

n

2 3 4 5 7 9 11, . . .

Pf 	 109 1.04337 1.04297 1.04477 1.05121 1.03488 1.04507 1.04088
Error 0.18% 0.14% 0.31% 0.93% 0.63% 0.34% <0.05%
# 114,000 111,500 84,800 66,900 15,200 2700 600

Table 5.3
Example 1 with Pr

f ¼ 2:45457 	 10�12. Simulation results by the present algorithm, where n is the gPC expansion order and # is the total number of samples of
the true limit state function g required by the present algorithm. All simulations with gPC orders n 6 3 are not able to detect failure.

n

4 5 7 9 11 13 15

Pf 	 1012 0.913832 1.10337 2.46308 2.46734 2.45654 2.45351 2.45462
Error 62.8% 55.0% 0.35% 0.52% 0.080% 0.043% 0.002%
# 1,081,900 960,800 287,600 60,600 9100 1400 600

J. Li et al. / Journal of Computational Physics 230 (2011) 8683–8697 8693
to capture the failure. Starting with moderately low order n = 4, the failure probability can be captured but with modest sim-
ulation saving and low accuracy. The situation dramatically improves when moderately high-order gPC surrogates are used.
From order of n P 7 the hybrid method produces virtually no errors and with drastically reduced number of samples. Even
with n = 7, the number of samples is less than 10%, and at n = 9 it is about 2%. Once again, when the surrogate has high order
accuracy, e.g., n = 15, the hybrid method produces extremely accurate result with only 600 samples.

5.2. Multivariate benchmark

We now consider a multivariate benchmark problem, also considered in [17]. The failure function is defined as
gðXÞ ¼ X1 þ 2X2 þ 2X3 þ X4 � 5X5 � 5X6 þ 0:001
X6

i¼1

sinð100XiÞ; ð5:4Þ
where Xi � LN(li,ri) for i = 1,2, . . . ,6, are independent log-normal random variables. Let fZig6
i¼1 be i.i.d. Nð0;1Þ Gaussian ran-

dom variables. We employ Hermite polynomials to approximate fXig6
i¼1, i.e.,
Xi 
 Xn;iðZiÞ ¼
Xn

k¼0

ci;kHkðZiÞ; ci;k ¼ eliþ
r2

i
2
rk

i

k!
: ð5:5Þ
We then construct our gPC surrogate model as
~gnðZÞ ¼ Xn;1 þ 2Xn;2 þ 2Xn;3 þ Xn;4 � 5Xn;5 � 5Xn;6: ð5:6Þ
A direct approximation of the nonlinear terms involving the sine functions is avoided because of the small coefficient. By
doing so the surrogate ~gn does not converge to g and will possess a finite error of O(10�3) even if n goes to infinity.

The failure probability is defined as Pf = Prob(g(Z) < 0). We first consider the rare failure probability case. By setting
l1 = 120, r1 = 12; l2 = 120, r2 = 12; l3 = 120, r3 = 12; l4 = 120, r4 = 12; l5 = 50, r5 = 5; l6 = 40, r6 = 6, we obtain the refer-
ence solution Pr

f ¼ 2:0250	 10�6, computed by the traditional CE-IS with a total of 25,000 samples.
We perform the surrogate-based CE-IS simulation using ~gn of different orders of n. The results are summarized in Table

5.4. In all cases the CE optimization of the present algorithm converged in three steps. Again we obtain highly accurate
Table 5.4
Example 2 with Pr

f ¼ 2:0250	 10�6. Simulation results by the present algorithm, where n is the gPC expansion order, ‘‘CE steps’’ is
the number of iteration steps in the CE optimization, and # is the total number of samples of the true limit state function g
required by the present algorithm. All simulations with orders n P 4 have zero error with 400 samples.

n

1 2 3 4,5, . . .

CE steps 3 3 3 3
Pf 	 106 1.7115 2.0752 2.0250 2.0250
Error 15.5% 2.48% 0 0
# 5200 1700 600 400
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estimates by the present algorithm, with much reduced number of samples. For all surrogate models with n P 4, the present
algorithm can exactly reproduce the reference solution with only 400 samples. We emphasize again that here the surrogate
models ~gn at higher n do not converge to g.

Next we consider the ‘‘very rare’’ failure probability case, by defining Pf = Prob(g(Z) < � 80)). The reference solution is now
Pr

f ¼ 4:58108	 10�9, which is obtained by CE-IS with a total of 300,000 samples. The results by the hybrid method are tab-
ulated in Table 5.5. We notice that at the lowest order of n = 1, the result is off by more than 50%. This should not be sur-
prising because at such a low order, the surrogate is a linear approximation of the true limit state function and is not
sufficient to capture the extremely small tail behavior of the limit state function. However, starting even at very low order
of second order, the accuracy of the hybrid estimate drastically improves. From the third order and so on, the hybrid algo-
rithm can reproduce the reference solution with extremely high accuracy but with only about 500 samples. This efficiency
gain, compared with the 300,000 samples required to obtained the reference solution, is notable.

We then consider the ‘‘extremely rare’’ case, by defining Pf = Prob(g(Z) < � 160)). The reference solution is now
Pr

f ¼ 6:33919	 10�12, obtained by CE-IS with a total of 3,000,000 samples. The results by the hybrid method are tabulated
in Table 5.6. The performance here is in fact better than the same extremely small case in Example 1. The hybrid method
produces highly accurate results at almost all orders, and with zero error starting at n = 6 with just a few hundreds samples.

5.3. System of ordinary differential equations

We now consider the following ODE system:
Table 5
Exampl
the true

Pf 	
Erro
#

_y1 ¼ �ðZ1 þ Z2Þy1;

_y2 ¼ Z4y3 þ Z5y4;

_y3 ¼ Z1y1 þ Z3y4 � Z3y3 � Z4y3;

_y4 ¼ Z2y1 � Z3y4 þ Z3y3 � Z5y4;

ð5:7Þ
with initial condition
ðy1; y2; y3; y4Þ ¼ ð1;0;0;0Þ; t ¼ 0:
Here each component of Z = (Z1, . . . ,Z5) is a Gaussian random variable with distribution Nð1;0:12Þ. The surrogate model is
obtained by solving the system of equations by gPC based stochastic Galerkin method using Hermite polynomial as basis.
(See [30] for details).

For the rare probability case, the limit state function is defined as g(Z) = 0.5 � y2(t = 1). The reference solution obtained by
the traditional CE-IS method is Pr

f ¼ 2:96944	 10�6, where 25,000 samples were employed. We examine the performance of
the hybrid algorithm with different orders of expansion, n = 2,3,4,5. In all cases the surrogate-based CE optimization con-
verged in three iterations, and produced highly accurate failure probability estimates with just a few hundreds samples.
The results are tabulated in Table 5.7.

We now consider the ‘‘very rare’’ failure probability case. By letting g(Z) = 0.523 � y2(t = 1), the reference solution of the
failure probability is Pr

f ¼ 8:77715	 10�9, obtained by CE-IS with 300,000 samples. The results obtained by the iterative hy-
brid method are tabulated in Table 5.8. Once again, we observe that even with a surrogate model at relatively low order, the
hybrid method can produce extremely accurate results at significantly lower computational cost.

Finally we consider the ‘‘extremely rare’’ failure probability case. By letting g(Z) = 0.55 � y2(t = 1), the reference solution of
the failure probability is Pr

f ¼ 1:43037	 10�12, obtained by CE-IS with 3,000,000 samples. The results obtained by the iter-
ative hybrid method are tabulated in Table 5.9. Similar to the very rare case, in this even rarer case the performance of the
hybrid algorithm is notable. It can produce extremely accurate results at significantly reduced computational cost.

5.4. Cantilever beam example

We now consider a cantilever beam problem as illustrated in Fig. 5.1, with width w, height t, length L, and subject to
transverse load Y and horizontal load X. This is a well adopted benchmark problem in engineering, where failure is deter-
mined by the following limit state function
.5
e 2 with Pr

f ¼ 4:58108 	 10�9. Simulation results by the present algorithm, where n is the gPC expansion order and # is the total number of samples of
limit state function g required by the present algorithm. All simulations with orders n P 6 have zero error with 500 samples.

n

1 2 3 4 5 6, . . .

109 1.95476 4.2667 4.5550 4.57994 4.58122 4.58108
r 57.33% 6.86% 0.57% 0.02% 0.03% 0

59,000 18,500 600 1300 500 500



Table 5.6
Example 2 with Pr

f ¼ 6:33919 	 10�12. Simulation results by the present algorithm, where n is the gPC expansion order and # is the total number of samples of
the true limit state function g required by the present algorithm. All simulations with orders n P 7 have zero error with 500 samples.

n

2 3 4 5 6 7, . . .

Pf 	 1012 5.57878 6.20678 6.31494 6.33602 6.33919 6.33919
Error 12.0% 2.09% 0.38% 0.05% 0 0
# 345,800 67,300 11,900 2400 800 500

Table 5.7
Example 3 with Pr

f ¼ 2:96944 	 10�6. Simulation results by the present algorithm, where n is the gPC expansion order, ‘‘CE steps’’
is the number of iteration steps in the CE optimization, and # is the total number of samples of the true limit state function g
required by the present algorithm.

n

2 3 4 5

CE steps 3 3 3 3
Pf 	 106 2.93785 2.97165 2.96944 2.96944
Error 1.06% 0.07% 0 0
# 1200 600 500 400

Table 5.8
Example 3 with Pr

f ¼ 8:77715	 10�9. Simulation results by the present algorithm, where n is the gPC expansion order and # is the
total number of samples of the true limit state function g required by the present algorithm.

n

2 3 4 5

Pf 	 109 8.78170 8.76889 8.77935 8.77427
Error 0.05% 0.09% 0.03% 0.03%
# 11,000 3000 1100 700

Table 5.9
Example 3 with Pr

f ¼ 1:43037	 10�12. Simulation results by the present algorithm, where n is the gPC expansion order and # is the
total number of samples of the true limit state function g required by the present algorithm.

n

2 3 4 5

Pf 	 1012 1.44190 1.43147 1.43003 1.43045
Error 0.81% 0.08% 0.02% 0.01%
# 125,100 42,500 8100 1700

Fig. 5.1. Example 4. Schematic illustration of a cantilever beam subject to horizontal and vertical loads.
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g ¼ Do �
4L3

Ewt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y
t2

� �2

þ X
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For the case considered here, the parameter setting is w = 2.6535, t = 3.9792, L = 100, with the elastic modulus
E � Nð29	 106; 25	 1012Þ. The external loads are X � Nð700;1002Þ and Y = 500. With the parameter Do = 6, the failure
probability is on the order of O(10�6). The reference solution obtained by the standard CE-IS simulation
Pr

f ¼ 4:97899	 10�6, where a total of 25,000 samples are used. For the surrogate-based approach, we employ multivariate
Hermite gPC expansion to approximate g, with different orders (n) of the polynomial expansion. The expansion coefficients
are determined by discrete projection method using sparse grids as quadrature rule. (Details of this approach can be found in



Table 5.10
Example 4 with Pr

f ¼ 4:97899	 10�6. Simulation results by the present algorithm, where n is the gPC expansion order, ‘‘CE steps’’ is the number of iteration
steps in the CE optimization, and # is the total number of samples of the true limit state function g required by the present algorithm.

n

3 5 7 11 15

CE steps 3 3 3 3 3
Pf 	 106 5.1044 4.9419 4.9684 5.0069 4.9802
Error 2.52% 0.74% 0.21% 0.56% 0.02%
# 10,600 2300 900 900 700
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[30, Ch. 7]) We conducted simulations of the orders from n = 1 to n = 15 to thoroughly examine the performance of the new
algorithm. Some of the representative results are tabulated in Table 5.10. Again we observe a significant reduction of the
number of samples in the current algorithm. Note the number of samples appear to be larger, compared to the previous
examples. This is largely because of the nature of the problem. It is quite well recognized that this example is relatively dif-
ficulty to simulate, and the traditional response surface method performs poorly. However, here the new algorithm can pro-
duce accurate solutions with much smaller number of samples.

Unlike in the previous examples, in this example we did not pursue even smaller failure probability. The reason is because
this particular problem in fact does not possess infinitely long tails, due to the square root operators. Therefore it is highly
non-trivial to construct a test case, with properly chosen parameter values, so that its failure probability is 10�9 or less.
6. Summary

An efficient method for computing rare failure probability is presented in this paper. The method combines the idea of
surrogate-based hybrid method in [17] with importance sampling (IS), particularly with the cross-entropy (CE) method.
The resulting algorithm is an iterative scheme and can be easily implemented. Furthermore, it does not require approxima-
tions or manipulations of the underlying problem, and thus is a quite general approach. In several numerical tests, the meth-
od demonstrates significant efficiency gain—only a few hundreds samples are sufficient to capture failure probability as
small as 10�6, 10�9 or even 10�12. Future research will involve numerical analysis of its properties, more extensive tests
to examine its performance for complex systems, and investigation of its combination with other techniques for rare failure
probability computations.
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