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a b s t r a c t

Ensemble Kalman filter (EnKF) has been widely used as a sequential data assimilation method, primarily
due to its ease of implementation resulting from replacing the covariance evolution in the traditional Kal-
man filter (KF) by an approximate Monte Carlo ensemble sampling. In this paper rigorous analysis on the
numerical errors of the EnKF is conducted in a general setting. Error bounds are provided and conver-
gence of the EnKF to the exact Kalman filter is established. The analysis reveals that the ensemble errors
induced by the Monte Carlo sampling can be dominant, compared to other errors such as the numerical
integration error of the underlying model equations. Methods to reduce sampling errors are discussed. In
particular, we present a deterministic sampling strategy based on cubature rules (qEnKF) which offers
much improved accuracy. The analysis also suggests a less obvious fact — more frequent data assimila-
tion may lead to larger numerical errors of the EnKF. Numerical examples are provided to verify the the-
oretical findings and to demonstrate the improved performance of the qEnKF.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Interest in data assimilation methods has been growing rapidly
in the atmospheric and oceanic communities and beyond. Data
assimilation addresses the problem of producing useful analyses
and forecasts given imperfect dynamical models and observations.
The most widely adopted approach is the Kalman filter, which is
the optimal data assimilation method for dynamics with additive,
state-independent Gaussian model and observation errors. See,
for example, [14,3]. An attractive feature of the Kalman filter is
its calculation of forecast and analysis error covariances, in addi-
tion to the forecasts and analysis themselves. In this way the Kal-
man filter produces estimates of forecast and analysis uncertainty,
consistent with the dynamics and prescribed model and observa-
tion error statistics. However, the calculations of the error covari-
ance can be challenging in practice due to the high
computational cost. Furthermore, for nonlinear dynamics the Kal-
man filter requires linearization or closure approximation for the
error covariance equation, resulting in the extended Kalman filter
(for example [11,13]), and can severely limit the effectiveness of
the method.

The ensemble Kalman filter (EnKF), proposed by Evensen in [7],
addresses the problem associated with linearization or closure by
using ensemble representations for the forecast and analysis error
covariances. In its native formulation, the EnKF uses a pure Monte
Carlo sampling when generating the initial ensemble, the model
ll rights reserved.
noise and the measurement perturbations. Each member of the
ensemble is then forwarded by the full nonlinear dynamics and
analyzed via the standard Kalman filter analysis scheme.

Since its introduction in [7], the EnKF has become popular in a
wide variety of application areas and resulted in several variations
in practical implementations. See, for example, extensive reviews
in [8,10]. It is understood that the ensemble size determines the
accuracy of the EnKF and as the ensemble size increases the EnKF
should converge to the exact Kalman filter. In practice it is often
time consuming to evolve the (nonlinear) model dynamics numer-
ically, and one can only afford an ensemble with finite, often small,
size. Therefore the major source of numerical errors is the statisti-
cal error from the Monte Carlo sampling. As a result, efforts have
been devoted to designing alternative sampling strategies to re-
duce the errors of Monte Carlo sampling [20,9,19].

The purpose of this paper is to analyze the numerical error con-
tributions to the EnKF. We demonstrate rigorously that the errors
consist of ensemble sampling errors, as well as discretizational er-
rors for solving the model equations. Subsequently, the conver-
gence of the EnKF to the exact Kalman filter is established. We
also propose an alternative deterministic sampling strategy based
on numerical cubature rule, termed as qEnKF, which can signifi-
cantly reduce the ensemble sampling error. The error analysis also
indicates more frequent data assimilation may cause larger numer-
ical errors of the EnKF, regardless the specific sampling strategy.
This less-than-obvious result suggests that in practice the quality
of the EnKF estimates may not be improved by simply using more
frequent assimilation (whenever measurements are available).

The rest of the paper is arranged as follows. A brief introduction
of the Kalman filter and the EnKF is in Section 2. A detailed
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numerical accuracy analysis of the EnKF is conducted in Section 3.
Discussions on reduction of sampling errors, particularly via the
qEnKF approach, are in Section 4. Numerical examples are pre-
sented in Section 5 to support the theoretical analysis and to dem-
onstrate the performance of the qEnKF.

2. Data assimilation and (ensemble) Kalman filter

Let Wf 2 Rm; m P 1, be a vector of forecast state variables that
are modelled by a system of (ordinary) differential equations

dWf

dt
¼ f ðt;Wf Þ; t 2 ð0; T�; ð1Þ

with T > 0 and initial condition

Wfð0Þ ¼ W0: ð2Þ

The model (1) and (2) is obviously not a perfect model for the true
physics and the forecast may not represent the true state variables
Wt 2 Rm sufficiently well. If a set of measurements d 2 R‘; ‘ P 1, are
available as

d ¼ HWt þ �; ð3Þ

where H : Rm ! R‘ is a measurement operator relating the true state
variables Wt and the observation vector d 2 R‘, and � 2 R‘ are mea-
surement errors. Note the measurement operator can be nonlinear,
although it is written in a linear fashion here by following the tra-
ditional exposition for the (ensemble) Kalman filter.

The objective of data assimilation is to construct an optimal
estimate of the true state, the analyzed state vector denoted as
Wa 2 Rm, based on the forecast Wf and the observation d. In the
ensemble Kalman filter, the modelling error in (1) is assumed to
be a random process with zero mean and the initial condition (2)
is expressed as a random quantity to account for the modelling
uncertainty in initial conditions. That is, (2) becomes

W0 , WðzÞ; z 2 Rn; n P 1; ð4Þ

where z is a set of independent random variables parameterizing
the random initial condition with probability density function
qðzÞ : Rn ! Rþ. Subsequently, the forecast state variables become
stochastic variables and can be parameterized by the same set of
random variables, i.e.,

Wf
, Wfðt; zÞ : ½0; T� � Rn ! Rm:

Note it is possible to add a noise term in (1) as a model for the mod-
elling error. Here we restrict ourselves to the deterministic model
(1).

2.1. The Kalman filter

Let Pf 2 Rm�m and Pa 2 Rm�m be the error covariance matrices
for the forecasted and the analyzed estimate, defined as

Pf ¼ E ðWf �WtÞðWf �WtÞT
h i

;

Pa ¼ E ðWa �WtÞðWa �WtÞT
h i

;
ð5Þ

respectively, where the superscripts T denote matrix transpose, and
E is expectation operator, i.e.,

E½g� ¼
Z

gðzÞqðzÞdz:

Also let

R ¼ E ðd� HWtÞðd� HWtÞT
h i

¼ E ðd� dtÞðd� dtÞT
h i

¼ E ��T� �
ð6Þ

be the measurement error covariance matrix, where dt = HWt is the
true (and unknown) observations. We assume that, as usual,
E ðd� dtÞðHWf � HWtÞT
h i

¼ 0:

In the standard Kalman filter, the analyzed estimate Wa is deter-
mined by a linear combination of the measurement vector d and
the forecasted state vector Wf. The linear combination is chosen to
minimize the variance in the analyzed estimate, and is given by

Wa ¼ Wf þ Kðd� HWf Þ; ð7Þ

where K 2 Rm�‘ is the Kalman gain matrix

K ¼ Pf HTðHPf HT þ RÞ�1
: ð8Þ

The analyzed error covariance matrix is updated by

Pa ¼ ðI � KHÞPf ðI � KHÞT þ KRKT ¼ ðI � KHÞPf ; ð9Þ

where I is the identity matrix, and the forecast covariance matrix Pf

needs to be forwarded in time via an equation derived from the
state governing Eq. (1). In linear case this can be easily realized;
in nonlinear case, however, linearization of the model equation or
some closure approximation is required which results in severe lim-
itations on the effectiveness of the filter.

2.2. The ensemble Kalman filter

In the ensemble Kalman filter, an ensemble of the forecasted
state are generated, i.e.,

ðWf Þi , Wf ðt; ðzÞiÞ; i ¼ 1; . . . ;N; ð10Þ

where fðzÞig
N
i¼1 is the ensemble of size N for the random vector in

the initial model state (4). Similarly a set of ensemble for the obser-
vation is introduced as

ðdÞi ¼ dþ ð�Þi; i ¼ 1; . . . ;N: ð11Þ

Furthermore, one defines ensemble covariance matrices around the
ensemble mean, i.e.,

Pf
e , ðWf �Wf ÞðWf �Wf ÞT ’ Pf ;

Pa
e , ðWa �WaÞðWa �WaÞT ’ Pa;

ð12Þ

as an approximation of the exact covariance matrices. Here the
overbar denotes the ensemble averages that approximate the
expectation operator, i.e.,

g ¼ 1
N

XN

i¼1

gððzÞiÞ ’ E½g�: ð13Þ

Note for covariance evaluations the normalization factor is N � 1 in-
stead of N. Similarly the observation error covariance matrix is
approximated as

Re ¼ ��T ’ R: ð14Þ

The analysis step for the EnKF consists of the following updates per-
formed on each of the model state ensemble members:

ðWaÞi ¼ ðWf Þi þ KeððdÞi � HðWf ÞiÞ; i ¼ 1; . . . ;N; ð15Þ

where

Ke ¼ Pf
eHTðHPf

eHT þ ReÞ�1 ð16Þ

is the ensemble Kalman gain matrix. One of the major advantages of
the EnKF is that it evolves each ensemble member via the fully non-
linear system (1) and avoids forwarding the error covariance matri-
ces of the forecasted estimates.

3. Accuracy analysis of the EnKF

In this section we analyze numerical errors to the EnKF and
establish convergence of the EnKF to the Kalman filter. We first
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analyze the local truncation error (LTE), which demonstrates that
the numerical errors of the EnKF stem from the finite size ensem-
ble approximation and numerical simulation of the forecast model
equation (1). Convergence of the EnKF to the KF is established by
examining the global error, which reveals a less obvious fact in that
the numerical errors of the EnKF can increase if data assimilation is
conducted more frequently.

3.1. Notations

In this section we set the notations for error analysis. Note that
the exposition of the Kalman filter is rewritten slightly differently
for the convenience of our analysis. We also assume that the exact
solution of the Kalman filter exists throughout this paper (though
it may be difficult to obtain).

Let tn, n = 1,2, . . ., be the nth update time when observations dn

are available. Let 0 = t0 6 t1 < t2 <� � �, and without loss of generality,
we assume {tn} are equally distributed with
DT ¼ tnþ1 � tn 8n P 0: ð17Þ
We further partition the time interval [tn, tn+1] into m equal sized
sub-interval,

tn;j ¼ tn þ j � Dt; j ¼ 0; . . . ;m; n ¼ 0;1; . . . ;

where tn,0 = tn, tn,m = tn+1, and Dt > 0 is the step size with which a sta-
ble and accurate numerical scheme is employed to solve the deter-
ministic forecast model (1). The numerical scheme is forwarded in
time on the stencil tn,j, 0 6 j 6m,n P 0. Without loss of generality,
we assume the scheme is a one-step method in the following form,eWf

n;jþ1 ¼ eWf
n;j þ Dt � Uðtn;j; eWf

n;j; DtÞ; 0 6 j < m; n P 0; ð18Þ

where eWf is the numerical solution of Wf and U(�) is an increment
function satisfying the consistency condition

lim
Dt!0

Uðtn;j;W
f
n;j; DtÞ ¼ f ðtn;j;W

f
n;jÞ;

where f(�, �) is the right-hand-side of the mode Eq. (1).
The numerical implementation of the EnKF, denoted as ceWa, is

obtained via the following recurrent procedure to evolve over
one time step from tn to tn+1:

� At tn, use an ensemble of the analyzed solution

ðceWa
nÞi ¼ ð

ceWaðtnÞÞi; i ¼ 1; . . . ;N as initial conditions. When n = 0,
ðceWa

0Þi is the ensemble of the initial condition (4) of (1),
� For each ensemble member i = 1, . . . ,N, solve the forecast model

(1) via the numerical scheme (18) forward in time till tn+1, i.e.,

ðceW f
nþ1Þi ¼ ð

ceWa
nÞi þ Dt

Xm�1

j¼0

Uðtn;j; ðceW f
n;jÞi; DtÞ ðceW f

n;0Þi ¼ ð
ceWa

nÞi: ð19Þ

� Apply the EnKF analysis scheme (15) to each ensemble member
of the forecast to obtain the analyzed estimate, i.e., for
i = 1, . . . ,N,

ðceWa
nþ1Þi ¼ ð

ceW f
nþ1Þi þ Keððdnþ1Þi � HðceW f

nþ1ÞiÞ: ð20Þ

The procedure is repeated till the desired time level T is reached.
The notation ceW is chosen in such a way that theedenotes numer-
ical errors are introduced by solving the forecast model (1) via (18),
and thebdenotes statistical errors are introduced by using the EnKF
(15). Throughout this paper we will assume there is no error in the
implementation of the measurement operator H.

In the following sections we will examine the errors of the
EnKF. Here error is defined as the difference between analyzed
model state obtained by the numerical EnKF ceWa and the exact
solution of the traditional Kalman filter Wa. The error will be mea-
sured by the following norm, for a random vector or matrix v(z),
kvk ,
XN

i¼1

wikðvÞikq; ð21Þ

where (v)i = v((z)i), i = 1, . . . ,N, are an ensemble of v(z), k � kq is the
standard q-norm for matrices and vectors, and wi, i = 1, . . . ,N, are
integration weights such thatXN

i¼1

wi � ðvÞi ’
Z

vðzÞqðzÞdz; ð22Þ

and satisfy

wi > 0 8i;
XN

i¼1

wi ¼ 1: ð23Þ

In the standard EnKF, wi � 1/N "i. Obviously, when v is determinis-
tic, kvk = kvkq. We remark that other kinds of matrix norms other
than the q-norm can be readily adopted here.

Hereafter unless stated explicitly to avoid confusion, we will
use v to represent the entire ensemble of the random quantity
v(z), i.e., v , fðvÞig

N
i¼1. This is employed for the clarity of exposition.

3.2. Local truncation error

We first examine local truncation error (LTE) for the numerical
EnKF procedure. The LTE is defined as the error introduced by for-
warding an ensemble of the exact analyzed solution Wa for one
time step DT via the numerical EnKF scheme.

Let us consider the time interval [tn, tn+1], n P 0. Let
Wa

n ¼ fðWaðtnÞÞig
N
i¼1 be an ensemble of the exact estimated state

vector at tn. The exact estimated state at tn+1 via the Kalman filter
is

Wa
nþ1 ¼ Wf

nþ1 þ Kðdnþ1 � HWf
nþ1Þ; ð24Þ

where the model forecast Wf
nþ1 is obtained by the exact solution of

(1) at tn+1 with initial condition of Wa
n at tn.

In the EnKF, by using the exact ensemble state Wa
n as initial con-

dition at tn, the approximate estimated state vector at tn+1, denoted
as beua

nþ1, isbeua
nþ1 ¼ eWf

nþ1 þ Keðdnþ1 � H eWf
nþ1Þ; ð25Þ

where the numerical scheme (19) is used to obtain eWf
nþ1, i.e.,

eWf
nþ1 ¼ Wa

n þ Dt
Xm�1

j¼0

Uðtn;j; eWf
n;j; DtÞ; eWf

n;0 ¼ Wa
n: ð26Þ

Lemma 1 (Local truncation error). By following the conditions listed
above and defining the local truncation error (LTE) at tn+1 as

enþ1 , kbeua
nþ1 �Wa

nþ1k; ð27Þ

the following error bound exists:

enþ1 6 kMk � k�Dtk þ kDKk � k�fk þ kDKk � kHk � k�Dtk; ð28Þ

where

M ¼ I � KH;

�Dt ¼ eWf
nþ1 �Wf

nþ1;

DK ¼ Ke � K;

�f ¼ dnþ1 � HWf
nþ1:

ð29Þ

If one further assumes the convergence of the numerical scheme (26) as
k�Dtk � O(Dtp), p P 1, as Dt ? 0, the convergence of the ensemble Kal-
man gain matrix Ke to the exact Kalman gain matrix K as
kDKk � O(N�a), a > 0, as N ?1, and �f satisfies r � O(k�fk), and K
and H are bounded for all t P 0, then
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enþ1 � OðDtp; rN�aÞ; Dt ! 0; N !1: ð30Þ

Proof. The difference between beua
nþ1 and the exact analyzed state

Wa
nþ1 can be expressed as

beua
nþ1 �Wa

nþ1 ¼ ð eWf
nþ1 �Wf

nþ1Þ þ ðKe � KÞdnþ1 � ðKeH eWf
nþ1 � KHWf

nþ1Þ
¼ ð eWf

nþ1 �Wf
nþ1Þ þ ðKe � KÞdnþ1

� ðKeH eWf
nþ1 � KeHWf

nþ1 þ KeHWf
nþ1 � KHWf

nþ1Þ
¼ ð eWf

nþ1 �Wf
nþ1Þ þ ðKe � KÞdnþ1

� KeHð eWf
nþ1 �Wf

nþ1Þ � ðKe � KÞHWf
nþ1

¼ ðI � KeHÞð eWf
nþ1 �Wf

nþ1Þ þ ðKe � KÞðdnþ1 � HWf
nþ1Þ

¼ ðI � KH � DKHÞð eWf
nþ1 �Wf

nþ1Þ þ DKðdnþ1 � HWf
nþ1Þ:

After taking norm the error bound (28) follows.
When K and H are bounded for all t, so does M, and the estimate

(30) is the leading order of errors in (28), in the limit of small time
step Dt ? 0 and large ensemble size N ?1. This completes the
proof. h

Remark 1. The above result indicates that the accuracy of the
EnKF can be improved via refining the numerical algorithm for
the forecast model (1), by using smaller time step Dt and/or
higher-order method with larger p, and increasing the ensemble
size (N) to decrease statistical errors.

Remark 2. The error term �f from (29) describes the discrepancy
between the measurements d and its predicted values by the fore-
cast Wf (without numerical errors), and can be estimated as

k�fk 6 kd� HWtk þ kHWt � HWfk 6 k�k þ kHk � kðWt �Wf Þk; ð31Þ

where � is the measurement error (see (3). Therefore the error �f in-
cludes the measurement error � and the modelling error (Wt � Wf).
3.3. Global truncation error

The global truncation error (GTE) at t = tn+1 is defined as the dif-
ference between the exact state estimate Wa

nþ1 obtained by the Kal-
man filter and the state estimate ceWa

nþ1 obtained by solving the
EnKF numerically, i.e.,

Enþ1 ¼ kceWa
nþ1 �Wa

nþ1k: ð32Þ

To analyze the global error, we first define a one-step global incre-
ment function for the EnKF operation. For any interval [tn, tn+1],
n P 0, by following the procedure of the EnKF in Section 3.1, the
approximate estimated state ceWa

nþ1 can be expressed asceWa
nþ1 ¼

ceWa
n þ DT � Ueðtn;

ceWa
n; dnþ1; Dt;DTÞ; n ¼ 0;1; . . . ; ð33Þ

where Ue(� � �) is the one-step global increment function which can
be written by using (19) and (20),

Ueðtn;
ceWa

n; dnþ1; Dt;DTÞ ¼ Me
Dt
DT

Xm�1

j¼0

Uðtn;j;
ceW f

n;j; DtÞ

þ Ke

DT
ðdnþ1 � HceWa

nÞ; ð34Þ

where

Me ¼ I � KeH; ceW f
n;0 ¼

ceWa
n; Dt ¼ DT=m: ð35Þ

Lemma 2 (Lipschitz continuity). Assume the numerical scheme (18)
is stable and its increment function U is Lipschitz continuous with
respect to the second argument with a constant C that is independent
of Dt and the nodes tn,j, n P 0, 0 6 j < m. Furthermore, if the matrices
Ke, H are bounded for all t P 0, then the global increment function Ue

from (34) is Lipschitz continuous with respect to the second argument,
with a constant K independent of tn, Dt, and measurements d, but
dependent on DT, that is,

9h > 0; 9K > 0 : 8Dt 2 ð0;h�;n P 0;

kUeðtn;
beua

n; dnþ1; Dt;DTÞ � Ueðtn;
beva

n; dnþ1; Dt;DTÞk 6 Kkbeua
n � beva

nk:
ð36Þ

Proof. By following the definition of Ue in (34) we obtain

kUeðtn;
beua

n; dnþ1; Dt;mÞ � Ueðtn;
beva

n; dnþ1; Dt;mÞk

¼ kMe
Dt
DT

Xm�1

j¼0

Uðtn;j;
beu f

n;j; DÞ � Uðtn;j;
bev f

n;j; DtÞ
h i

� 1
DT

KeHðbeua
n � beva

nÞk

6
1
m
kMek

Xm�1

j¼0

C � kbeu f
n;j � bev f

n;jk
 !

þ kKeHk
DT

kbeua
n � beva

nk;

where the Lipschitz continuity assumption on the increment func-
tion U has been used in the last inequality, and beu f

n;j and bev f
n;j are

solved by the scheme (18) with initial conditions beu a
n and beva

n, respec-
tively. The stability of the scheme (18) implies that the scheme pos-
sesses continuous dependence on initial conditions, that is,
$h > 0,$C > 0, such that "Dt 2 (0,h], n P 0 and 0 6 j 6m,

kbeu f
n;j � bev f

n;jk 6 Ckbeua
n � beva

nk:

By letting

K ¼ C � C max
t
kMek þ

1
DT

max
t
kKeHk; ð37Þ

the Lipschitz property (36) follows. This completes the proof. h

Remark 3. The result of (37) indicates that the Lipschitz constant
is inversely proportional to the size of DT. Subsequently, when the
EnKF data assimilation is conducted more frequently (i.e., with
smaller DT), the global increment function Ue for the EnKF has lar-
ger Lipschitz constant. This will have an impact on the global
numerical error of the EnKF, as shown in the following result.

Theorem 1 (Global truncation error and convergence). Let ceWa
n be

the numerical result of the analyzed state at tn, obtained by the ensem-
ble Kalman filter with initial ensemble ceWa

0 at t = 0. Let Wa
n be the exact

analyzed state at tn, obtained by the exact implementation of the Kal-
man filter and the exact solution of (1) with initial condition (4). Then
the global truncation error of the EnKF satisfies

En , kceWa
n �Wa

nk 6 E0 þ
Xn

k¼1

ek

 !
expðK � tnÞ; ð38Þ

where E0 ¼ kceWa
0 �W0k is the error in the initial ensemble, ek are the

local truncation errors (27) at tk, and K > 0 is the Lipschitz constant
with respect to the second argument for the global increment function
Ue defined in (36). Therefore, if the convergence of the local truncation
error (28) holds and E0 ¼ kceWa

0 �W0k ! 0 as N ?1, then the EnKF
method is convergent for any DT > 0.

Proof. By following (33), for any interval [tn�1, tn], n P 1, the
numerical solution of the EnKF satisfiesceWa

n ¼
ceWa

n�1 þ DT � Ueðtn�1;
ceWa

n�1; dn; Dt;DTÞ; n P 1: ð39Þ

On the other hand, following the definition of the local truncation
error, the exact solution of the Kalman filter satisfies
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Wa
n ¼ Wa

n�1 þ DT � Ueðtn�1;W
a
n�1; dn; Dt;DTÞ þ sn; n P 1; ð40Þ

where, by definition, ksnk = en is the local truncation error at tn, de-
fined in (27).

By subtracting (39) from (40) and taking norm, we obtain, for
n P 1,

En 6 En�1 þ en þ DT � kUeðtn�1;
ceWa

n�1; dn; Dt;DTÞ
� Ueðtn�1;W

a
n�1; dn; Dt;DTÞk:

By applying the formula recursively to smaller n, we obtain

En 6 E0 þ
Xn

k¼1

ek þ DT �
Xn�1

k¼0

kUeðtk;
ceWa

k; dkþ1; Dt;DTÞ

� Ueðtk;W
a
k; dkþ1; Dt;DTÞk:

The Lipschitz condition (36) results in the following inequality

En 6 E0 þ
Xn

k¼1

ek þ DT � K
Xn�1

k¼0

Ek: ð41Þ

And the result of (38) is obtained by applying the discrete Gronwall
theorem. See, for example, Chapter 11 of [17]. (Note tn = nDT.) This
completes the proof. h

Remark 4. The convergence of the EnKF to KF by refining the
numerical solver for the forecast model (1) and increasing ensem-
ble size N is intuitive. A subtlety in the result (38) is the influence
of the data assimilation time step DT on the numerical accuracy of
the EnKF. From (37) and (38) it is clear that a smaller DT results in a
larger Lipschitz constant K and therefore a larger approximation
error, which also grows as time evolves. In practice it is often desir-
able to assimilate data more frequently as long as enough mea-
surements are available, so that the analyzed states may
converge to the true state more quickly. However, more frequent
assimilation (with smaller DT) may result in larger numerical
errors in the EnKF and is undesirable. Hence the choice of the size
of assimilation step DT in EnKF should be a balanced issue after
taking into account both its positive and negative impacts on the
quality of the numerical estimation of the true state.
4. Reduction of sampling errors

The analysis from the previous sections indicates that the
numerical errors in the implementation of the EnKF consist of
two components: the error �Dt for solving the model equation (1)
numerically, and the statistical error for replacing the Kalman gain
matrix K by an ensemble matrix Ke (see (28)).

Due to the large amount of existing work, the numerical error
�Dt for a given system (1) is mostly well understood and in many
cases can be controlled to a sufficiently small level. Subsequently
more research efforts have been devoted to reduction of sampling
errors in the EnKF. It is clear from (16) that the sampling errors
stem from two sources: the errors in sampling the measurement
perturbations by using Re to replace R, and the errors in sampling
the model states.

4.1. Reduction of measurement sampling errors

In Kalman filter analysis scheme, it is essential to treat the
observations as random variables with a distribution of mean
equal to the first-guess observations and covariance equal to R
(see [2,9]). In the original EnKF approach, an ensemble of observa-
tions are generated, with an ensemble covariance matrix Re (14)
which introduces an additional approximation. To eliminate the
sampling error in Re, it is possible to design implementations of
the analysis scheme where the perturbation of measurements is
avoided. Here we briefly review the method developed in [20],
where the ensemble mean and the deviations from the mean are
updated separately. The forecast and analysis states can be written
as follows:

ðWfÞi ¼ Wf þ ðWf Þ0i; ð42Þ
ðWaÞi ¼ Wa þ ðWaÞ0i; i ¼ 1; . . . ;N; ð43Þ

where Wf and Wa denote the mean of forecasted and analyzed
states, and ðWfÞ0i and ðWaÞ0i are the corresponding deviations from
the mean. The analysis step, following the notation of [20], is

Wa ¼ Wf þ Kðd� HWf Þ; ð44Þ
ðWaÞ0i ¼ ðWf Þ0i � eKHðWf Þ0i; i ¼ 1; . . . ;N; ð45Þ

where K is the Kalman gain matrix in the standard Kalman filter,
and

eK ¼ Pf HT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HPf HT þ R

q� ��1
 !T ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

HPf HT þ R
q

þ
ffiffiffi
R
p� ��1

; ð46Þ

which is obtained by solving the equation

ðI � eKHÞPf ðI � HT eK TÞ ¼ ðI � eKHÞPf ; ð47Þ

so that the resulting covariance of the analysis states matches the
theoretical covariance Pa in (9). Such an approach is termed the
ensemble square root filter (EnSRF). More detailed discussions can
be found in [1,9,20] and the review in [19].

4.2. Reduction of ensemble sampling errors

Most, if not all, EnKF approaches are based on pure Monte Carlo
sampling of the model states. Therefore the ensemble error de-
creases as the ensemble size N increases, e.g., the sample mean
has error proportional to Oð1=

ffiffiffiffi
N
p
Þ. Such a rate of convergence is

relatively slow, and accurate statistics can be obtained only with
relatively large size of ensemble. In practice when the computa-
tional cost of the model simulation (1) is high one can only afford
a finite, in many instances small, size of ensemble, the ensemble
sampling error will be dominant. Sampling strategies for improved
performance have been discussed, although they are still based on
Monte Carlo sampling [16,15,9].

Here we present a deterministic sampling strategy based on
cubature rules (qEnKF), for reduction of the ensemble sampling er-
rors. The idea is that the ensemble average is an approximation to
the expectation operator, which is an integral in terms of the inde-
pendent random variables z 2 Rn;n P 1. See (13). Therefore one
can take advantage of the existing research in multi-dimensional
integrations where cubature rules are designed to approximate
integrals accurately. The general form of a cubature rule, for a gen-
eral function v(z), takes the form of (22), where (v)i = v((z)i) are the
values of the function evaluated at a deterministic set of points of
{(z)i, i = 1, . . . ,N}, and fwigN

i¼1 are the integration weights. In qEnKF,
the random ensemble used in the standard EnKF is replaced by the
deterministic ensemble determined by a proper cubature rule. And
the ensemble average (13) is replaced by the weighted sum of (22).

There is a large amount of literature on cubature rules, see, for
example, the reviews in [4–6,12,18]. Here we emphasize that be-
cause the underlying mathematical model (1) can be highly non-
linear and complex and one often can only afford a finite size (N)
of the repetitively computations of (1) it is essential to require
the integration weights fwigN

i¼1 to be positive, as shown in (23), a
condition that not all cubature rules satisfy. It is also desirable to
have equal weights, i.e., wi = 1/N "i, another condition that are
not satisfied by many cubature rules. Here we propose to use the
following cubature rules in qEnKF that satisfy the above condi-
tions. For (22) with Gaussian probability density function
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qðzÞ ¼ 1
ð
ffiffiffiffiffiffi
2p
p
Þn

e�zTz=2; z 2 Rn;

a set of N = n + 1 points

ðzÞk ¼ ðzk;1; zk;2; . . . ; zk;nÞ; k ¼ 0;1; . . . ;n ð48Þ

are defined as

zk;2r�1 ¼
ffiffiffi
2
p

cos
2rkp
nþ 1

; zk;2r ¼
ffiffiffi
2
p

sin
2rkp
nþ 1

; r ¼ 1;2; . . . ; ½n=2�;

where [n/2] is the greatest integer less than n/2, and if n is odd
zk,n = (�1)k. The above cubature rule is called a degree-2 formula.
That is, (22) is exact if v(z) is any polynomials of degree up to two
in term of the n-dimensional variable z.

Similarly, a cubature rule of degree three exists, which inte-
grates any polynomials in term of z of degree up to three exactly.
Such a rule consists of N = 2n equally weighted points of

ðzÞk ¼ ðzk;1; zk;2; . . . ; zk;nÞ; k ¼ 1;2; . . . ;2n; ð49Þ

with

zk;2r�1 ¼
ffiffiffi
2
p

cos
ð2r � 1Þkp

n
; zk;2r ¼

ffiffiffi
2
p

sin
ð2r � 1Þkp

n
;

r ¼ 1;2; . . . ; ½n=2�;

and if n is odd zk,n = (�1)k.
The degree two and three formulas can be found in [21], where

formulas for other type of probability density function q(z) are also
provided.

We remark that it is proved mathematically that the number of
points N = n + 1 and N = 2n for degree two and three formulas,
respectively, is minimal for equally weighted cubature rules. In
practice the performance of the above two rules is often better
than the Monte Carlo method with much larger sampling points,
even for relatively large dimensionality n.
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Fig. 1. Results of the EnKF to the model problem (50) at three different times t = 5 (top
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5. Numerical examples

In this section we present numerical tests to verify the theoret-
ical analysis in Section 3 and examine the performance of the
qEnKF proposed in Section 4.2.

5.1. The model problem

Here we employ the model problem used in [9,10]. It is a one-
dimensional linear advection model

Wt þ cWx ¼ 0; x 2 ½0; L�; t > 0; ð50Þ

where the length of the domain is L = 1000 with periodic boundary
condition, and the advection speed is c = 1. The grid spacing is
Dx = 1 and the time step is Dt = 1. The true state Wt is sampled from
a Gaussian distribution, N, with zero mean, unit variance, and a
spatial de-correlation length of 20, which results in 50 equal-dis-
tance points of i.i.d. Gaussian random variables and a random space
of 50 dimension, i.e., z 2 Rn with n = 50. The first-guess solution is
generated by drawing another sample from N and adding this to
the true state. The initial ensemble is then generated by adding
samples drawn from N to the first-guess solution. Thus, the initial
state is assumed to have an error variance equal to one. Four mea-
surements of the true solution, distributed evenly in the spatial do-
main, are assimilated every 5th time step, i.e., DT = 5, with
observation errors of zero mean and standard deviation of 0.1 un-
less stated otherwise. The observation errors are uncorrelated.

By using this simple model, the spatial and temporal discretiza-
tion errors associated the numerical solver can be kept to mini-
mum. This allows us to focus on the errors induced by various
sampling strategies in the EnKF and its variations.

5.2. Results of the EnKF and EnSRF

We first examine the qualitative behavior of the EnKF. The re-
sults of the model problem is shown in Fig. 1. As expected, the
600 700 800 900 1000

600 700 800 900 1000

600 700 800 900 1000

figure), t = 150 (middle figure), and t = 300 (bottom figure). Solid lines are the true
tesceWa, and another set of solid lines near the bottom of each figure are the standard
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mean of the EnKF estimates converge to the true state as time
evolves, and the standard deviation of the EnKF estimates converge
to the standard deviation of the measurements, which is 0.1 and
can not be seen visually in the bottom figure.

Next we examine the global error convergence (38) with re-
spect to the ensemble size N. Fig. 2 illustrates the error at two dif-
ferent time of t = 100 and t = 500. It can be seen that the errors
decay as the ensemble size N increases, and the rate of convergence
is approximately N�1/2. This is consistent with the error analysis
from (38). The convergence of the EnSRF at t = 100 and t = 500
are shown in Fig. 3, and we observe a similar rate of convergence.
Note that the errors of EnSRF are smaller than those of EnKF. This is
because of the elimination of the error in sampling the
measurements.

We further examine the numerical error dependence on the er-
ror �f defined in (29). In this problem there is no modelling error,
therefore k�fk = k�k and can be measured by the standard deviation
of the measurement errors. Following the error bound (38) and
(30), the numerical error should be proportional to the standard
deviation of the measurement errors.

The numerical errors with different levels of standard deviation
of the measurement errors are shown in Figs. 4 and 5, for the EnKF
and EnSRF, respectively. The almost linear dependence of numeri-
cal errors on the standard deviations of the measurement errors
can be seen clearly, consistent with the result from analysis. The
time evolution of numerical errors of the EnSRF is much smoother
and smaller, compared to that of the EnKF.

5.3. Results of the qEnKF

Here we examine the performance of the qEnKF, the ensemble
Kalman filter based on deterministic sampling of cubature. In par-
ticular, we employ the degree two formula (48) and degree three
formula (49) as the deterministic sampling ensemble, and denote
the corresponding method qEnKF-2 and qEnKF-3, respectively.
For the model problem studied here, the qEnKF-2 requires
N = n + 1 = 51 sampling points and the qEnKF-3 requires
N = 2n = 100 points. In Fig. 6, the error evolution in time of the
qEnKF methods are plotted, along with that of the EnKF with differ-
ent ensemble size. It is observed that with the same ensemble size,
the qEnKF-3 is more accurate than the traditional EnKF with
N = 100. The improvement is, however, marginal, and the qEnKF-
2 with less number of points (N = 51) has larger errors. The reason
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Table 1
Comparison of numerical errors of the EnKF, EnSRF and qEnSRF

t = 100 t = 500 t = 1000 t = 1500

EnKF N = 100 5.3 � 10�3 3.4 � 10�3 2.3 � 10�3 1.7 � 10�3

EnKF N = 103 1.5 � 10�3 1.0 � 10�3 7.4 � 10�4 6.2 � 10�4

EnKF N = 104 4.6 � 10�4 2.8 � 10�4 2.4 � 10�4 1.9 � 10�4

EnSRF N = 100 2.3 � 10�3 1.1 � 10�3 7.0 � 10�4 6.0 � 10�4

EnSRF N = 103 7.0 � 10�4 3.0 � 10�4 2.0 � 10�4 2.0 � 10�4

EnSRF N = 104 2.2 � 10�4 9.6 � 10�5 6.8 � 10�5 5.6 � 10�5

qEnSRF-2 (N = 51) 3.5 � 10�4 1.6 � 10�4 1.1 � 10�4 9.0 � 10�5

qEnSRF-3 (N = 100) 1.8 � 10�4 7.9 � 10�5 5.6 � 10�5 4.6 � 10�5
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the advantage of qEnKF is not obvious is due to the existence of the
ensemble errors in sampling the measurements, which is present
and becomes dominant. Next we employ the EnSRF approach
(45) to eliminate the errors in sampling the measurements and
combine it with the cubature sampling strategy. The corresponding
approaches, termed qEnSRF-2 and qEnSRF-3, require the same
number of sampling points as those of qEnKF-2 and qEnKF-3. The
error evolution in time is shown in Fig. 7. It is observed that the er-
rors are much smaller and smoother, indicating much improved
accuracy.

The errors are tabulated in Table 1, for the EnKF, EnSRF and
qEnSRF. It is seen that the qEnSRF methods offer much better accu-
racy. The qEnSRF-3, with only N = 100 sampling points, is more
accurate than the EnSRF with ensemble size as large as N = 104.
Even qEnSRF-2, which requires N = 51 samples, is comparable to
EnSRF with N = 104. Note in all these approaches the computational
costs are directly determined by the size of ensemble. Therefore
the qEnSRF methods offer an efficient alternative for more accurate
data assimilation, especially when the computational cost of (1) is
of great concern.

5.4. Error dependence on assimilation frequency

Here we examine the impact of the size of assimilation step (DT)
on numerical accuracy. As suggested by the error analysis (38),
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more frequent assimilation with smaller DT may lead to larger
numerical errors in the EnKF approaches. This is evident in Fig. 8,
where the numerical errors of the different sampling approaches
are shown with different assimilation step DT ranging from 1 to
40. The errors are reported at large time t = 4000 so that all simu-
lations have been sufficiently assimilated. We observe clearly the
larger errors at smaller DT. Such inverse dependence of numerical
errors on DT is independent of the choice sampling strategy, as
shown in Fig. 9 where results of EnKF, EnSRF, and qEnSRF are plot-
ted in comparison. From the log–log scale it can be concluded that
different approaches have a same rate of the inverse error depen-
dence on the size of DT. Again, the much improved accuracy of
qEnSRF is obvious with the same computational cost (N = 100).

6. Conclusion

In this paper we conduct rigorous analysis on the numerical er-
rors of the ensemble Kalman filter (EnKF). The results indicate that
the numerical errors consist of the classical discretizational errors
for solving the underlying model equations and the ensemble er-
rors for sampling the model states and measurements. The sam-
pling errors of measurements can be eliminated by using the
ensemble square root filter (EnSRF), and the errors of sampling
model states can be significantly reduced by using deterministic
sampling methods based on cubature rules (qEnKF). Examples
are presented for a model problem, where we focus the numerical
errors associated with sampling. The results verify the theoretical
analysis and demonstrate that the qEnSRF, a combination of the
EnSRF and qEnKF, can significantly reduce the sampling errors in
model state estimates and therefore provides an efficient method-
ology for data assimilation. The error estimate also indicates that
more frequent data assimilation can lead to larger numerical errors
in the EnKF approaches, regardless the specific sampling strategy.
This result, verified by the numerical tests, suggests that in practice
the choice of assimilation step should be a balance between better
estimates of the true states by using more frequent assimilation
(whenever measurement data is available) and smaller numerical
errors by using less frequent assimilation. Future research will in-
clude more extensive studies and performance evaluations of the
qEnKF for more complex and nonlinear problems.
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