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Abstract
The paper presents an efficient and accurate implementation of Unsteady Flow LIC (UFLIC) on the Graphics Pro-
cessing Unit (GPU). We obtain the same, high quality texture representation of unsteady two-dimensional flows as
the original, time-consuming method but leverage the features of today’s commodity hardware to achieve interac-
tive frame rates. Despite a remarkable number of recent contributions in the field of texture-based visualization of
time-dependent vector fields, the present paper is the first to provide a faithful implementation of that prominent
technique fully supported by the graphics pipeline.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Pictures/Image Genera-
tion

1. Introduction

Texture-based techniques constitute a standard choice to
generate intuitive visualizations of steady flow data. The re-
sulting dense representation is a powerful way to convey
essential patterns of the vector field while avoiding the te-
dious task of seeding individual streamlines to capture all
the structures of interest. Although it seems natural to extend
these methods to obtain animated visualizations of time-
dependent flows, this approach is faced with two major chal-
lenges. First, it must address the conflicting requirements of
ensuring temporal coherence of the computed frames on one
hand, and emphasizing the flow structures present in each
frame on the other hand. While the former is mandatory to
avoid flickering artifacts, the latter is key to an effective in-
terpretation of the flow structures and their evolution over
time. The second challenge concerns the intrinsic high com-
putational complexity of these methods, which is dramati-
cally increased by the necessary processing of many time
steps.

These limitations have motivated a significant body of re-
search on texture-based flow visualization of unsteady flows.
Multiple methods have been designed, offering a variety
of visual effects that each correspond to a particular com-
promise between time and space coherence. Weiskopf et
al. [WEE03] proposed a unified formalism in order to an-
alyze the rather implicit spatio-temporal characteristics un-

derlying these schemes. One common feature of the algo-
rithms presented in recent years is their use of the increas-
ing programmability of the consumer graphics hardware to
achieve interactive. Yet, in many cases the restrictions im-
posed by the very specific nature of GPU programming have
resulted in visual representations that do not match the qual-
ity of the original, offline methods and can be difficult to
interpret in the post-processing analysis of numerical simu-
lations.

Among the existing techniques in this field, we argue
that Unsteady Flow LIC (UFLIC) [SK97, SK98] provides
a unique depiction quality for transient flows which comes
along with desirable visual properties that nicely fit the in-
tuition of the observer. The major downside of this algo-
rithm however, is the high computational cost caused by
the processing of a very dense set of particles. Moreover
this is a computation model that does not map naturally
to the texture-based data representation available on the
GPU because it requires the scattering of per-pixel prop-
erties across textures. An accelerated version called AU-
FLIC [LM02, LM05] of the original algorithm exists but the
corresponding performance is far from interactive. In this pa-
per, we present the first implementation of UFLIC that is
both accurate with respect to the original method and is en-
tirely supported by the GPU, allowing interactive visualiza-
tion of complex flow data. We observe that using their frame-
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work Weiskopf et al. [WEE03] already suggested a texture-
based method that yields analogous pictures. While their ap-
proach constitutes an approximation of the actual UFLIC
computation and is potentially slow, the implementation that
we propose is faithful, straightforward, and efficient.

The remainder of this paper is organized as follows. Re-
lated work is discussed in section 2. In particular, we empha-
size GPU-based dense visualization methods for unsteady
flows. A detailed explanation of UFLIC and its major fea-
tures are provided in section 3. We also comment on the
challenges raised by an efficient implementation and con-
sider existing solutions. Our new GPU implementation is
described in section 4. In section 5 we provide results that
demonstrate both the accuracy and the interactivity of the
proposed method. Finally, we conclude by pointing out in-
teresting avenues of future work in section 6.

2. Related Work

For a general introduction to texture-based flow visualiza-
tion methods we refer the reader to the existing surveys,
e.g. [LHD∗04]. Here we focus our presentation on interac-
tive techniques for time-dependent flows and defer a detailed
description of UFLIC to the next section.

The first hardware accelerated dense representation of un-
steady flows goes back to papers by Jobard et al. [JEH00,
JEH01] who exploit hardware features new at the time to
achieve interactive animations by means of texture advec-
tion. In [JEH01] and subsequently in [JEH02] they develop
their so-called Lagrangian-Eulerian Advection (LEA) ap-
proach. The basic idea of their method consists in combining
backward pathline integration with the advection of an inter-
polated texture value fetched at the previous iteration. In that
way they advect a noise texture over time while avoiding the
creation of gaps. To address the issue of noise replication ad-
ditional noise is injected at random locations. Finally spatial
patterns are visualized by blending the current texture with
the previous one. The method leverages optimized GPU op-
erations and is therefore very fast. However the correspond-
ing animations are characterized by a limited space and time
coherence with a fairly coarse approximation of the path of
particles.

A somewhat similar texture advection scheme called Im-
age Based Flow Visualization (IBFV) was introduced by
van Wijk [vW02]. Flow structures are obtained by succes-
sive alpha-blending of an advected image with a new tex-
ture at each step. The paper provides an analysis of different
strategies to choose the spatial and temporal properties of
the noise texture. As in the case of LEA, this technique ben-
efits from a direct mapping on the graphics hardware and
is very fast. The weaknesses of this technique are relatively
short paths and limited contrast, which makes it difficult to
identify and track patterns.

Both LEA and IBFV were later extended to the visualiza-

tion of time-dependent flows defined over curved surfaces
embedded in three-dimensional space [LvWJH04]. To do
so the original algorithms are applied to the projection of
a tangential vector field onto the 2D screen. This projec-
tion, supported by the graphics hardware, is updated at in-
teractive frame rates for any change in the camera position.
Weiskopf and Ertl use a similar idea but combine compu-
tations in physical and screen space to achieve better accu-
racy [WE04].

A formal framework to understand and analyze the space-
time characteristics of various texture-based flow visualiza-
tion methods was proposed by Weiskopf et al. [WEE03].
There are three basic ingredients to their framework: a space-
time domain filled by a continuum of pathlines conveying
scalar attributes for time coherence, an additional vector
field defined over the space-time domain that determines the
one-dimensional domain where convolution is performed,
and a convolution kernel that is applied to create spatial
coherence. The authors use this formalism to describe the
schemes mentioned previously. The complete data struc-
ture is implemented using textures to permit GPU encoding.
Moreover they introduce a new visualization method called
Unsteady Flow Advection-Convolution (UFAC) in which
the convolution of the space-time property field takes place
in spatial slices with a kernel size controlled by the temporal
derivative of the vector field, thus measuring unsteadiness.
The original implementation of the framework was based
on backward integration to advect the property field which
made it computationally expensive. Recently an implemen-
tation involving forward particle advection was published by
the same authors [WSEE05] who use radial basis functions
and a divergence driven particle injection-deletion mecha-
nism to ensure constant particle density over time.

3. UFLIC

Inspired by line integral convolution (LIC) [CL93], Un-
steady Flow LIC (UFLIC) by Shen and Kao [SK98] is a
dense texture synthesis technique to visualize time-varying
vector fields. While it is a very powerful method for visual-
izing steady vector fields, LIC fails to deliver satisfactory
results when applied to time-varying flows. As explained
in [SK98] native application of LIC to each time step of a
unsteady flow dataset results in strong flickering in the an-
imation because of the lack of time coherence of patterns
defined in individual time steps. On the other hand a con-
volution applied along pathlines as proposed by Forsell and
Cohen [FC95] leads to very poor spatial patterns and a cum-
bersome interpretation.

UFLIC provides an elegant and intuitive solution to these
problems. Rather than gathering intensity values from each
pixel, a large number of particles are released and advected
to scatter their intensity values to pixels lying along their
path. To properly capture and establish coherence in time,
each pixel records the intensity values of the particles cross-
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ing it, along with a time stamp. When averaging the indi-
vidual contributions at each pixel at time t, only intensity
values with time stamps in [t−δt, t] are used, where δt is the
interval between successive time steps. To establish frame to
frame coherence and to maintain dense coverage, a new set
of particles derived from the current image are injected at
the next time step to iteratively scatter the result generated
by the previous construction.

Compared to other methods, UFLIC can generate visu-
alizations of high quality. Many methods relying on back-
ward integration (e.g. [JEH01]) suffer from blurred line pat-
terns, due to diffusion created by successive resampling of
the property field [Wei04]. UFLIC, on the other hand, is able
to generate highly-coherent, well-defined, and crisp struc-
tures. Each particle, along with the intensity value it carries,
keeps its identity throughout its entire life span. These val-
ues are scattered into individual pixel locations without in-
terpolation. Along with the associated time stamps, the con-
tribution of each particle is explicitly defined in the spatio-
temporal domain. As a result, UFLIC is able to generate dis-
cerning line patterns of high contrast at different temporal
and spatial scales in the visualization.

To address the high computational cost of the original
UFLIC algorithm a parallel implementation was described
in [SK98]. The linked-list data structure associated with each
pixel in the original implementation to store intensity-time
pairs is replaced by a circular queue to reduce memory re-
quirements. Each entry in the circular queue, called bucket,
is used to accumulate all contributions made between suc-
cessive time steps. The number of the entries in the circular
queue is equal to the life span of particles expressed in terms
of a number of time steps. Inspired by FastLIC [SH95], AU-
FLIC proposed by Liu and Moorhead [LM05] further ac-
celerates the scheme by reusing pathline computations per-
formed in previous iterations, and dynamically creating ad-
ditional pathlines at pixel locations not covered by existing
pathlines. Yet, the complexity of the corresponding algo-
rithm prevents interactive performance. Using the GPU im-
plementation of their generic framework Weiskopf et al. sug-
gested an algorithm that mimics UFLIC [WEE03]. However,
the restrictions imposed by their data structure limit the abil-
ity to properly implement UFLIC’s accurate time scattering.
The solution they proposed consists of increasing the reso-
lution of the time axis, which accounts for the contributions
of multiple particles crossing a single pixel during a coarser
time step. Nevertheless, it remains unclear what time reso-
lution is needed to convey the specific properties of a given
flow.

4. GPU Implementation

Value depositing and scattering is the most time-consuming
stage in UFLIC [LM05]. Most of the computation spent in
each iteration, however, is dedicated to scattering values to
be used in the future. Specifically, if the life span of particles
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Figure 1: Illustration of the algorithm.

.

is N and one image is generated at the end of each time step
for animation, only the trajectories made in 1/N of the entire
life span directly contributes to generating the current frame.
In UFLIC, the storage of intensity values deposited ahead
of the current time requires a ring-bucket data structure for
each pixel. Although modern GPUs can provide massive
computation power thanks to their Single Instruction Mul-
tiple Data (SIMD) design, the flexibility of data structures
available on GPU is severely restricted by its highly paral-
lel nature. To fully leverage the capability of modern GPUs,
we propose a new value scattering scheme for UFLIC that
we call “on-the-fly depositing”. Instead of tracing particles
throughout their entire life span, at every iteration they are
advected from their previous locations only up to the current
time. The pathline segment in this interval, called pathlet,
is used to scatter a particle intensity value. Pixels in the do-
main receive intensities only for the current frame; therefore,
the need of per-pixel bucket data structure is eliminated. To
establish smooth spatial coherence, we generate several ani-
mation frames per time step. Particles with a life span greater
than zero remain active in subsequent iterations to incremen-
tally generate pathlines with pathlets. At the end of each iter-
ation, a new set of particles is released into the domain with
associated intensity values derived from the current property
field, while expired particles are removed and recycled. In
our algorithm, the entire UFLIC pipeline, mainly particle
management and advection, value scattering, and contrast
enhancement can be fully executed on the GPU and results
in interactive frame rates. Figure 1 illustrates our algorithm.
In the following, we detail each step of our implementation.

4.1. Particle Management and Advection

At the beginning of each iteration I, particles are released at
every pixel location in a domain of size M×N. Along with
the position (x,y), each particle is also associated with an
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Figure 2: Texture layout for particle attributes and intensi-
ties (shown as ∆T ×h = 4 ).

intensity value α =PF I−1(x,y), where PF I−1 is the prop-
erty field generated at the previous iteration I−1 (PF0 is
initialized to a white noise texture), and also a time stamp
ttl, denoting time-to-live, which is initialized to the global
life span. The intensity value α of each particle remains un-
changed throughout the entire life span.

As discussed previously, excluding the setup and shut-
down periods at any given time there are up to K = ∆T ×
h×M×N active particles, where ∆T is the global particle
life span measured in number of time steps and h is the num-
ber of frames per time step. The attributes (x,y) and ttl of
each particle are stored in a 32-bit floating point texture of
size (2×M,∆T × h×N) named POS_TEX. The intensity
values α are stored in another 8-bit single channel texture of
size (M,∆T ×h×N) named VAL_TEX. Please refer to Fig-
ure 2. Conceptually, POS_TEX is divided into two columns,
left and right. Each column consists of ∆T×h blocks, where
each block is of size M by N. We denote blocks on left and
right as Li and Ri. Each pair of Li and Ri store the attributes
which belong to a group of particles released into the domain
at iteration i mod ∆T ×h. Alternatively they serve as the in-
put and the output storage of the advection scheme, as will
be explained later. After reaching the steady state, at each
iteration there is exactly one block pair of particles reaching
the life span, hence they are recycled to release new parti-
cles. VAL_TEX is arranged and recycled in a similar manner
with only one column.

We use the fragment shader to perform particle tracing in
an efficient manner. At each iteration of advection, a quadri-
lateral of M×∆T ×h×N pixels alternatively textured with
the left or right half of POS_TEX is rendered to generate
data streams for subsequent SIMD advection in the fragment
shader, which implements higher-order numerical schemes
such as Runge-Kutta 4th order. The other half of POS_TEX
is simultaneously set to the render target using the frame-
buffer object extension to prevent read/write conflicts. The
2D time-varying vector field is represented as a 3D tex-
ture with each slice on the z axis corresponding to a time
step †. With this construction, the triplet (x,y, t), where t is

the global clock indicating the current time, is used as texture
coordinates to sample velocities of the time-varying vector
field. The advection fragment program outputs the advected
particle position and the decremented ttl. When the resulting
position exits the domain or ttl is less or equal to zero, it re-
turns an invalid triplet (−10,−10,−10), preventing further
advection and value scattering of a given particle.

4.2. Value Scattering and Depositing

To scatter the intensity value of a particle p(i, j), i.e.
VAL_TEX(i,j), over all the pixels it goes through during the
current interval, the pathlet L(i, j) defined by POS_TEX(i,
j) and POS_TEX(2i, j) (the attribute pair located on left and
right, respectively) is rasterized with color VAL_TEX(i,j)*ω

into a floating point buffer serving as the property field,
where ω is a weighting factor used for time-fading or other
adjustments.

To render all pathlets efficiently, we first transfer the con-
tent of POS_TEX to the vertex storage on GPU memory us-
ing the combination of vertex buffer object and pixel buffer
object extensions (VBO/PBO) and then draw line segments
using proper index values. If a particle has invalid coor-
dinates, hardware clipping will automatically discard the
vertex, preventing further depositing. Blending is enabled
when rendering pathlets with the blending function set to
(GL_ONE, GL_ONE) to accumulate incoming intensities
and weights at every pixel.

4.3. Postprocessing

After value scattering and depositing, each pixel of the prop-
erty field contains a tuple (∑V ∗ ω,∑ω), where ∑V de-
notes the accumulated intensities. Displaying the property
field only requires normalization of the accumulated values
at each pixel: (∑V ∗ω/∑ω). As pointed out in [SK98],
postprocessing the property field is required before it is used
to specify the intensities of new particles released in the next
iteration in order to maintain satisfying contrast throughout
the animation. Specifically, the solution consists in first ap-
plying a Laplacian high-pass filter to the rendered image.
Special care is needed to ensure that all the entries of the
output texture lie in the valid value range.

The second step, called noise jittering, involves the mix-
ing of the high-pass filtered property attribute texture with
a noise signal to suppress exceeding high frequencies in the
resulting image. In the original method, this noise signal is
the same as the one used to initialize the property field. To

† Only time steps corresponding to the time interval 1/h walked by
each particle between two frames need to be present in video mem-
ory at a time. If the number of time steps exceeds the texture reso-
lution limit (512 on most architectures currently), time steps can be
dynamically inserted into the 3D texture using glTexSubImage3D.
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Figure 3: PSI dataset.

Figure 4: JP8 dataset.

avoid frozen patterns in steady regions, we use a periodic
noise to provide the expected visual impression of motion
along the flow.

5. Results

We implemented the algorithm described in section 4 us-
ing C++ and OpenGL on a standard Windows PC. The plat-
form used in our experiments is equipped with an Intel Pen-

tium 4 3.6GHz processor with 2GB of RAM and dual nVidia
7800 GTX cards. All shaders are implemented in a total of
roughly 200 lines of Cg code. Two time-varying datasets,
PSI(figure 3) and JP8(figure 4) are used in our experi-
ments. PSI is a standard synthetic dataset. As Figure 3
shows, our algorithm is able to establish crisp line patterns of
high quality, matching those generated in a purely-software,
offline manner.JP8 was results from a large scale numeri-
cal simulation of fire and explosion phenomena [CSA]. The
color coding in figure 4 highlights the temperature. In this
dataset, the variance of velocity magnitude is very large.
Strongly established patterns close to the epicenter depict
the fast moving nature of explosion, while particles aside
are barely moved. Table 1 gives the performance figures in
both single and dual GPU (SLI) modes. In most cases we are
able to achieve interactive frame rates with different image
resolutions using the RK45 numerical scheme.

6. Conclusion

We have presented an implementation of UFLIC fully sup-
ported by the GPU that provides the same visual quality
as the original technique. One key aspect of our approach
consists in a reformulation of the method as an iterative,
simultaneous advection of a dense set of particles released
at different time steps. Doing so we are able to restrict the
computation to the needs of the next frame which signifi-
cantly improves the efficiency of the algorithm. Moreover
we accomplish the value depositing step by drawing line seg-
ments thus leveraging an optimized feature of the graphics
hardware. These two simple ideas allow for a straightfor-
ward implementation that yields high-quality animations of
time-dependent flows at interactive frame rate. The perfor-
mance that we measure on a standard graphics card repre-
sents a significant speedup with respect to AUFLIC reported
by [LM05], so far the fastest existing implementation of
UFLIC to our knowledge.

The contribution of this paper, however, is not to be mea-
sured in the number of frames per second of our GPU al-
gorithm. Admittingly, image-based methods that yield even
higher frame rates are straightforward to implement, and
generalize naturally to arbitrarily complex geometries. In
contrast, the key features of our interactive implementation
are the accuracy and the unique visual quality that UFLIC
provides.

This work suggests several interesting avenues for fu-
ture research. The first one concerns the improvement of
the method for the visualization of flows exhibiting high
unsteadiness. This can become necessary to prevent some
distracting “ghost” effects to become visible when patterns
change very rapidly over time. Another possible extension of
our implementation consists in using the particle system that
underlies our scheme to carry dye along the flow. We would
also like to extend this method to visualize unsteady flows
on curved surfaces. This is more challenging than in mesh-
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dataset PSI JP8
resolution 256x256 512x512 256x256 512x512

dual/single GPU D S D S D S D S
life span = 2 213.1 182.3 49.2 53.4 96.0 96.2 26.6 21.3
life span = 4 106.3 108.2 10.5 11.2 50.4 53.4 5.25 1.8
life span = 6 64.1 58.1 2.3 1.4 22.8 26.0 2.6 1.4

Table 1: Performance in FPS. Particle life span in time steps.

independent, image-based approaches but it will allow us to
monitor precisely the evolution of intricate flow structures in
this more complex setting.
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