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Figure 1: Tornado dataset rendered with different appearance textures. (a) with LIC texture pre-generated from straight flow. (b) with a color
tube texture. Lighting is used to enhance the depth perception. (c) with a 2D paintbrush texture.

Abstract

In this paper we present an interactive texture-based technique for
visualizing three-dimensional vector fields. The goal of the algo-
rithm is to provide a general volume rendering framework allowing
the user to compute three-dimensional flow textures interactively,
and to modify the appearance of the visualization on the fly. To
achieve our goal, we decouple the visualization pipeline into two
disjoint stages. First, streamlines are generated from the 3D vector
data. Various geometric properties of the streamlines are extracted
and converted into a volumetric form using a hardware-assisted
slice sweeping algorithm. In the second phase of the algorithm,
the attributes stored in the volume are used as texture coordinates
to look up an appearance texture to generate both informative and
aesthetic representations of the underlying vector field. Users can
change the input textures and instantaneously visualize the render-
ing results. With our algorithm, visualizations with enhanced struc-
tural perception using various visual cues can be rendered in real
time. A myriad of existing geometry-based and texture-based visu-
alization techniques can also be emulated.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques; I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Color, shading, shad-
owing, and texture.

Keywords: 3D flow visualization, vector field visualization, vol-
ume rendering, texture mapping.

1 Introduction

Vector fields play an important role in many scientific, engineer-
ing and medical disciplines. Many visualization techniques have
been proposed to assist observers in comprehending the behavior
of the vector field. They can be loosely classified into two cat-
egories: geometry-based and texture-based methods. Geometry-
based methods (such as glyph, hedgehog, streamline, stream sur-
face[Hultquist 1992], flow volume[Max et al. 1993], to name a few)
use shape, color, and motion of geometric primitives to convey the
physical characteristics in the proximity of a certain point in the
vector field. Texture-based methods, such as spot noise[van Wijk
1991], line integral convolution (LIC)[Cabral and Leedom 1993],
and IBFV[van Wijk 2002], shade every pixel in the visualization
using manipulated textures which express structural information of
the vector field.

In two-dimensional vector fields or flows across a surface in
three dimensions, the texture-based methods are capable of of-
fering a clear perception of the vector field since the directions
of the vector field can be seen globally in the visualization. For
three-dimensional vector fields, however, the effectiveness is sig-
nificantly diminished due to the loss of information when the three-
dimensional data is projected onto a two-dimensional image plane.
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This drawback can be mitigated to some extent by providing addi-
tional visual cues. For example, lighting, animation, silhouettes etc.
can all provide valuable information about the three-dimensional
structure of the dataset. Comparing visualizations with different
appearances also helps in understanding the anatomy of the vector
field. Unfortunately, the high computational cost of 3D texture-
based algorithms severely impedes the interactive use of visual
cues. In fact, 3D vector field visualizations by current visual cue-
enhanced texture-based techniques are mostly generated in batch
mode. Another issue for 3D vector field renderings is occlusion,
which significantly hinders visualization of internal structures of
the volume. Interactivity becomes very important as a result: the
user needs to be able to experiment freely with textures of different
patterns, shapes, colors and opacities, and view the results at inter-
active speeds. Keeping the above desirables in mind, we present a
flexible and high-speed approach for three-dimensional vector field
visualization.

The relative inflexibility of existing texture-based methods is a
result of the tight coupling between the vector field processing step
and output texture generation step. For example, in LIC, stream-
line advection and output pixel value generation are done simul-
taneously. As a result, the look of the rendering result cannot be
changed on the fly. We address this issue by decoupling the visual-
ization pipeline into two disjoint stages. First, streamlines are gen-
erated from the 3D vector data. Various geometric properties of the
streamlines are then extracted and converted into a volumetric form
which we will refer to as the trace volume. In the second phase,
the trace volume is combined with a desired appearance texture at
run-time to generate both informative and aesthetic representations
of the underlying vector field.

The two-phase method provides a general framework to mod-
ify the appearance of the visualization intuitively and interactively
without having to re-process the vector field every time the render-
ing parameters are modified. Just by varying the input appearance
texture, we are able to create a wide range of effects at run time.
A myriad of existing visualization techniques, including geometry-
based and texture-based, can also be emulated. Using consumer-
level PC platform graphics hardware with dependent textures and
per-fragment shading functionality, visualizations with enhanced
structural perception using various visual cues can be rendered in
real time.

2 Related Work

Researchers have proposed various vector field visualization tech-
niques in the past. In addition to the more traditional techniques
such as particle tracing or arrow plots, there are algorithms that
can provide a volumetric representation of the underlying three-
dimensional fields. Some research has been directed towards inte-
grating texture or icons into a volume rendering of the flow. [Craw-
fis and Max 1992] developed a 3D raster resampling technique
where the volume rendering was built up in sheets oriented parallel
to the image plane. These sheets were composited[Porter and Duff
1984] in a back-to-front order. The authors modified the volume
integral to include the rendering of a tiny cylinder within a small
neighborhood. A further refinement of this concept was to embed
the vector icons directly into the splat footprint[Crawfis and Max
1993] used for volume rendering. Here, small billboard images are
overlapped and composited together to build up the final image. By
placing a small icon within the billboard image, and orienting the
image such that it lies both perpendicular to the viewing ray, and
parallel to the projected vector direction at the splat’s center point,
a volume rendered image is produced.

Line Integral Convolution, or LIC[Cabral and Leedom 1993],
has been perhaps the most visible of the recent flow visualization
algorithms. The algorithm takes a scalar field and a vector field

as input, and outputs another scalar field. By providing a white
noise image as the scalar input, an output image is generated that
correlates this noise function along the direction of the input vec-
tor field. While LIC is effective in visualizing 2D vector fields, it
is quite computationally expensive. [Stalling and Hege 1995] pro-
posed an extension to speed up the process. [Shen et al. 1996] pro-
posed the advection of dyes in LIC computation. [Kiu and Banks
1996] used noises of different frequencies to distinguish between
regions with different velocity magnitudes. [Shen and Kao 1998]
proposed UFLIC for unsteady flow, and a level of detail approach
was proposed by [Bordoloi and Shen 2002]. [Interrante and Grosch
1997] introduced the use of halos to improve the perceptual effec-
tiveness when visualizing dense streamlines for 3D vector fields.
[Rezk-Salama et al. 2000] proposed a volume rendering algorithm
to make LIC more effective in three dimensions. A volume slicing
algorithm that utilizes 3D texture mapping hardware is explored to
quickly adjust slice planes and opacity settings.

3 The Chameleon Rendering Framework

The primary goal of our research is to develop an algorithm with
greater interactivity and flexibility. The traditional texture-based
algorithm such as LIC is known for its high computation cost when
applied to three-dimensional data. This high computational com-
plexity makes it difficult for the user to change the output’s vi-
sual appearance such as texture patterns and frequencies at an in-
teractive speed. Although in the past researchers have proposed
various texture-based rendering techniques for visualizing three-
dimensional vector fields, there is no common rendering framework
that allows a mix-and-match of different visual appearances on the
fly when exploring three-dimensional vector data. In this paper, a
novel rendering framework is presented to address this issue. In
the following, we first give an overview of our algorithm, and then
provide the details of various stages in our algorithm.

3.1 Algorithm Overview

Figure 2 depicts the fundamental difference between our algorithm
and the more traditional texture-based algorithm such as LIC. In
LIC or similar texture-based algorithms, visual information is con-
veyed to the user through the correlation between the final voxel
values. Texture synthesis is performed in a manner that the lumi-
nance of each pixel or voxel is computed and used as the rendering
attribute. Once the process is completed, information about the vec-
tor field cannot be recovered from the resulting texture. If the user
decides to alter the visual appearance, such as changing the fre-
quency or the distribution of the noise, the entire texture synthesis
process needs to be performed again.

To allow flexible run-time visual mapping, we devise an algo-
rithm that decouples the processing of the vector field and the map-
ping of visual attributes. To establish visual coherence for the voxel
along the flow direction, we store, in each voxel, a few attributes
which are highly correlated along the flow direction. The attributes
associated with each voxel will be referred to as the trace tuple.
Trace tuples from the voxels collectively constitute a volume called
the trace volume. At run time, the correlation between neighboring
trace tuples will be translated to coherent visual properties along
the flow direction. Specifically, the attributes stored in the trace tu-
ple are used as the texture coordinates to look up an input texture,
which we will refer to as the appearance texture. The appearance
texture contains pre-computed 2D/3D visual patterns, which will
be warped and animated along the streamline directions to create
the visualization. The appearance texture can be freely specified by
the user at run time. For instance, it can be a pre-computed LIC
image, or can be textures with different characteristics such as line



Vector
field

Advection +
 Texture

Generation

Noise

Vector
field

Advection  +
Voxelization

Dependent
Texture Lookup

Volume Renderer

Output
Volume

Trace
Volume

Appearance
Texture

Volume
Renderer

Processing Stage

Viz

Viz

Rendering Stage

Figure 2: Visualization pipelines for LIC (above), and Chameleon
(below). The Chameleon decouples the advection and texture gen-
eration stages. Once the trace volume is constructed, any suitable
appearance texture can be used to generate varied visualizations of
the same vector dataset.

bundles, particles, paint-brush strokes, etc. Each of these can gen-
erate a unique visual appearance. Our algorithm can alter the visual
appearance of the data interactively when the user explores the un-
derlying vector field, and hence is given the name Chameleon.

Rendering of the trace volume requires a two stage texture
lookup. Here we give a conceptual view of how the rendering is
performed. Given the trace volume, we can cast a ray from each
pixel from the image plane into the trace volume to sample the vox-
els. At each step of the ray, we sample the volume attribute, which
is an interpolated trace tuple. This sampled vector is used as the tex-
ture coordinates to fetch the appearance texture. Visual attributes
such as colors and opacities are sampled from the appearance tex-
ture and blended into the final image. Although here we use the
ray casting algorithm to illustrate the idea, in our implementation,
we use graphics hardware with per-fragment shaders and dependent
textures to achieve interactivity.

In the following sections, we elaborate each step of our algorithm
in detail. We will focus on the topics of trace volume construction,
including voxelization (sec.3.2), trace tuple assignment (sec.3.3),
anti-aliasing (sec.3.4), and interactive rendering (sec.3.5).

3.2 Trace Volume Creation

The trace volume is created by voxelizing the input streamlines.
Since the trace volume will be a texture input to the 3D texture
mapping hardware (described later), it is defined on a 3D Cartesian
grid. For the underlying vector fields, there is no preferred grid type
because the trace volume is created from a dense set of streamlines
but not the vector field. We use the method proposed by [Jobard and
Lefer 1997] to control the density and the length of streamlines. The
seeds are randomly selected, and the streamlines are generated by
the fourth-order Runge-Kutta method. An adaptive step size based
on curvature [Darmofal and Haimes 1992] is used. The advection
process is stopped whenever the advected streamline gets too close
to each other. This is to ensure that the thick lines discussed in
sec.3.4 do not intersect with each other. Otherwise, the trace tu-
ples will be overwritten during voxelization, which would result in
undesirable dependent texturing artifacts in the rendering stage.

To voxelize the streamlines, a hardware-assisted slice sweeping

slice i

near far

slice j
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Figure 3: (a) The slice sweeping voxelization algorithm. The near
and far clipping planes are translated along the Z axis. At each posi-
tion of the clipping planes, the streamlines are rendered to generate
one slice of the trace volume. (b) A trace volume containing a thick
anti-aliased streamline. The streamline parametrization is stored in
the blue channel, while the streamline identifiers are stored in the
red and green channels (sec.3.3, sec.3.4).

algorithm, inspired by the CSG voxelization algorithm proposed by
[Fang and Liao 2000], is designed to achieve faster voxelization
speed. The input to our voxelization process is a set of streamlines
S = {si}. Each streamline si is represented as a line strip with a
sequence of vertices P = {p j}. Each vertex p j in the streamline
si is assigned a trace tuple for the identification and parametriza-
tion of the streamline. The trace tuple for each streamline vertex is
specified as a color for the vertex during our voxelization process.
In this section, we focus on the trace volume scan conversion. More
details about the trace tuple are provided in the next section.

Using graphics hardware, our algorithm creates the trace volume
by scan-converting the input streamlines onto a sequence of slices
with a pair of moving clipping planes. For each of the X, Y, and Z
dimensions, we first scale the streamline vertices by V/L, where V
is the resolution of the trace volume in the dimension in question,
and L is the length of the corresponding dimension in the under-
lying vector field, or a user-specified region of interest. Then we
render the streamlines orthographically using a sequence of clip-
ping planes. The viewing direction is set to be parallel to the z axis,
and the distance between the near and far planes of the view frus-
tum is always one. Initially, the near and far clipping planes are set
at z = 0 and z = 1, respectively. When each frame is rendered, the
frame buffer content is read back and copied to one slice of the trace
volume. As the algorithm progresses, the locations of the clipping
planes are shifted by 1 along the Z axis incrementally until the en-
tire vector field is swept. Figure 3(a) illustrates our algorithm. Po-
sitions for the near and far clipping planes for two different slices
are shown.

The performance of the voxelization depends on the rendering
speed of the graphics hardware for the input streamline geome-
try. To reduce the amount of geometry to render, streamline seg-
ments are placed into bins according to their spans along the Z
direction. During the voxelization, only the segments which in-
tersect with the current clipping volume are sent to the graphics
pipeline. The performance for constructing the trace volume can
be further increased by reading the slicing result directly from the
frame buffer to the 3D texture memory. This can be done using
OpenGL’s glCopyTexSubImage3D command.

Sometimes it is possible that some of the streamline segments are
perpendicular to the Z = 0 plane. For orthographic projection, these
segments will degenerate into a point. In certain graphics APIs,
such as OpenGL, the degenerate points are not drawn, which will
create unfilled voxels in the trace volume. To avoid this problem,
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Figure 4: The use of trace tuples as texture coordinates. Left: Trace
tuples are assigned to streamlines and stored in the color channels.
Right : Trace tuples in the texture space.

such segments are collected and processed separately in another
pass, where the viewing direction and the sweeping of the clipping
volume is set to be along the X-axis.

3.3 Trace Volume Attributes Generation

As mentioned earlier, the set of attributes assigned to the voxels in
a trace volume is referred to as the trace tuple. It stores two com-
ponents: the streamline identifier, which differentiates individual
streamlines, and the streamline parametrization, which parameter-
izes the voxels along the streamline. The dimensions of the trace
tuple depend on the dimensions of the appearance texture. When
a two dimensional appearance texture is used, the trace tuple is a
two-dimensional vector, denoted as (u,v). The first component (u)
is used to distinguish between different streamlines, and the second
component (v) stores the parametrization of the voxels along the
streamline. For example, in figure 4, the two streamlines have dis-
tinct u coordinates, which will be mapped to different vertical strips
in the appearance texture. Along each streamline, the voxels are
parameterized by v, which corresponds to a change in the texture
coordinates along the vertical direction. When a three-dimensional
appearance texture is used, the trace tuple is a three dimensional
vector (u,v,w), where w is used to parameterize the streamline and
a two-dimensional vector (u,v) is used to differentiate the stream-
lines.

We encode the trace tuples into the trace volume during the vox-
elization process using graphics hardware. Without loss of general-
ity, here we assume that a three-dimensional appearance texture is
used. Given an input streamline, we assign the trace tuple (u,v,w)
as colors (red, green, blue) to the vertices of streamline segments.
When we slice the streamlines during voxelization, the graphics
hardware will interpolate the colors, and thus the trace tuples, for
the intermediate voxels between the streamline vertices. Since all
vertices along the same streamline share the same streamline iden-
tifiers, the interpolation will assign the same value for all interme-
diate voxels. The graphics hardware will interpolate the stream-
line parametrization linearly, which allows the appearance texture
to map evenly across the streamline.

The precision limitation in the graphics hardware, however,
poses a problem when using a color channel to parameterize the
streamline, i.e., representing the w coordinate. In the current graph-
ics hardware, colors and alpha values are represented by fix point
numbers (8 bits per channel on most architectures). When we use
an 8-bit number to represent the texture coordinate, the quality of
the texture lookup result can suffer from quantization artifacts.

The goal of parameterizing the streamline and using the result as
a texture coordinate to look up the appearance texture is to estab-
lish the visual correlation between the voxels along the streamline.
However, we observe that it is sufficient to maintain only the local
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Figure 5: Construction of the thick line. A mask is swept along
the central streamline. Points on the mask are used to generate
vertices for the satellite lines. The parametrization for the lines in
the bundle is the same as the central streamline. The satellite lines
are assigned identifier values which map to adjacent texels in the
appearance texture.

coherence within a nearby vicinity for the voxels along a streamline
to depict the flow direction. It is similar to the fixed-length convo-
lution kernel in the LIC. Therefore, to solve the limited precision
problem when using a color channel to represent the last compo-
nent of the trace tuple, we can divide the streamline into multiple
segments, and then map the full range of the texture coordinate, i.e.,
[0,1] onto each segment. In addition, we can have the appearance
texture wrap around in the dimension that corresponds to the flow
direction. We have found that this solution produces satisfactory
rendering result.

The process of assigning streamline identifiers to different
streamlines is dependent on the type of appearance texture being
used. For LIC or line-bundle textures, for example, streamlines are
randomly assigned identifier values in the range [0,1]. For textures
containing a well defined solid structure, as in glyphs, it is impor-
tant that adjacent voxels are assigned texture coordinates (u,v,w)
which map to adjacent texels in the texture space. Otherwise the
3D structure present in the appearance texture would break down
after texture mapping. As will be explained in the next section, we
model streamlines as a set of lines surrounding a central line. This
central line gets an identifier (u,v) which maps to the center of the
3D structure in the appearance texture. The outer lines are mapped
to a close vicinity in the appearance texture. Figure 3(b) shows the
voxelization results for such a collection of lines where (u,v) val-
ues are encoded in the red and green channels, and w is stored in
the blue channel.

3.4 Anti-Aliasing

When the resolution of the trace volume is limited, the above vox-
elization algorithm will produce jaggy results. In 2D, anti-aliasing
lines can be achieved by drawing thick lines[Segal and Akeley
2001]. The opacities of the pixels occupied by the thick lines corre-
spond to the coverage of their pixel squares. Since line anti-aliasing
is widely supported by graphics hardware, one might attempt to
use it when slicing through the streamlines during our hardware-
accelerated voxelization process. However, we have found that this
doesn’t generate the desired effect since no anti-aliasing is per-
formed across the slices of the trace volume. Hence, to achieve
streamline anti-aliasing in the voxelization process, one needs to
model the thick lines and properly assign the opacities.

We model the 3D thick line as a bundle of thin lines surrounding
a central line. During advection, the streamlines are generated as a
set of line segments. After the advection stage, each line segment
is surrounded by a bundle of satellite lines, denoted as B = {bk},
where bk is the kth satellite line in the bundle. The line bundle is
created by extruding a mask M = {mk} along the streamline dur-
ing the advection process. Each point mk on the mask corresponds



to a vertex of the satellite strip. Figure 5 shows two such points on
the mask. The distance between two adjacent strips should be small
enough to avoid any vacant voxels within the thick line in the trace
volume. Initially, the center of the mask is placed at the first ver-
tex of the streamline. Then the mask is swept along the streamline
as the advection proceeds. During the sweep, the mask is always
positioned perpendicular to the tangential direction of the stream-
line. When the advection of the medial streamline completes, we
construct the line strip bk by connecting the vertices from the cor-
responding points in the mask along the sweep trace.

All the lines in the bundle are assigned the same streamline
parametrization as the central streamline. As discussed in the pre-
vious section, the streamline identifiers of the lines are assigned in
a way that maps them to adjacent texels of the appearance texture.
Any solid structure present in the appearance texture is preserved
after the trace volume is texture mapped. In addition, we assign an
opacity value to each vertex on the line bundle so that anti-aliasing
can be performed in the rendering stage(sec. 3.5). It is stored in
the alpha channel of the vertex attribute. The opacity value is as-
signed in a way that the vertices near the surface and the endpoints
of the thick line receive lower values to simulate the weighted area
sampling algorithm[Foley et al. 1990].

3.5 Real-Time Rendering Using Dependent Tex-

tures

Today volumetric datasets can be rendered at interactive speeds
using texture mapping hardware. In the hardware based volume
rendering methods, the volume data is stored as a texture in the
graphics hardware. A stack of polygons are textured with the cor-
responding slices from the volume data and blended together in a
back-to-front order to form the final image. If the graphics hard-
ware only supports 2D textures, the volume dataset is represented as
three stacks of 2D textures and the slice polygons are axis-aligned.
If 3D texture-mapping is supported, the dataset can be represented
as a single 3D texture and view-aligned slicing polygons can be
rendered.

In our algorithm, rendering the trace volume requires a two-step
texture lookup. The first texture lookup involves the usual slicing
through the trace volume, where every fragment of the slicing poly-
gon receives a color. This color represents the trace tuple, which is
then used as the texture coordinates to look up the appearance tex-
ture to get the final color and opacity for the fragment. This two-
step texture lookup can be performed in real time by employing the
dependent texture capability provided by the NV_TEXTURE_SHADER
extension on nVidia Geforce4 GPUs.

Figure 6 shows the texture shader setting for the fragment pro-
cessing stage using the nVidia Geforce4 GPUs. The trace volume
is represented by a RGBA 3D texture(Tex0) on the graphics hard-
ware. With the texture coordinates (s, t,r) coming from the sliced
polygon, an RGBA texel is fetched from the trace volume. It con-
tains the trace tuple (u,v,w), as well as the opacity value α for the
purpose of anti-aliasing described in section 3.4. The appearance
texture is set to be the second texture, i.e., Tex1. The dependent
texture shader is configured to use the trace tuple as the texture co-
ordinates to sample Tex1. The anti-aliasing is done by using the
register combiner (NV_REGISTER_COMBINER) to modulate α from
Tex0 with the opacity value from Tex1 (figure 10). The normal vol-
ume, shown as Tex2 in figure 6, is used for various depth cuing
effects and will be discussed in the section 4.2. The last texture
shader stage is assigned with a 2D texture (Tex3) which servers as
the opacity modulation function and will be discussed later in sec-
tion 4.3.
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Figure 6: Texture shader configuration. The trace volume,
the appearance texture, the and normal volume are represented
as 3D color textures and assigned to the 1st, 2nd and 3rd
texture units (GL TEXTURE0 ARB, GL TEXTURE1 ARB, and
GL TEXTURE2 ARB), respectively. The 1st and the 3rd texture
units receive the texture coordinates interpolated from those speci-
fied by glMultiCoord3f(), then the 2nd and the 4th texture units take
their results to perform dependent texturing.

4 Appearance Control

In this section, we show the use of different appearance textures and
various visual cues in our algorithm. We also provide some addi-
tional implementation details that are not described in the previous
sections.

4.1 Appearance Textures

Our chameleon rendering framework allows the user to experiment
with different visual mappings at run time when exploring the un-
derlying vector field. To demonstrate the utility of our algorithm,
we have created several appearance textures. Each of them presents
a different look and feel. Figure 1(a) shows a LIC-like visualization
using a 963 tornado dataset. The appearance texture was generated
using a 2D LIC texture precomputed from a straight flow, which
can be computed very efficiently. We also generated a visualiza-
tion using a texture that simulates streamtubes with illumination
and saturated colors, as shown in figure 1(b). When using opaque
surface-like textures, a better depth cue can be obtained. Figure 7(a)
presents a visualization with an input appearance texture simulating
the line bundle technique([Crawfis et al. 1994]). Similar to the LIC
texture, the short strokes in the line bundle texture were generated
using a straight flow. The tails of the strokes are made more trans-
parent than the heads to emphasize the flow direction. When local
glyphs are desired, the user can input a simple voxelized glyphs,
such as the arrowhead-shaped solid shown in figure 7(b). All the
visualizations were created from the same trace volume, which was
created only once, in real time.

4.2 Depth Cues

Additional depth cues can be used to enhance the perception of the
spatial relationship between flow traces. In our rendering frame-
work, we can incorporate various depth cues such as lighting, sil-
houette, and tone shading. To achieve these effects, we need to
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Figure 7: Different appearance textures. (a) Line bundles. (b)
Glyphs.

supplement the trace volume with a normal vector for each voxel.
Although normal vectors are typically associated with surfaces
and not uniquely defined for line primitives, when using 3D thick
lines for anti-aliasing as described in section 3.4, the normal vec-
tor nj

i = (nx,ny,nz) for jth vertex m j
i on strip i can be defined as

mj
i −vj, where v j is the center of the extruding mask. Alterna-

tively, when the light vector L is fixed, the normal vector can be
defined as the one lying on the L−T plane, where T is the tangen-
tial vector. This is the technique used by the illuminated streamline
algorithm[Zöckler et al. 1996].

Like trace tuples, normal vectors can be assigned to vertices
along the thick lines as colors and scan converted during the vox-
elization process. Since a normal vector is a 3-tuple and the number
of color channels is not sufficient to represent both the trace tuple
and the normal vector simultaneously, we employ a second vox-
elization pass to process the streamlines with normal vectors as the
colors. Because each component of a normalized normal vector nj

i
is in the range of [−1,1], they are shifted and scaled into the [0,1]
range in order to be stored into the fixed-point color channels.

The normal volume is specified to the second texture unit (Tex2)
in the texture shader program (Figure 6). The same trace tuple
fetched from Tex0 to look up Tex1 is also used as the texture co-
ordinates to sample the normal volume. The fetched normal vector
is then fed to the register combiner stages on the nVidia GeForce4
GPU to perform various depth cue operations in a single render-
ing pass. In the following, we provide more details about creating
the depth cues lighting, silhouette, and tone shading. Due to space
constraints, we only provide the combiner settings for lighting in
Figure 10.

Lighting The lighting equation for each voxel in the trace volume
is defined as:

C = Cdecal × kdi f f × (N ·L)+Cspec × (N ·H)ks)

where N, L, H are the normal vector, light vector, and halfway vec-
tor, respectively. Cdecal and Cspec are the colors fetched from the
appearance texture, and the color of the specular light. kdi f f is a
constant to control the intensity of the diffuse light. The intensity of
the specular light is controlled by the magnitude of Cspec, and ks is
the shininess of the specular reflection. Figure 10 shows the config-
urations of the register combiner stages. Since the normal vector is
scaled and shifted in the normal volume as discussed above, we use
the EXPAND_NORMAL_NV input mapping functionality of the regis-
ter combiner (shown as E.N. boxes in Figure 10) to map it back
to the original [-1,1] range before the dot-product operation. The
input mapping UNSIGNED_IDENTITY_NV (shown as U.I. boxes in
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Figure 8: Different depth cuing techniques. (a) Lighting. (b): Tone
shading.

Figure 10) clamps any negative dot product result to zero. Figure
8(a) shows the effect of using lighting.

Silhouette The spatial relationship between streamlines in the
trace volume can be enhanced by using silhouettes to emphasize
the depth discontinuity between distinct streamlines. We use the
following formula to depict the silhouette of thick lines:

C = Cdecal × (N ·E)p +Cs × (1− (N ·E)p)

where E is the eye vector and Cs is the silhouette color. Constant
p is to control the thickness of the silhouette. The larger the p, the
thicker the silhouette. An example of silhouette-enhanced render-
ing is given in Figure9(a).

Tone Shading Unlike lighting, which only modulates the pixel
intensity, tone shading varies the colors of the pixels to depict the
spatial structure of the scene. Objects facing toward the light source
are colored with warmer tones, while the opposite are in cooler
tones. We achieve the tone shading effect with the following for-
mula:

C = Cw ×Cdecal × (N ·L)+Cc × (1− (N ·L))

where Cw is the warmer color such as red or yellow and Cc is the
cooler color such as blue or purple. Figure 8(b) shows the rendering
supplemented by tone shading.

4.3 Interactive Volume Culling

Clipping planes and opacity functions can be used to remove unin-
teresting regions from the trace volume. In our algorithm, since the
trace volume is rendered using textured slicing polygons, we can
easily utilize OpenGL’s clipping planes to remove polygon slices
outside the region of interest (Figure 9(a)).

We can also employ a transfer function T based on the velocity
magnitude of the vector field to modulate the opacity of the trace
volume. The final opacity value of the voxel becomes α ×T (vmag),
where α is the opacity value of a voxel described in section 3.4,
and vmag is the velocity magnitude at that voxel normalized by the
maximum velocity magnitude in the vector field. A simple transfer
function, T , that we have used is shown in Figure 9(b).

We implement the transfer function lookup and opacity modula-
tion using texture shader and register combiners. Recall that Tex2 in
Figure 6 is an RGB 3D texture which stores the normal vectors used
in various depth cuing techniques. We store the normalized velocity
magnitude vmag in the alpha channel of Tex2 and assign the transfer
function T to the third texture unit Tex3. Although T is essentially a
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Figure 9: Interactive Volume Culling. (a) culling with clipping
plane and opacity modulation. Rendered with silhouette enhance-
ment. (b) opacity transfer function T (vmag)

1D function hence can be realized by 1D dependent texture lookup,
we construct Tex3 as a 2D texture with identical rows because cur-
rently only 2D/3D dependent texture lookups are supported by the
Geforce4 GPU. The shading operation in stage3 is then configured
as DEPENDENT_AR_TEXTURE_2D_NV, which uses the alpha and red
components of the texel fetched from Tex2 as the texture coordi-
nates to lookup the transfer function bound as Tex3. In the register
combiners, we modulate the opacity described in section 3.4 with
the value fetched from Tex3(Figure 10). The user can interactively
modify the opacity transfer function and render the trace volume in
real time.

4.4 Animation

For non-directional textures (like a LIC texture), animation pro-
vides a way to visualize the flow direction. Using the chameleon
algorithm, one can easily create animations by looping through a
series of appearance textures, which can be generated easily by con-
tinuously shifting the appearance texture along the flow direction in
the local texture space. Alternatively, an additional stage in the
texture shader program can be introduced to translate the texture
coordinates, represented by the trace tuples, along the streamline
direction at run time when rendering the trace volume. The ad-
vantage of this approach is that multiple appearance textures need
not be loaded when producing animations. When the 2D trace tu-
ple (u,v) is used, this translation can be achieved by multiplying
(u,v,1) with the following 2×3 matrix M:

M =

∣

∣

∣

∣

1 0 0
0 1 δ

∣

∣

∣

∣

where δ is the translation amount along the streamline direction
and is incremented at each animation step. The translated trace tu-
ple (u,v + δ ) is then used as the texture coordinates to sample the
appearance texture. We implement this by assigning the trace tu-
ple (u,v) for each vertex on the streamline as color (u,v,1), and
perform the matrix multiplication by the DOT_PRODUCT_NV and
DOT_PRODUCT_TEXTURE_2D_NV texture shader operation. To show
the effectiveness of our algorithm, we have generated several ani-
mations showing the results of our work on the supplementary files
accompanying this paper.

5 Performance

We implemented our chameleon algorithm on a standard PC using
OpenGL (for rendering) and MFC (for creating user interface) li-

resolution
# of lines 1283 2563

7350 2.813 5.718
14700 3.891 7.671
22050 4.641 9.093

Table 1: Trace volume construction time (in seconds). The number
of lines (first column) includes the satellite lines as well as the cen-
tral streamlines used for constructing anti-aliased streamlines (sec.
3.4).

Image Resolution 600 x 600 800 x 800
1283 volume 17.07 14.95
2563 volume 14.31 12.13

Table 2: Trace volume rendering speed(frames/second).

braries. The machine is equipped with a single Pentium4 2.0GHz
PC with 768MB RAM and nVidia Geforce4 Ti4600 GPU (128MB
video RAM). Table 1 shows the performance of constructing 1283

and 2563 trace volumes for the 963 tornado data set. The timings
include the advection and rendering of the streamlines, as well as
transferring the voxelization results from the frame buffer to the
3D texture memory for all the 128 or 256 slices. The construction
time increased as we increased the number of streamlines. How-
ever, rendering and frame buffer transfer are all done using graph-
ics hardware. Therefore, we are able to construct the trace volumes
very efficiently. The number of lines in the first column includes
the satellite lines as well as the central streamlines used for con-
structing anti-aliased streamlines (sec. 3.4).

Once the construction of the trace volume is completed, the
rendering speed is independent from the streamline geometries.
Since Chameleon performs hardware texture-based volume render-
ing, which is essentially fill-rate limited, the rendering speed is only
dependent on the resolution of the trace volume as well as the size
of the viewport. Table 2 shows the speeds for rendering 1283 and
2563 trace volumes. Using graphics hardware, we are able to per-
form interactive rendering of the trace volumes at a speed of more
than ten frames per second. This allows the user to explore the
vector field interactively.

6 Conclusion and Future Work

We have presented an interactive texture-based technique for visu-
alizing three-dimensional vector fields. By decoupling the calcu-
lation of streamlines and the mapping of visual attributes into two
disjoint stages in the visualization pipeline, we allow the user to use
various appearance textures to visualize the vector field with en-
hanced visual cues. We plan to extend our work to achieve level of
detail by using multi-resolution trace volumes and next-generation
graphics hardware which provides full programmability in the ras-
terization stage. With the support of the floating-point datatype on
the new hardware, the image quality can be further improved. Many
traditional volume rendering techniques can also be incorporated
into the Chameleon framework.
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