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Accuracy and run-time play an important role in medical diagnostics and research as well
as in the field of neuroscience. In Electroencephalography (EEG) source reconstruction,
a current distribution in the human brain is reconstructed noninvasively from measured
potentials at the head surface (the EEG inverse problem). Numerical modeling techniques
are used to simulate head surface potentials for dipolar current sources in the human
cortex, the so-called EEG forward problem.
In this paper, the efficiency of algebraic multi-grid (AMG), incomplete Cholesky (IC) and
Jacobi preconditioners for the conjugate gradient (CG) method are compared for iteratively
solving the finite element (FE) method based EEG forward problem. The interplay of the
three solvers with a full subtraction approach and two direct potential approaches, the
Venant and the partial integration method for the treatment of the dipole singularity
is examined. The examination is performed in a four-compartment sphere model with
anisotropic skull layer, where quasi-analytical solutions allow for an exact quantification
of computational speed versus numerical error. Specifically-tuned constrained Delaunay
tetrahedralization (CDT) FE meshes lead to high accuracies for both the full subtraction
and the direct potential approaches. Best accuracies are achieved by the full subtraction
approach if the homogeneity condition is fulfilled. It is shown that the AMG-CG achieves
an order of magnitude higher computational speed than the CG with the standard
preconditioners with an increasing gain factor when decreasing mesh size. Our results
should broaden the application of accurate and fast high-resolution FE volume conductor
modeling in source analysis routine.

© 2009 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Electroencephalography (EEG) based source reconstruction of cerebral activity (the EEG inverse problem) is an important
tool both in clinical practice and research [35,23], and in cognitive neuroscience [2]. Methods for solving the inverse prob-
lem are based on solutions to the corresponding forward problem, i.e., the simulation of EEG potentials for a given primary
source in the brain using a volume-conduction model of the human head. While the theory of this forward problem is
well established and many numerical implementations exist, there remain unresolved questions regarding the accuracy and
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efficiency of contemporary approaches. In this study, we compared a range of numerical techniques and source representa-
tion approaches and have shown that careful choice of both are critical in order to solve realistic electroencephalographic
forward (and inverse) problems.

The general approach for solving bioelectric field problems under realistic conditions is well established. All quantitative
solutions for the EEG forward problem are based on the quasi-static Maxwell equations [25]. The primary sources are
electrolytic currents within the dendrites of the large pyramidal cells of activated neurons in the human cortex. Even if
there are also smoother models [33], most often the primary sources are formulated as a mathematical point current
dipole [25,6,18]. The finite element (FE) method is often used for the solution of the forward problem, because it allows
for a realistic representation of the complicated head volume conductor with its tissue conductivity inhomogeneities and
anisotropies [44,3,1,34,4,15,19,36,26,43,7].

To implement the point current dipole as a current source in the brain, the FE method requires careful consideration of
the singularity of the potential at the source position. One way to address the singularity is to use a subtraction approach,
which divides the total potential into an analytically known singularity potential and a singularity-free correction potential,
which can then be approximated numerically using an FE approach [3,1,34,15,26,38,43]. For the correction potential, the ex-
istence and uniqueness for a weak solution in a zero-mean function space have been proven and FE convergence properties
are known [43]. The subtraction FE approach has thus a sound mathematical basis for point current dipole models. Another
family of source representation methods, known as direct FE approaches to the total potential [44,1,4,36,26], are computa-
tionally less expensive, but also mathematically less sound under the assumption that a point dipole is the more realistic
source model. In our previous work [38,41], we compared the projected subtraction approach [43] with the two direct ap-
proaches using partial integration [44,1,36] and Venant [4] in regular and geometry-adapted 2 mm hexahedral FE meshes of
a multi-layer sphere model for which quasi-analytical solutions exist [5]. The Venant approach was found to be the overall
best choice in FE source analysis practice [38,41]. It was however speculated that an improved numerical quadrature might
solve the accuracy problems of the projected subtraction approach for eccentric sources, so that the highest future potential
was given to an improved implementation of the FE subtraction approach [41]. It has recently been shown that a full sub-
traction approach [7] using an improved numerical quadrature leads to an order of magnitude more accurate solution than
the projected subtraction approach [43], especially when considering sources that are close to a conductivity inhomogeneity.

Another general prerequisite for FE modeling of bioelectric fields is the generation of a mesh that represents the geome-
try and electric properties of the volume conductor. An effective meshing strategy will balance acceptable forward problem
accuracy against reasonable computation times and memory usage. Very high accuracies can be achieved by making use
of a Constrained Delaunay Tetrahedralization (CDT) [30,29] in combination with a full subtraction approach [7]. Adaptive
methods, using local refinement around the source singularity [3,34], are another potential utility but they preclude the use
of fast transfer matrices [36,8,40,12] and lose efficiency in solving the inverse problem (see discussion section).

Solving the forward problem is rarely the ultimate goal in calculating bioelectric fields but rather a step towards solving
the associated inverse problem. Thus the quest for numerical accuracy and efficiency of the forward solution requires some
anticipation of the ultimate use in inverse solutions. The longtime state-of-the-art approach has been to solve an FE equation
system for each anatomically and physiologically meaningful dipolar source (each source results in one FE right-hand side
(RHS) vector) [3,1,34,4,15]. The use of standard direct (banded LU factorization for a 2D source analysis scenario [1]) or
iterative (Conjugate Gradient (CG) without preconditioning [3] or Successive OverRelaxation (SOR) [26]) FE solver techniques
limit the overall resolution of the geometric model because of their computational cost. The preconditioned CG method was
used with standard preconditioners like Jacobi (Jacobi-CG) [36] or incomplete Cholesky without fill-in, IC(0)-CG [4].

One recent approach to achieve efficient computation of the FE-based forward problem is to pre-compute transfer
matrices that encapsulate the relationship between source locations and sensor sites based only on the geometric and
conductivity characteristics of the volume conductor, i.e., they are independent of the source. Techniques exist to construct
transfer matrices for problem formulations based on EEG [36,12] or combined EEG and MEG [8,40]. Using this principle, for
each head model, one only has to solve one large sparse FE system of equations for each of the possible sensor locations
in order to compute the full transfer matrix. Each forward solution is then reduced to multiplication of the transfer matrix
by an FE RHS vector containing the source load. Exploiting the fact that the number of sensors (currently up to about 600)
is much smaller than the number of reasonable dipolar sources (tens of thousands), the transfer matrix approach is sub-
stantially faster than the state-of-the-art forward approach (i.e., solving an FE equation system for each source) and can be
applied to inverse reconstruction algorithms in both continuous and discrete source parameter space for EEG and MEG. Still,
the solution of hundreds of large linear FE equation systems for the construction of the transfer matrices is a major time
consuming part within FE-based source analysis.

The first goal of this study was therefore to compare the numerical accuracy of the full subtraction approach [7] with the
two direct approaches using partial integration [44,1,36] and Venant [4] in specifically-tuned CDT meshes of an anisotropic
four-compartment sphere model. We then examine the interplay of the source model approaches with three FE solver
methods: a Jacobi-CG, an incomplete Cholesky CG (e.g., [27]), and an algebraic multi-grid preconditioned CG (AMG-CG),
which has already shown to be especially suited for problems with discontinuous and anisotropic coefficients [22,32,21,9,
42].
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2. Theory

In the quasi-static approximation of the Maxwell equations, the distribution of electric potentials Φ in the head domain
Ω of conductivity σ , resulting from a primary current jp is governed by the Poisson equation with homogeneous Neumann
boundary conditions on the head surface Γ = ∂Ω [20,25], which we can express as

∇ · (σ∇Φ) = ∇ · jp = Jp in Ω, 〈σ∇Φ,n〉 = 0 on Γ, (1)

with n the unit surface normal, and assuming a reference electrode with given potential, i.e., Φ(xref) = 0. The primary
currents are modeled by a mathematical dipole at position x0 ∈ R

3 with moment M0 ∈ R
3 [25,6,18],

Jp = ∇ · jp(x) = ∇ · (M0δ(x − x0)
)
, (2)

where δ is the Dirac delta distribution.

2.1. Finite element modeling techniques for the potential singularity

One of the key questions for all three-dimensional EEG forward modeling techniques is the appropriate treatment of
the potential singularity introduced into the differential equation by the formulation of the mathematical dipole (2). This
study examined the interplay of FE solver methods (see Section 2.2) with the solution accuracy in four-layer sphere models
applying three singularity treatment techniques: a full subtraction approach, a partial integration direct method and a
Venant direct method.

2.1.1. Full subtraction approach
The subtraction approach [3,1,43,7] splits the total potential Φ into two parts,

Φ = Φ0 + Φcorr, (3)

where the singularity potential, Φ0, is defined as the solution for a dipole in an unbounded homogeneous conductor with
constant conductivity σ0. σ0 ∈ R

3×3 is the conductivity at the source position, which is assumed to be constant in a non-
empty subdomain Ω0 around x0, in the following called the homogeneity condition. The solution of Poisson’s equation under
these conditions for the singularity potential

∇ · (σ0∇Φ0) = ∇ · jp (4)

can be formed analytically for the mathematical dipole (2) [7] as

Φ0(x) = 1

4π
√

detσ0

〈M0, (σ0)
−1(x − x0)〉

〈(σ0)−1(x − x0), (x − x0)〉3/2
. (5)

Subtracting (4) from (1) yields a Poisson equation for the correction potential

−∇ · (σ∇Φcorr) = −∇ · ((σ0 − σ)∇Φ0
)

in Ω, (6)

with inhomogeneous Neumann boundary conditions at the surface:

〈σ∇Φcorr,n〉 = −〈σ∇Φ0,n〉 on Γ. (7)

The advantage of (6) is that the right-hand side is free of any source singularity, because of the homogeneity condition—
the conductivity σ0 − σ is zero in Ω0. Existence and uniqueness of the solution and FE convergence properties are shown
for the correction potential in [43]. For the numerical approximation of the correction potential, we use the FE method with
piecewise linear basis functions ϕi . When projecting the correction potential into the FE space, i.e., Φcorr(x) ≈ Φcorr,h(x) =∑Nh

j=1 ϕ j(x)u[ j]
corr,h (Nh being the number of FE nodes), and applying variational and FE techniques to (6) and (7), we finally

arrive at a linear system [7]

Khucorr,h = jcorr,h, (8)

with the stiffness matrix

K [i, j]
h =

∫
Ω

〈σ∇ϕ j,∇ϕi〉dx, (9)

for Kh ∈ R
Nh×Nh , and the right-hand side vector jcorr,h ∈ R

Nh with entries

j[i]corr,h =
∫
Ω

〈
(σ0 − σ)∇Φ0,∇ϕi(x)

〉
dx −

∫
∂Ω

ϕi(x)
〈
n(x),σ0∇Φ0(x)

〉
dx. (10)

We then seek for the coefficient vector ucorr,h = (u[1]
corr,h, . . . , u[Nh]

corr,h) ∈ R
Nh and, using (3), compute the total potential.

In [7], the theoretical reasoning and a validation in a four-compartment sphere model with anisotropic skull is given for
the fact that second order integration is necessary and sufficient for the right-hand side integration in Eq. (10). Direct
comparisons with the projected subtraction approach from [43] have shown that the full subtraction approach is an order
of magnitude more accurate for dipole sources close to a conductivity discontinuity [7].
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2.1.2. The partial integration direct approach
Multiplying both sides of Eq. (1) by a linear FE basis function ϕi and integrating over the head domain leads to a partial

integration direct approach for the total potential [1,36,17] expressed as∫
Ω

∇ · (σ∇Φ)ϕi dx =
∫
Ω

∇ · jpϕi dx.

Integration by parts, applied to both sides of the above equation, yields

−
∫
Ω

〈σ∇Φ,∇ϕi〉dx +
∫
Γ

〈σ∇Φ,n〉ϕi dΓ = −
∫
Ω

〈jp,∇ϕi〉dx +
∫
Γ

〈jp,n〉ϕi dΓ.

Using the homogeneous Neumann boundary condition from Eq. (1) and the fact that the current density vanishes on the
head surface, we arrive at∫

Ω

〈σ∇Φ,∇ϕi〉dx =
∫
Ω

〈jp,∇ϕi〉dx
(2)= 〈

M0,∇ϕi(x0)
〉
.

Setting Φ(x) ≈ Φh(x) = ∑Nh
j=1 ϕ j(x)u[ j]

h , leads to the linear system

Khuh = jPI,h, (11)

with the same stiffness matrix as in (9) and the right-hand side vector jPI,h ∈ R
Nh with entries

j[i]PI,h =
{ 〈M0,∇ϕi(x0)〉 if i ∈ NodesOfEle(x0),

0 otherwise.
(12)

The function NodesOfEle(x0) determines the set of nodes of the element which contains the dipole at position x0. Note
that while the right-hand side vector (10) is fully populated, jPI,h has only |NodesOfEle| non-zero entries. Here, | · | denotes
the number of elements in the set NodesOfEle. For the linear basis functions ϕi considered here, the right-hand side (12)
and thus the computed solution for the total potential in (11) will be constant for all x0 within a finite element.

2.1.3. The Venant direct approach
The Venant potential approach [4] follows the principle of Saint Venant and is made up from monopolar loads on all

neighboring FE nodes so that the dipolar moment is fulfilled and the source load is as regular as possible. In this case,
variational and FE techniques yield the linear system

Khuh = jVenant,h (13)

with the same stiffness matrix as in (9). The right-hand side vector jVenant,h ∈ R
N
h has only C non-zero entries, if C is the

number of neighboring FE nodes to that FE node which is closest to the location of the dipole [4].

2.2. FE solver methods

The solution of hundreds of large scale systems of Eqs. (8), (11) or (13) with the same symmetric positive definite (SPD)
stiffness matrix (9) is the major time consuming task of the inverse source localization process. The spectral condition of
the SPD matrix Kh is equal to

κ2(Kh) = λmax

λmin

with λmax the largest and λmin the smallest eigenvalues, respectively, of Kh [11, §2.10]. The condition number behaves
asymptotically as O(h−2) and condition numbers of more than 107 have been computed for FE problems in EEG source
analysis [42]. Large condition numbers are the reason for slow convergence of common iterative solvers [11,24] and any
effective solution approach has to minimize the effects of this poor conditioning. The Preconditioned Conjugate Gradient
(PCG) iterative solver shown in Algorithm 1 (see, e.g., [27,11,24]) can provide efficient procedures for such problems. Note
that, in theory, the convergence speed of the PCG is independent of the right-hand side jh of the linear equation system [11,

§3.4]. The goal of a preconditioner, Ch ∈ R
Nh×Nh , is the reduction of κ2(C−1

h Kh) for the preconditioned equation system

C−1
h Khuh = C−1

h jh . Further requirements are that it is cheap with regard to arithmetic and memory costs to solve linear
systems Ch wh = rh with rh the residual and wh the residual for the preconditioned system.

Theorem 2.1 (Error estimate for PCG method). Let Kh and Ch be positive definite. If u∗
h denotes the exact solution of the equation

system, then the kth iterate of the PCG method uk
h fulfills the following energy norm estimate

∥∥uk
h − u∗

h

∥∥
Kh

� ck 2

1 + c2k

∥∥u0
h − u∗

h

∥∥
Kh

, c :=
√

κ2(C−1
h Kh) − 1√

κ2(C−1
h Kh) + 1

.
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rh = r0
h = jh − Khuh

Solve Ch wh = rh

sh = wh

γ 0 = γ = γOLD = 〈wh, rh〉
while

(
γ /γ 0 =

( ‖rh‖
C−1

h

‖r0
h‖

C−1
h

)2

=
( ‖Kh eh‖

C−1
h

‖Kh e0
h‖

C−1
h

)2

=
( ‖ei

h‖
Kh C−1

h Kh

‖e0
h‖

Kh C−1
h Kh

)2

> accuracy
2
)

do

vh = Kh sh

α = γ /〈sh, vh〉
uh = uh + αsh

rh = rh − αvh

Solve Ch wh = rh

γ = 〈wh, rh〉
β = γ /γOLD, γOLD = γ
sh = wh + βsh

end while

Algorithm 1. PCG : (Kh, uh, jh, Ch,accuracy) → (uh).

Proof. Hackbusch [11, Theorem 9.4.14]. �
As indicated in Algorithm 1, the PCG method is stopped after the kth iteration if the relative error, i.e., ek

h = uk
h − u∗

h

in the controllable KhC−1
h Kh-energy norm is below a given accuracy. Besides the scalar products, the sum of vectors and

the multiplication of a vector with a scalar value, the most important steps in Algorithm 1 are the multiplication of the
sparse stiffness matrix Kh with a vector and the preconditioning step Ch wh = rh . We used the compact row storage format
for sparse matrices so that both the storage of the stiffness matrix and the matrix-vector multiplication are of complexity
O(Nh) (see [27, Chapter 4.6.4], [24,10]).

In the following, the three different preconditioners for the CG method are presented and their relative performances
evaluated in Section 4.

2.2.1. Jacobi preconditioning or scaling
The simplest preconditioner is the scaling or Jacobi-preconditioning ([24, p. 265f], [27, p. 257f]), where

Ch := D2
h, Dh := DIAG

(√
K [11]

h , . . . ,

√
K [Nh Nh]

h

)
.

When splitting the Jacobi-preconditioner between left and right (row and column scaling), one has to solve K̃h vh =
D−1

h jh with K̃h = D−1
h Kh D−tr

h and uh = D−tr
h vh . Row and column scaling preserves symmetry, so that the scaled matrix K̃h

is again SPD with unit diagonal entries. The scaling may lead to a first substantial condition improvement, because diagonal
entries in Kh of FE nodes from inside the skull are much smaller than from outside (because of a jump in conductivity at
each internal and external boundary) and because it can be shown, that the smallest (largest) eigenvalue of a symmetric
matrix is at most (at least) as large as the smallest (largest) diagonal element, so that the condition number is at least as
large as the quotient of maximal and minimal diagonal element [27, p. 258].

Theorem 2.2. Let Kh be SPD and Ch := D2
h the Jacobi-preconditioner. Assume that each row of Kh does not contain more than d

non-zero entries. Then, for all diagonal matrices D̃−1
h , it is

κ2
(
C−1

h Kh
)
� dκ2

(
D̃−1

h Kh
)
,

i.e., the chosen diagonal preconditioner is close to the optimal one.

Proof. Hackbusch [11, Theorem 8.3.3]. �
2.2.2. Incomplete Cholesky preconditioning

The SPD stiffness matrix Kh can be decomposed into a left triangular matrix Lh and its transpose using the Cholesky-
decomposition, Kh = Lh Ltr

h [27, p. 209f]. Nevertheless, because of a large fill-in, Ch := Lh Ltr
h would not be appropriate as a

preconditioner. The Incomplete Cholesky (IC) preconditioner without fill-in, IC(0), is defined as Ch := L0Ltr
0 where L0 is the

Cholesky-decomposition of the scaled stiffness matrix K̃h which is restricted to the same non-zero-pattern as the lower
triangular part of K̃h . For incomplete factorizations, the preconditioning operation Ch wh = rh in Algorithm 1 is solved by
a forward-back sweep, which can efficiently use the compact row storage format for the sparse matrix L0 as described
in detail in [27, Chapter 4.6.4]. The existence of IC(0) is not necessarily guaranteed for general SPD matrices. Therefore, a
reduction of non-diagonal stiffness matrix entries has to be carried out in certain applications before IC(0) computation is
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possible [27, p. 266]. If the scaled stiffness matrix is decomposed by means of K̃h = Eh + Idh +Etr
h , with Eh ∈ R

Nh×Nh its
strict lower triangular part, the reduction can be formulated as

K̆h = Idh + 1

1 + ς

(
Eh + Etr

h

)
. (14)

For sufficiently large ς ∈ R
+
0 , the existence of IC(0) is guaranteed, but with increasing ς , the preconditioning effect

decreases. Note that for certain special cases, a condition improvement to O(h−1) can be proven as, e.g., when using a
modified ILUω-preconditioning with ω = −1 (in the symmetric case, the ILU0 is equal to the IC(0)) for diagonally dominant
symmetric matrices arising from a 5-point discretization of a two-dimensional Poisson equation (Hackbusch [11, Theo-
rem 8.5.15 and Remarks 8.5.16,17]).

2.2.3. Algebraic multi-grid preconditioning
The above preconditioning methods have the disadvantage that the convergence rate, i.e., the factor by which the error is

reduced in each iteration, is still dependent on the mesh size h. With decreasing mesh size and thus increasing order of the
equation system, the convergence rate tends to 1 from below, so that the number of iterations needed to achieve a given
accuracy increases. For the Geometric Multi-Grid (GMG), an h-independent convergence rate ρ < 1 and an h-independent
condition number has been proven in [11, Lemma 10.7.1, Theorem 10.7.15] as

κ2
(
C−1

h Kh
)
� 1

1 − ρm
, (15)

with Ch the preconditioner resulting from m steps of the GMG method. As shown in [13,11,32], a robust method which
provides a small convergence rate for a wide class of real-life problems is given by exploiting the MG-method as a pre-
conditioner for the CG method. With MG(m)-CG, we denote the MG-preconditioned CG method with m the number of MG
iterations for the CG preconditioning step. The GMG(m)-CG can improve the convergence rate to ρ/4, if ρ is assumed to
be small, as shown in [11, §10.8.3].

In contrast to GMG, in which a grid hierarchy is required explicitly, Algebraic MG (AMG) is able to construct a matrix
hierarchy and corresponding transfer operators based only on the entries in Kh (see, e.g., [22,32,21,9]). It is well known
that the classical AMG method is robust for M-matrices and, with regard to our application, that small positive off-diagonal
entries are admissible [22,32,21]. The method is especially well suited for our problem with discontinuous and anisotropic
coefficients, in which an optimal tuning of the GMG is difficult ([22, §4.1,4.6.4], [32, §4.1]). Stand-alone AMG is hardly ever
optimal as there may be some very specific error components which are reduced with significantly less efficiency, causing
a few eigenvalues of the AMG iteration matrix to be much closer to 1 than the remaining ones [32, §3.3]. In such a case,
acceleration by means of using AMG as a basis for the CG method eliminates these particular frequencies very efficiently.

As in GMG, the basic idea in AMG is to reduce high and low frequency components of the error by the efficient interplay
of smoothing and coarse grid correction, respectively. In analogy to GMG, the denotation coarse grids will be used, although
these are purely virtual and do not have to be constructed explicitly as FE meshes. The diagonal entry of the ith row of Kh
is considered as being related to a grid point in ωh (the index set of nodes), and an off-diagonal entry is related to an edge
in an FE grid. A description of AMG is now given for a symmetric two grid method, where h is related to the fine grid and
H to the coarse grid. Each AMG algorithm consists of the following components:

(a) Coarsening: define the splitting ωh = ωC ∪ ωF of ωh into sets of coarse and fine grid nodes ωC and ωF , respectively.
(b) Transfer operators: prolongation Ph,H : R

NH �→ R
Nh and its adjoint as the restriction

R H,h := P tr
h,H . (16)

(c) Definition of the coarse matrix by Galerkin’s method, i.e.,

K H := R H,h Kh Ph,H . (17)

Because of (b), K H ∈ R
NH ×NH is again SPD.

(d) Appropriate smoother for the considered problem class: In order to achieve a symmetric method, e.g., a forward Gauss–
Seidel method for pre-smoothing and the adjoint, a backward Gauss–Seidel method for post-smoothing ([11, §4.8.3,
§10.7.1,2], [22, §4.4]).

Coarsening. The coarsening process has the task of reducing the number of nodes such that NH = |ωC | < Nh = |ωh|. The
grid points ωh can be split into two disjoint subsets ωC (coarse grid nodes) and ωF (fine grid nodes), i.e., ωh = ωC ∪ ωF
and ωC ∩ ωF = ∅ such that there are (almost) no direct connections between any two coarse grid nodes and such that the
resulting number of coarse grid nodes is as large as possible [32, p. 12]. Instead of considering all connections between
nodes as being of the same rank, the following sets are introduced

Nei
h = {

j
∣∣ ∣∣K [i j]

h

∣∣ � ζ
∣∣K [i,i]

h

∣∣, i �= j
}
, (18)

Si
h = {

j ∈ Nei
h

∣∣ ∣∣K [i j]
h

∣∣ > coarse(i, j, Kh)
}
,

Si,T = {
j ∈ Nei

∣∣ i ∈ S j }
, (19)
h h h
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ωC ← ∅, ωF ← ∅
while ωC ∪ ωF �= ωh do

i ← Pick(ωh \ (ωC ∪ ωF ))

if |Si,T
h | + |Si,T

h ∩ ωF | = 0 then
ωF ← ωh \ ωC

else
ωC ← ωC ∪ {i}
ωF ← ωF ∪ (Si,T

h \ ωC )

end if
end while

Algorithm 2. COARSE : ({Si,T
h },ωh) → (ωC ,ωF ).

if CoarseGrid then
uh ← DirectSolve(Khuh = jh)

else
uh ← νF times smooth Forward(Kh, uh, jh)

dh = Khuh − jh

dH = P tr
h,H dh

w H = 0
w H = MG(K H , w H ,dH )

wh = Ph,H w H

uh = uh − wh

uh ← νB times smooth Backward(Kh, uh, jh)

end if

Algorithm 3. V-cycle MG : (Kh, uh, jh, νF , νB ) → (uh).

where Nei
h is the index set of neighbors (a pre-selection is carried out by the threshold-parameter ζ ∈ R

+
0 ), Si

h denotes

the index set of nodes with a strong connection from node i and Si,T
h is related to the index set of nodes with a strong

connection to node i. In addition, coarse(i, j, Kh) is an appropriate cut-off (coarsening) function, e.g.,

coarse(i, j, Kh) := α · max
j, j �=i

{∣∣K [i j]
h

∣∣}, (20)

with α ∈ [0,1] (see, e.g., [22, §4.6.1]).
With those definitions a splitting into coarse and fine grid nodes can be achieved. For our application, a modified splitting

algorithm is used [22, §4.6] as shown in Algorithm 2. Therein, the function

i ← Pick

(
ωh \ (ωC ∪ ωF )

)
returns a node i for which the number |Si,T

h | + |Si,T
h ∩ ωF | is maximal. Note that tissue conductivity inhomogeneity and

anisotropy are taken into account within the coarsening algorithm.
Prolongation. To achieve prolongation, the operator Ph,H : V H �→ Vh has to be defined correctly. The form that turned

out to be the most efficient for the presented application was proposed in [14] and is given by

P [i j]
h,H =

⎧⎨
⎩

1 i = j ∈ ωC ,

1/|Si,T
h ∩ ωC | i ∈ ωF , j ∈ Si,T

h ∩ ωC ,

0 else.

(21)

After the proper definition of the prolongation and coarse grid operators, it is possible to create in a recursive way
a matrix hierarchy and an associated multi-grid cycle, shown in Algorithm 3. Therein, the variable CoarseGrid denotes
the level at which a direct solver is applied. For an m-V (νF , νB)-cycle AMG preconditioned CG method, the operation
Solve Ch wh = rh in Algorithm 1 is realized by m calls of MG(Kh, wh, rh, νF , νB ). Specific performance optimizations for the
AMG preconditioner used in this study are described in detail in [10, Section 2].

3. Methods

3.1. Validation platform

The numerical examinations of the theory presented above were carried out in a four-layer sphere model with anisotropic
skull compartment whose parameterization is shown in Table 1. For the choice of these parameters, we closely followed
[12,15]. Forward solutions were computed for dipoles of 1 nAm amplitude located on the y axis at depths of 0% to 98.7% (in
1 mm steps) of the brain compartment (78 mm radius) using both radial (directed away from the center of the model) and
tangential (directed parallel to the scalp surface) dipole orientations. Eccentricity is defined here as the percent ratio of the
distance between the source location and the model midpoint divided by the radius of the inner sphere (78 mm). The most



S. Lew et al. / Applied Numerical Mathematics 59 (2009) 1970–1988 1977
Table 1
Parameterization of the anisotropic four-layer sphere model.

Medium Scalp Skull CSF Brain

Outer shell radius (mm) 92 86 80 78
Tangential conductivity (S/m) 0.33 0.042 1.79 0.33
Radial conductivity (S/m) 0.33 0.0042 1.79 0.33

eccentric source position considered was thus only 1 mm below the CSF compartment. To achieve error measures which
were independent of the specific choice of the sensor configuration, we distributed 748 electrodes in a regular fashion over
the outer sphere surface. All simulations ran on a Linux-PC with an Intel Pentium 4 processor (3.2 GHz) using the SimBio
software environment [31] in which the algebraic multi-grid solver package PEBBLES was embedded [9,42,39,10].

3.2. Analytical solution in an anisotropic multilayer sphere model

De Munck and Peters [5] derived series expansion formulas for a mathematical dipole in a multi-layer sphere model,
denoted here as the analytical solution. The model consists of S shells with radii rS < rS−1 < · · · < r1 and constant ra-
dial, σ rad(r) = σ rad

j ∈ R
+ , and constant tangential conductivity, σ tang(r) = σ

tang
j ∈ R

+ , within each layer r j+1 < r < r j . It is
assumed that the source at position x0 with radial coordinate r0 ∈ R is in a more interior layer than the measurement elec-
trode at position xe ∈ R

3 with radial coordinate re = r1 ∈ R. The spherical harmonics expansion for the mathematical dipole
(2) is expressed in terms of the gradient of the monopole potential to the source point. Using an asymptotic approximation
and an addition–subtraction method to speed up the series convergence yields

φana(x0, xe) = 1

4π

〈
M, S0

xe

re
+ (S1 − cosω0e S0)

x0

r0

〉

with ω0e the angular distance between source and electrode, and with

S0 = F0

r0

Λ

(1 − 2Λ cosω0e + Λ2)3/2
+ 1

r0

∞∑
n=1

{
(2n + 1)Rn(r0, re) − F0Λ

n}
P ′

n(cosω0e) (22)

and

S1 = F1
Λ cosω0e − Λ2

(1 − 2Λ cosω0e + Λ2)3/2
+

∞∑
n=1

{
(2n + 1)R ′

n(r0, re) − F1nΛn}
Pn(cosω0e). (23)

The coefficients Rn and their derivatives, R ′
n , are computed analytically and the derivative of the Legendre polynomials,

Pn , are determined by means of a recursion formula. We refer to [5] for the derivation of the above series of differences and
for the definition of F0, F1 and Λ. Here, it is only important that the latter terms are independent of n and that they can
be computed from the given radii and conductivities of layers between source and electrode and of the radial coordinate of
the source. The computations of the series (22) and (23) are stopped after the kth term if the following criterion is fulfilled

tk/t0 � υ, tk := (2k + 1)R ′
k − F1kΛk. (24)

In the following simulations, a value of 10−6 was chosen for υ in (24). Using the asymptotic expansion, no more than 30
terms were needed for the series computation at each electrode.

3.3. Tetrahedral mesh generation

The FE meshes of the four-layer sphere model were generated by the software TetGen [28] which used a Constrained De-
launay Tetrahedralization (CDT) approach [30,29]. This meshing procedure starts with the preparation of a suitable boundary
discretization of the model in which for each of the layers and for a given triangle edge length, nodes are distributed in a
regular fashion and connected through triangles. This yields a valid triangular surface mesh for each of the layers. Meshes of
different layers are not intersecting each other. The CDT approach is then used to construct a tetrahedralization conforming
to the surface meshes. It first builds a Delaunay tetrahedralization starting with the vertices of the surface meshes. The CDT
then uses a local degeneracy removal algorithm combining vertex perturbation and vertex insertion to construct a new set
of vertices which includes the input set of surface vertices. In a last step, a fast facet recovery algorithm is used to construct
the CDT [30,29].

This approach is combined with two further constraints to the size and shape of the tetrahedra. The first constraint is
important for the generation of quality tetrahedra. If R denotes the radius of the unique circumsphere of a tetrahedron and
L its shortest edge length, the so-called radius-edge ratio of the tetrahedron can be defined as

radius-edge-ratio= R/L. (25)
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Table 2
The six tetrahedral models used for the solver time comparison and accuracy tests. The table shows the number of nodes and elements of each mesh
and factor indicates the ratio of the number of nodes of the most highly resolved to both other models within each group. Additionally, the chosen
radius-edge-ratio (see Eq. (25)), the average edge length of the four triangular surface meshes, the corresponding volume constraint (see Eq. (26))
and the compartments where the volume constraint was not applied are indicated.

Group 1 Group 2

Model tet503K tet125K tet33K tet508K tet128K tet32K

nodes 503,180 124,624 32,509 508,435 127,847 31,627
elements 3,068,958 733,022 187,307 3,175,737 781,361 190,060
factor 1 4.04 15.48 1 3.98 16.08

radius-edge-ratio 1.0 1.0 1.1 1.0 1.0 1.1
edge (in mm) 1.75 2.7 5.2 2.42 3.9 6.87
volume (in mm3) 0.63 2.32 16.57 1.67 6.99 38.21
no volume constraint in brain brain brain / / /

The radius-edge ratio can distinguish almost all badly-shaped tetrahedra except one type of tetrahedra, so-called slivers.
A sliver is a very flat tetrahedron which has no small edges, but can have arbitrarily large dihedral angles (close to π ). For
this reason, an additional mesh smoothing and optimization step is required to remove the slivers and improve the overall
mesh quality.

A second constraint can be used to restrict the volume of the generated tetrahedra in a certain compartment. We follow
the formula for regular tetrahedra:

volume= √
2/12 · edge3. (26)

Table 2 shows the number of nodes and elements of the six tetrahedra models used for the solver run-time com-
parison and accuracy tests. factor indicates the ratio of the number of nodes of the most highly resolved to both other
models within each group. Additionally, the table contains the chosen radius-edge-ratio (see Eq. (25)), the average
edge length of the four triangular surface meshes, the corresponding volume constraints (see Eq. (26)) for the tetrahe-
dra and the compartments where the volume constraint is not applied. The most highly resolved meshes tet503K and
tet508K of both groups had approximately the same resolution, while the others were chosen to have a factor of 4
coarser resolution with regard to the number of nodes. The meshes of group 1 concentrated the nodes in the outer three
compartments because no volume constraint was applied for the inner brain compartment, while the nodes in the meshes
of group 2 were distributed in a regular way throughout all four compartments. The meshes of group 1 were thus preferen-
tially beneficial to the full subtraction approach, since the entries of the volume integral in Eq. (10) are zero ((σ (x)−σ0) = 0
for all x in the brain compartment) so that a coarse resolution can be expected to have no impact on the overall numerical
accuracy, but will reduce the computational cost. In contrast, the meshes of group 2 were beneficial to both direct potential
approaches. Fig. 1 shows samples from the six tetrahedra models that were generated using the parameterizations from
Table 2.

3.4. Error criteria

We compared numerical solutions with analytical solutions using three common error criteria [16,3,34,15,26]. The relative
(Euclidean) error (RE) is defined as

RE := ‖φnum − φana‖2

‖φana‖2
,

where φana, φnum ∈ R
m denote the analytical and the numerical solution vectors, respectively, at the m = 748 measurement

electrodes. We furthermore defined

RE(%) := 100 · RE, maxRE(%) := max
j

(
RE(%) j

)
(27)

where j is the source eccentricity. In order to better distinguish between the topography (driven primarily by changes in
dipole location and orientation) and the magnitude error (indicating changes in source strength), Meijs et al. [16] introduced
the relative difference measure (RDM) and the magnification factor (MAG), respectively. For the RDM, we can show that

RDM :=
∥∥∥∥ 1

‖φana‖2
φana − 1

‖φnum‖2
φnum

∥∥∥∥
2
=

√
2
(
1 − cos � (φana, φnum)

)
. (28)

It therefore holds that 0 � RDM � 2, so that we can furthermore define

RDM(%) := 100 · RDM/2, maxRDM(%) := max
j

(
RDM(%) j

)
. (29)

The MAG is defined as

MAG := ‖φnum‖2/‖φana‖2
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Fig. 1. Cross-sections of the six tetrahedral meshes of the four compartment sphere model. The corresponding parameterizations of the models are shown
in Table 2. Visualization was done using the software TetView [28].

so that error minimum is at MAG = 1 and we therefore defined

MAG(%) = |1 − MAG| · 100, maxMAG(%) := max
j

(
MAG(%) j

)
. (30)

With maxRE(%)k we denote the maximal relative error in percent over all source eccentricities for an accuracy level of
accuracy = 10−k . The so-called plateau-entry for an iterative solver is then defined as the first k at which the condition∣∣maxRE(%)k − maxRE(%)k+1

∣∣/maxRE(%)k+1 < 0.05 (31)

is true.

3.5. FEM and solver parameter settings

The parameters of the Venant approach were chosen as proposed in [4]: The maximal dipole order (n0 in [4, Eq. (22)])
and the scaling reference length (aref in [4, Eq. (23)]) were set to n0 = 2 and aref = 20.0 mm, respectively. Since the chosen
mesh size was a large factor smaller than the reference length, the second order term ((�x̄r

ki)
2 in [4, Eq. (23)]) was small and

the model focused on fulfilling the dipole moments of the zeros and first order. The exponent of the source weighting matrix
(ns in [4, Eq. (25)]) was fixed to ns = 1 and the regularization parameter (λD in [4, Eq. (25)]) was chosen as λD = 10−6.
These settings effect a spatial concentration of the monopole loads in the dipole axis around the dipole location.

The initial solution guess for all solvers was a zero potential vector. For the IC(0), ς = 0 was chosen for (14). For the
AMG-CG, the 1-V (1,1)-cycle AMG-preconditioner was used with α = 0.01 for (20). The factorization in Algorithm 3 was
carried out whenever the size of the coarsest grid (coarsegrid) in the preconditioner-setup was below 1000 and the coarse
system was solved using a Cholesky-factorization. The setup times for the preconditioners were neglected in all calculations
of computational cost because this step must be performed only once per head model. The evaluation with regard to relative
solver accuracy in Algorithm 1 was limited to the discrete set of accuracy levels accuracy = 10−k with k ∈ {0, . . . ,9}.

4. Results

4.1. Numerical error versus potential approach

In a first study, we compared the numerical accuracy of the full subtraction approach (Section 2.1.1) with the two
direct methods: Venant (Section 2.1.3) and partial integration (Section 2.1.2). Fig. 2 shows the RE(%) for the different source
eccentricities for the two finest models tet503K of group 1 (left) and tet508K of group 2 (right) (see Fig. 1 and Table 2)
with regard to the full subtraction (top row), the Venant (middle row) and the partial integration approach (bottom row).
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Fig. 2. RE(%) versus source eccentricity for the two most highly resolved models tet503K of group 1 (left) and tet508K of group 2 (right) using the full
subtraction (top row), the Venant (middle row) and the partial integration (bottom row) potential approaches. The necessary accuracy in Algorithm 1 for
the plateau-entry (31) of the AMG-CG is indicated for both source orientation scenarios. Note that the y-axis is differently scaled.
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Fig. 3. maxRE(%), maxRDM(%) and maxMAG(%) accuracies for the full subtraction, the Venant and the partial integration approach for all six tetrahedra
models (see Fig. 1 and Table 2) and both tangential (left) and radial (right) source orientation scenarios at the AMG-CG plateau-entry (31).
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Fig. 4. maxRE(%) versus PCG solver accuracy (see Algorithm 1 and Section 3.5) for models tet503K of group 1 (left column) and tet508K of group 2
(right column) for the AMG-CG (top row), the IC(0)-CG (middle row) and the Jacobi-CG (bottom row). Source orientations and potential approaches can be
distinguished by their specific labels. The plot is in log–log scale.
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The results were computed with the AMG-CG and the necessary accuracy in Algorithm 1 for the plateau-entry (31) is
indicated for both source orientation scenarios. In Fig. 3, the maximal RE, RDM and MAG errors over all source eccentricities
at the AMG-CG plateau-entry (31) are shown for all tetrahedra models, both source orientation scenarios and the three
dipole modeling approaches.

Fig. 2 clearly presents the advantages of the full subtraction approach whose error curves are smooth, while Venant and
partial integration show an oscillating behavior. With RDM and MAG errors below 1% over all source eccentricities and for
both orientation scenarios (see Fig. 3), the full subtraction approach performs best for all source eccentricities for model
tet503K (its mesh resolution was sufficiently high and the FE nodes were concentrated in the compartments CSF, skull and
skin), where both direct approaches showed oscillations with a relatively high magnitude. As the results for model tet508K
show, the oscillation magnitudes for the direct approaches could be strongly reduced by means of distributing the FE nodes
in a regular way over all four compartments, hence decreasing the mesh size in the brain compartment. Nevertheless, even
for model tet508K, the full subtraction approach was the most accurate method for nearly all source eccentricities. It was
only outperformed by partial integration for the source which was only 1 mm below the CSF compartment. As both Figs. 2
and 3 show, the partial integration approach performed well if the mesh was sufficiently fine in the brain compartment.
The oscillation magnitudes of the Venant approach were generally even slightly smaller than for the partial integration
approach, with only one exception (the result for the radial source 1 mm below the CSF compartment, shown in the middle
row of Fig. 2). The main reason for the outlier was that for the source 1 mm below the CSF, monopoles were positioned in
the CSF compartment, which had a strong effect on the MAG for the radially oriented source.

4.2. Numerical error versus PCG accuracy

Fig. 4 shows the numerical error maxRE(%) versus the PCG solver accuracy from Algorithm 1 for the discrete set of
accuracy levels from 100 to 10−9. Results for the high-resolution model tet503K of group 1 are shown in the left and
from the high-resolution model tet508K of group 2 in the right column for the AMG-CG (top row), the IC(0)-CG (middle
row) and the Jacobi-CG (bottom row).

The PCG accuracy measures the error in the solution vector of the FE linear equation system (8) (correction potential),
(11) and (13) (total potential). For the full subtraction approach, maxRE(%) was thus not equal to 100 for accuracy = 100

because φnum is equal to the analytically computed singularity potential Φ0 from Eq. (5). Because the PCG accuracy is

measured in the KhC−1
h Kh-energy norm, the plateau-entry (31) differs for different preconditioners Ch . As shown in Fig. 4

for the high-resolution models and as collected in Table 3 for all six tetrahedra models, the maximally needed k (for a PCG
accuracy of accuracy = 10−k) decreased when the preconditioning quality increased (except for the radial source orientation
in model tet503K, see Fig. 4). Furthermore, as Table 3 shows, a higher PCG accuracy was needed for the plateau-entry
when the mesh resolution increased.

4.3. Numerical error versus solver time

In a last study, we compared solver wall-clock time versus numerical accuracy for the three different CG preconditioners
AMG, IC(0) and Jacobi.

Table 3
Maximally needed k ∈ {0, . . . ,9} for a PCG accuracy = 10−k for the plateau-entry (31) over all three potential approaches.

Group 1

tangential source radial source

solver AMG-CG IC(0)-CG Jacobi-CG AMG-CG IC(0)-CG Jacobi-CG
tet503K 5 6 7 6 5 6
tet125K 5 5 6 5 5 6
tet33K 4 5 6 3 3 5

Group 2

tangential source radial source

solver AMG-CG IC(0)-CG Jacobi-CG AMG-CG IC(0)-CG Jacobi-CG
tet508K 6 6 7 6 7 8
tet128K 4 5 6 4 4 6
tet32K 3 5 6 3 4 5

Table 4
Average setup time (sec.) for the AMG- and the IC(0)-preconditioner.

Group 1 Group 2

preconditioner tet503K tet125K tet33K tet508K tet128K tet32K

AMG 17.84 4.58 1.37 15.95 3.29 0.72
IC(0) 0.95 0.20 0.04 0.84 0.19 0.04
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Fig. 5. Solver time versus maxRE(%) for models tet503K and tet33K of group 1 for tangentially and radially oriented sources for the potential approaches
full subtraction (left), Venant (middle), and partial integration (right). Results are presented for the three different CG preconditioners AMG, IC(0) and Jacobi.
Each marker represents a PCG accuracy = 10−k level and the largest examined level is indicated. The x-axis is in log scale.

The average setup time for the AMG- and the IC(0)-preconditioner is given in Table 4. In the following, the time for the
setup of the preconditioner was not included, because this step was carried out only once per head model.

In Fig. 5, the solver time is shown versus the maxRE(%) for different levels of PCG accuracy for models tet503K and
tet33K of group 1. The largest examined PCG accuracy level 10−k is indicated in the figure. Please note that this level
does not necessarily correspond to the plateau-entry level. In most cases results are presented up to one level higher.
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Table 5
Average solver time (sec.) and iteration count (iter) over all source eccentricities, source orientations and potential approaches for plateau-entry (31). For
all tetrahedra models of groups 1 and 2, results are presented for the three different CG preconditioners AMG, IC(0) and Jacobi. The gain factor indicates
the performance gain of the AMG-CG relative to the Jakobi-CG.

Group 1 Group 2

tet503K tet125K tet33K tet508K tet128K tet32K

solver time iter time iter time iter time iter time iter time iter

AMG-CG 12.25 11.20 1.87 9.04 0.18 5.89 9.18 10.40 1.36 7.27 0.15 5.81
IC(0)-CG 112.03 233.43 8.40 128.39 0.45 72.63 72.41 215.05 5.20 98.96 0.31 52.84
Jacobi-CG 167.82 679.43 16.98 414.00 0.76 229.52 99.60 578.04 9.62 331.15 0.47 161.68

gain factor 13.70 60.66 9.08 45.8 4.22 38.97 10.85 55.58 7.07 45.55 3.13 27.83

For all tetrahedra models of groups 1 and 2, average solver times and iteration counts over all source eccentricities,
source orientations and potential approaches for a plateau-entry (31) are collected in Table 5. Both Fig. 5 and Table 5 clearly
show the superiority of the AMG preconditioner. In all cases, even for the low-resolution grids tet33K and tet32K, the
AMG-CG was the fastest solver, followed by the IC(0)-CG and the Jacobi-CG. The main result of Table 5 is the so-called gain
factor, which is defined here as the result (solver time or iteration count) for the Jacobi-CG divided by the result for the
AMG-CG. The gain factors clearly showed that the higher the mesh-resolution, i.e., the higher the condition number of the
corresponding FE stiffness matrix, the larger the difference in performance between AMG-CG, IC(0)-CG, and Jacobi-CG. An
increasing mesh-resolution led to a strong increase in the number of iterations of IC(0)-CG (factor of 3.2 between tet503K
and tet33K and 4.1 between tet508K and tet32K) and Jacobi-CG (factor of 3.0 between tet503K and tet33K and
3.6 between tet508K and tet32K), while the number of AMG-CG iterations was only slightly increasing (factor of 1.9
between tet503K and tet33K and 1.8 between tet508K and tet32K). This clearly shows the stronger h-dependence
of the IC(0) and Jacobi preconditioners.

5. Discussion

The goals of this technical study of finite element (FE) based solution techniques for the electroencephalographic forward
problem were twofold. The first aim was to compare three efficient iterative FE solver techniques under realistic conditions
that still allowed quasi-analytical solutions. The second aim was to evaluate three different numerical formulations of the
current dipole, which is the bioelectric source most commonly used to represent neural electrical activity. A major motiva-
tion of such studies is the special need to achieve high accuracy and efficiency with FE based approaches for this problem.
The many advantages of this approach are often hindered by the unacceptable computation costs of implementing it so that
improved efficiency will provide substantial progress to the field.

When using the KhC−1
h Kh-energy norm stopping criterion for the PCG algorithm applied on meshes with up to 500K

nodes, a relative solver accuracy of 10−6 for AMG-CG, 10−7 for IC(0)-CG and 10−8 for Jacobi-CG was necessary and sufficient
to fall below the discretization error. The AMG-CG achieved an order of magnitude higher computational speed than the CG
with the standard preconditioners with an increasing gain factor with decreasing mesh size. The increasing gain factor shows
that the convergence rate of the Jacobi- and IC(0)-preconditioning methods are much more dependent on the mesh size h
than the AMG-CG, as discussed in detail in Section 2.2.3. However, while for the geometric multi-grid, an h-independent
convergence rate and an h-independent condition number can be proven [11, Lemma 10.7.1, Theorem 10.7.15], the AMG-CG
was not optimal in our application with a slight h-dependence shown by a slightly increasing iteration count with increasing
mesh resolution. Such a result had to be expected because the source analysis stiffness matrix was not an M-matrix and the
prolongation operator of the presented AMG-CG was tuned for speed and not for an optimal behavior with regard to the
iteration count. A discrete harmonic extension as proposed in [22] improved the interpolation properties, but the application
of this prolongation operator is more expensive, which decreased the overall run-time performance in our application.

We generated two groups of Constrained Delaunay tetrahedralization (CDT) FE meshes [30,29], tuned for the specific
needs of the different potential approaches. In group 1, for the full subtraction approach [7], FE nodes were concentrated
in the CSF, skull and skin, while the brain compartment was meshed as coarsely as possible. Group 2 was tuned for the
needs of both direct potential approaches [44,4,1,36], which profit more from a regular distribution of FE nodes over all four
compartments and especially a higher resolution at the source positions.

With regard to the numerical error, in the tuned FE meshes with about 500K nodes we achieved high accuracies—in
the range of a few percent maximal relative error (maxRE)—over all source eccentricities for both the full subtraction and
the two direct potential approaches. With a maximal relative difference measure (maxRDM) and a maximal magnification
factor (maxMAG) of less than 1% over all source eccentricities for sources up to 1 mm below the CSF compartment (model
tet503K, maximal examined eccentricity of 98.7%), the full subtraction approach performed consistently better than both
direct approaches. We found that the instability of the full subtraction approach with regard to the RE for high source
eccentricities was mainly a magnitude instability (MAG), not a topographic one (RDM). Our results clearly illustrate the
advantages of the full subtraction approach as long as the homogeneity condition is sufficiently fulfilled, i.e., as long as the
distance of the source to the next conductivity inhomogeneity is large enough or the resolution of the FE mesh at the nearest



1986 S. Lew et al. / Applied Numerical Mathematics 59 (2009) 1970–1988
conductivity inhomogeneity to the source is fine enough. A theoretical reasoning for this finding is given in [43]. While error
curves oscillated for both direct approaches, they were smooth for the full subtraction approach as long as the homogeneity
condition was sufficiently fulfilled. The smoothness can be explained by the fact that the singularity potential is sensitively
modeling the details of the point dipole source singularity while the FE method is able to accurately model the smooth
correction potential. The oscillating behavior of the direct approaches can easily be understood for the partial integration
approach. Since linear basis functions were used, the right-hand side vector (12) and thus the computed solution for the
total potential in (11) is constant over any finite element for all sources with moment M0 and any location x0 within the
finite element. For partial integration with linear basis functions, the inverse source localization resolution is thus bounded
by the size of the element, which should be fine as long as high-resolution FE meshes are used. The direct approach
oscillations should therefore not necessarily be a problem with regard to the inverse problem. It has furthermore been
shown using quasi-analytically computed reference potentials in a four-layer anisotropic sphere model and single dipole fit
reconstructions based on the Venant FE approach in a regular tetrahedral FE mesh with 161K nodes, that localization errors
were in the 1 mm range [37] and might thus most often be neglected when compared to errors due to, e.g., EEG data noise,
inaccurate tissue segmentation and conductivity modeling.

Schimpf et al. [26] investigated different FE potential approaches in a four-layer sphere model with isotropic skull and
sources up to 1 mm below the CSF compartment. In their report, a regular 1 mm cube model was used (thus a much higher
FE resolution) and a maxRDM of 7% and a maxMAG of 25% was achieved with a subtraction approach, which performed
best in their comparison. Awada et al. [1] implemented a two-dimensional subtraction approach and compared its numerical
accuracy with a partial integration method in a two-dimensional multi-layer sphere model. A direct comparison with our
results is therefore difficult, but the authors concluded that the subtraction method was more accurate than the partial
integration direct approach. In a locally refined (around the source singularity) tetrahedral mesh with 12,500 nodes of a
four-layer sphere model with anisotropic skull and first order FE basis functions in a subtraction approach, Bertrand et
al. [3] reported a maxRDM of above 20% and a maxMAG up to 70% for a maximal eccentricity of 97.6%. Van den Broek [34]
used a subtraction approach in a locally refined (around the source singularity) tetrahedral mesh with 3,073 nodes of a
three-layer sphere model with anisotropic skull. For the maximal examined eccentricity of 94.2%, they reported a maxRDM
of up to 50%.

However, the right-hand side (RHS) vector is expensive to compute and is densely populated (i.e., Nh non-zeros) for the
full subtraction approach (10) and sparse with just some few (|NodesOfEle| for partial integration (12), and C for Venant
(13)) non-zero vector entries for the direct approaches, which has implications for the computational effort when using the
fast FE transfer matrix approach for EEG and MEG [40] (additionally, see [36,8,12]), which limits the total number of FE
linear equation systems to be solved for any inverse method to the number of sensors m. After solving m FE linear equation
systems to compute the transfer matrix, each forward problem can be solved by a single multiplication of the RHS vector
with the transfer matrix [40], resulting in a computational effort of 2∗m∗ P operations with P = Nh for the full subtraction,
P = |NodesOfEle| for partial integration and P = C for the Venant approach. Note that the transfer matrix approach can not
be used if the mesh is adapted according to varying source positions within the inverse problem. We therefore attempted
to avoid local mesh refinement techniques as used in [3,34].

The following limitations of the presented work are important and can be seen as an outlook for our future studies.
Oscillations of the direct potential approaches might be avoided. For example, the use of higher order basis functions might
cure the oscillation problem for the partial integration approach. For both examined direct methods, the oscillations might
be avoided by means of precomputing a lead field (i.e., many forward solutions) for those source positions with minimal
errors (e.g., only at the barycenters of brain finite elements for the partial integration approach and only at brain FE nodes
for the Venant approach) and consequently using a lead field interpolation technique [45] for all other forward solutions.
Lead field extrapolation [45] has to be examined as a concept to further decrease the numerical error for eccentric sources.
Such an approach might be particularly fruitful for the subtraction method, where a violation of the homogeneity condition
led to especially large numerical errors or instabilities as shown in Fig. 2 for the most eccentric source in especially the
model tet508K of group 2. In our study, we examined numerical errors for a single source at each discrete 1 mm step
eccentricity level through the inner compartment along the y axis. By means of the error oscillations and magnitudes
for the direct methods and the specific sensitivity of the subtraction method for eccentric sources, the dependence of all
three dipole modeling approaches on the specific FE mesh properties has been shown. A further important measure for
establishing the validity of the presented results would be a more statistical error measure where, for each eccentricity
level, not only the error of a single source on the y axis is evaluated, but an error statistic is evaluated over many sources
with different positions in the volume conductor and/or sources with slightly varying (e.g., 0.1 mm) source positions around
each eccentricity level.

6. Conclusion

The AMG-CG turned out to achieve an order of magnitude higher computational speed than Jacobi-CG or incomplete
Cholesky-CG for the FEM based EEG forward and inverse problem. Our results corroborate the theoretical results that the
higher the FE resolution, the greater the advantage of using MG preconditioning. The AMG-CG together with the fast trans-
fer matrix approach now enable resolutions which seemed to be impracticable before. In the comparison of dipole modeling
approaches, highest accuracies were achieved with the full subtraction approach in CDT meshes where nodes were concen-
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trated in the compartments CSF, skull and skin. However, the accuracy of the subtraction approach is especially dependent
on a sufficiently fulfilled homogeneity condition, so that the direct potential approaches partial integration and Venant,
which also performed well in our comparison, might be even more appropriate if white matter conductivity anisotropy is
taken into account.
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