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The generation of curvilinear coordinate meshes has been a powerful tool in computational fluid
dynamics calculation in the computational modelling of the fluid flows around complex bodies, such
as an airfoil or a complete aircraft. This same technique may be applied to many other computational
models. In this work the approach is used as part of a computational model to generate simple
geometries associated with biological forms or organisms. The model adopted was first proposed by
Cummings and simulates morphogenesis in terms of the geometrical changes occurring during the
growth and development of simple organisms. This model depends on the generation of a curvilinear
coordinate mesh on the surface of an organism. Previous work has concentrated on the model and
its use in generating axisymmetric shapes that are simple models of elementary ‘organisms’. In this
work we describe how the model may be extended to geometrical symmetry breaking. This paper
describes the methodology of this extension and demonstrates it in the simulation of tentacle growth.
The resulting computational technique makes it possible to link models of cell bio-chemistry and
surface deformation.

Key Words: mesh generation, parabolic equations, developmental biololgy, pattern
formation

1. INTRODUCTION

In the model of morphogenesis proposed by Cummings, an organism that initially takes
the form of a sphere evolves into a certain geometry [8–10, 12]. The growth of the or-
ganism is modelled and is parametrised by the surface area of its epithelial layer. As
the area increases, a pair of chemicals called morphogens with concentrations denoted
by m = (m1;m2), interact in this epithelial layer, forming a spatial pattern of morphogen
concentrations. In an approach dating back to Turing [32], the biochemical reactions are
governed by a system of RD (reaction diffusion) equations,

∂m
∂ t

= ∆2m+F(m) : (1.1)

Since Turing’s work, morphogens have been used in modelling pattern formation and the
regeneration of body parts in hydra [21,25,26]; the pre-patterning of animal coat markings
[24, 27] and the outgrowth of a vertebrate limb bud [13]. In (1.1), ∆ 2 denotes the Laplace-
Beltrami operator that governs the diffusion on the surface and is characterised by the
surface geometry. The Laplace-Beltrami operator has the form

∆2 =
1
g

�
∂ 2

∂ξ 2
1

+
∂ 2

∂ξ 2
2

�
; (1.2)
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where surface geometry is specified by a quantity g that is related to the metric tensor
components (explained below). The assumption is that any parametrisation of the surface
(and hence its growth) depends on the local concentration of the morphogens. One such
parametrisation is in terms of surface curvatures, such as the Gauss and the Mean curva-
tures 1 (see [5–7]). With the specification of the Gauss and Mean curvatures K(m) and
H(m) as functions of m, this morphogen pattern then alters the surface geometry through
the modification of K(m) and H(m). Since a new geometry is formed, the operator ∆ 2
therefore is changed accordingly, thus leading to a new morphogen pattern. The cycle then
repeats thus forming a morphogenetic feedback loop. The Laplace-Beltrami operator ∆ 2 is
specified on abstract coordinates (ξ1;ξ2) which preserve the form of differential arc length
and area under conformal transformation [7]. This abstract coordinate is intrinsic to the
particular surface geometry.

The formation of this intrinsic coordinate can be envisaged as mapping a planar mesh,
i.e. a square mesh, onto the non-planar surface such that the mesh remains orthogonal as
well as isothermal on the surface. Suppose a planar mesh defined by [0 < ξ 1 < a]� [0 <

ξ2 < b] is mapped onto a non-planar surface parametrised by r= r(x(ξ 1;ξ2);y(ξ1;ξ2);z(ξ1;ξ2)),
an orthogonal mesh is then defined as one in which the four corners of every cells on the
mesh remain at right angle, i.e. the tangents in the two perpendicular directions, ∂r=∂ξ 1
and ∂r=∂ξ2, intersect at a right angle everywhere ,i.e. their dot product vanishes,

∂r
∂ξ1

� ∂r
∂ξ2

=

���� ∂r
∂ξ1

����
���� ∂r
∂ξ2

����cos θ = g12 = g21 = 0 with θ =
π
2
; (1.3)

where θ is the angle between the two adjacent sides of a cell; and an isothermal mesh is
one in which the grid lines are distributed such that the rate of change of arc length in the
two directions are everywhere equal, i.e. the magnitude of the two perpendicular tangents,
∂r=∂ξ1 and ∂r=∂ξ2, are equal

∂r
∂ξ1

� ∂r
∂ξ1

= g11 =
∂r
∂ξ2

� ∂r
∂ξ2

= g22 = g : (1.4)

Here g11;g12;g21 and g22 denote the four metric tensor components. The mapping of a
square mesh onto a general curved surface is illustrated in Fig.1, with the two surface base
vectors denoted by ∂r=∂ξ1 and ∂r=∂ξ2 respectively. The arc length ds on the surface
is determined by the metric g. On a general surface with a mesh defined by the tangent
vectors ∂r=∂ξ1 and ∂r=∂ξ2, ds is given by,

ds2
= dr � dr =

�
∂r
∂ξ1

dξ1 +
∂r
∂ξ2

dξ2

�2

= g11dξ 2
1 +2g12dξ1 dξ2 +g22dξ 2

2 : (1.5)

When this mesh is orthogonal (g12 = 0) and isothermal (g11 = g22 = g), ds becomes,

ds2
= g

�
dξ 2

1 +dξ 2
2

�
: (1.6)

Provided K is a known function, the metric tensor g can be computed by solving the Gauss
equation �

∂ 2

∂ξ 2
1

+
∂ 2

∂ξ 2
2

�
lng+2gK = 0 : (1.7)

1A qualitative description of the Gauss and Mean curvatures and the associated surfaces are briefly discussed
in Appendix A, a more comprehensive description and the mathematical treatment can be found in [23].
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FIG. 1 The three base vectors of a body-fitted curvilinear coordinate system on an arbitrary surface.
The surface lies on the ξ3 = constant plane in the ξ1;ξ2;ξ3 space.

The geometry in the Euclidean space E 3 can be reconstructed using the knowledge of
g. For this reconstruction to be tractable, Cummings assumes an axisymmetric form for
the organisms. Under this assumption, we have the following,

ρ =
p

g and z =
Z ξ1=a

ξ1=0
sign(H)

s
ρ2�

�
dρ
dξ1

�2

dξ1 : (1.8)

where the vertical distance z is expressed as an integral function of the distance from the
axis of symmetry ρ .

Fig.2 provides a summary of the morphogenetic feedback loop of Cummings’ model.

�
@2

@�2
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2

�
lng + 2gK = 0

� =
p
g

z =

Z �1=a

�1=0

sign(H)

s
�2 �

�
d�

d�1

�
2

d�1

Biochemistry                       K,H

Geometry                             g
Solve 

specified
functions

Output Geometry

Solve 

Input K
Coupling through
specification of g

FIG. 2 An overview of Cummings model. The coupling between biochemistry and geometry is
achieved via the input of K (Gauss curvature) into the Gauss equation in the ‘Geometry’ block and
the input of g (metric) into pattern generation in the ‘Biochemistry’ block.

The model formulation at the current state only deals with axisymmetric geometries,
such as a sphere, in which one of the directions of the orthogonal isothermal mesh, ξ 2, say,
is identical to the azimuthal angle. (Thus, it has the range of [0 < ξ 2 < 2π ].) As a result,
the metric tensor has no dependence upon ξ2. Nevertheless, when the geometry ceases to
remain axisymmetric, the metric tensor g can be a function of both ξ 1 and ξ2. Thus the
above integral equation that relates ρ and z no longer applies and one has to seek a more
general solution strategy.

The purpose of this paper is to: first introduce the mathematical formulation of an
alternative algorithm and methodology that allows the construction of a general intrin-
sic orthogonal isothermal mesh (ξ1;ξ2) that simulates non-axisymmetric geometries; then
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discuss the reconstruction of the geometry in E 3 in (ξ1;ξ2). The algorithm is then demon-
strated to reproduce examples of non-axisymmetric geometries in E 3 from their K and H
specifications in (ξ1;ξ2).

2. EVOLVING SURFACE AND FLUID FLOW OVER SURFACE

The technique of mapping a mesh onto a surface has been used in computational fluid
dynamics to calculate flow properties around rigid body such as an airfoil (see Fig.3).
The idea is that rigid body such as an airfoil often has shape that does not coincide with
any grid-line in a conventional Cartesian mesh. Numerical accuracy is then lost during
computations on such a mesh. A transformation is then devised to map a mesh onto the
outline or surface of the body such that the outline or the surface of the body coincides
with a grid-line or coordinate plane. Such a mesh is called the body-fitted-coordinate, or
curvilinear coordinate and the technique is called mesh generation [2, 4,16, 20, 30].

FIG. 3 The mapping of a body-fitted curvilinear coordinate system ξ ;η onto a region surrounding a
Karman-Trefftz airfoil [30]. The grid-lines parallel with the airfoil are the η = constant lines whereas
the grid-lines perpendicular to the airfoil are the ξ = constant lines.

With this concept in mind, the mapping of the orthogonal isothermal mesh (ξ 1;ξ2)

to a arbitrary curved (organism) surface is equivalent to the generation of a curvilinear
coordinate system in E 3, i.e. (x1;x2;x3). The arbitrary surface lies on a constant value
of one of the coordinates, i.e. one seeks the mapping from (ξ 1;ξ2;ξ3 = constant) into
(x1;x2;x3). This re-introduces the surface normal to the ξ3 = constant plane. This surface
normal n and the remaining two surface tangents form the base vectors in the curvilinear
coordinate system

n =
∂r
∂ξ3

=

�
∂r
∂ξ1

� ∂r
∂ξ2

������ ∂r
∂ξ1

� ∂r
∂ξ2

���� ; ∂r
∂ξ1

and
∂r
∂ξ2

: (2.9)

The curvilinear coordinate system and the corresponding base vectors are illustrated in
Fig.1. This technique may then, as will be shown below, be applied in the context of the
approach of Cummings by generating curvilinear coordinates on an evolving surface.
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3. CURVILINEAR COORDINATE GENERATION

In the generation of a curvilinear mesh on a surface, one solves for the mapping M :
r(x1;x2;x3)! (ξ1;ξ2;ξ3) on a close boundary. This is a boundary value problem of the
elliptic type, (see [30]),

∇2ξi = Pi i = 1;2 ; (3.10)

where ∇2
= ∂ 2

=∂x2
1 +∂ 2

=∂x2
2 +∂ 2

=∂x2
3 is the Laplacian operator. (The Laplace operator

is used when it is applied to the case of planar mesh generation, whereas the Laplace-
Beltrami operator

∆2 =
∂

∂ξ1

 
g22p

G3

∂
∂ξ1

� g12p
G3

∂
∂ξ2

!
+

∂
∂ξ2

 
g11p

G3

∂
∂ξ2

� g12p
G3

∂
∂ξ1

!
; (3.11)

with
G3 = g11g22�g12

2
; (3.12)

is used instead in the case of general non-planar surface mesh generation. The quantity G 3
is the determinant of the covariant metric tensor on the ξ 3 plane, and is equal to the square
of a differential area on the mesh. ) The non-homogeneous terms P i is the mesh-density-
control function where Pi

= 0 gives a uniform mesh. The solution of an elliptic PDE such
as (3.10) satisfies the maximum principle [31] thus ensuring a one-to-one relationship in the
mapping. Nevertheless, during morphogenesis, the surface definition (x 1;x2;x3) changes
while it is mapped onto a fixed domain in the curvilinear coordinate, (ξ 1;ξ2;ξ3). The
alternative is to seek the solution of the mapping M � : (ξ1;ξ2;ξ3)! r(x1;x2;x3) instead.

3.1. Mesh Generation Equation

The general mesh generation equation defining the surface r(x 1;x2;x3) using coordi-
nates ξ1;ξ2 is given by

g22
∂ 2r

∂ξ1
2 �2g12

∂ 2r
∂ξ1∂ξ2

+g11
∂ 2r

∂ξ2
2 +G3

�
∆2ξ1

∂r
∂ξ1

+∆2ξ2
∂r
∂ξ2

�
=G3n(kI +kII) ; (3.13)

where kI;kII are the principal curvatures (see Appendix A) and ∆ 2 is the Laplace-Beltrami
operator given in (3.11). The derivation of this equation can be found in [34–36,38], (also
see Appendix B). The normal n = (X1;X2;X3) is found from the vector product in (2.9) to
give

X1 = J1=
p

G3 ; X2 = J2=
p

G3 ; X3 = J3=
p

G3 ; (3.14)

where

J1 =
∂x2

∂ξ1

∂x3

∂ξ2
� ∂x2

∂ξ2

∂x3

∂ξ1
J2 =

∂x1

∂ξ2

∂x3

∂ξ1
� ∂x1

∂ξ1

∂x3

∂ξ2
J3 =

∂x1

∂ξ1

∂x2

∂ξ2
� ∂x1

∂ξ2

∂x2

∂ξ1

The Gauss and the Mean curvatures, K and H are related to the two principal curvatures
by the definitions

K � kIkII ; H � kI + kII

2
: (3.15)

In the case of the model of Cummings the Gauss and Mean curvatures K and H are assumed
to be defined by the morphogens and so are specified by another part of the model.
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3.2. Time Dependent Mesh Generation

In the original Cummings model, the effects of the difference in time scale between
growth and morphogen distribution was used to argue that as biochemistry is ‘fast’ in
comparison with growth, the surface geometry and growth could be viewed as developing
as a series of steady states. In terms of computation, one solves a set of boundary value
problems. Although this approach is based on sound physical reasoning and one can use the
previous solutions as estimates to obtain the next one, it has by experiment been found to
be computationally advantageous to include transient effects by using the time-dependent
form of the mesh generation equation.

The time dependent mesh generation equation can be derived from (3.13) as shown
in [38]. When a surface grid changes with time due to the change of the physical boundary,
(3.10) is replaced by a parabolic equation of the following form

∆2ξδ = Pδ
+

c
G3

∂ξδ
∂ t

where δ = 1;2 ; (3.16)

where Pδ is an arbitrary prescribed mesh control function and c is a time scale. This is
suggested in [22, 38] as the simplest form that includes a transient term applied to the
curvilinear coordinates and is equivalent to its elliptic counterpart.

Since the curvilinear variable ξ3 is always constant on the surface of the body, its time
derivative vanishes, then the rate of the change of the surface ∂r=∂ t is related to the rate of
change of the remaining two curvilinear variables ξ 1;ξ2 by the relation, (see [22,33, 37] ),

∂r
∂ t

+
∂r
∂ξ1

∂ξ1

∂ t
+

∂r
∂ξ2

∂ξ2

∂ t
= 0 : (3.17)

Upon substitution of (3.16) and (3.17) into (3.13), one obtains

∂r
∂σ

=L r�nG3(kI + kII); (3.18)

where σ = t=c is the dimensionless time, the operatorL is given by

L =

�
g22

∂ 2

∂ξ 2
1

�2g12
∂ 2

∂ξ1∂ξ2
+g11

∂ 2

∂ξ 2
2

+P1 ∂
∂ξ1

+P2 ∂
∂ξ2

�
: (3.19)

In (3.18), the control functions P1 and P2 are used to obtain the desired local mesh density
on ξ1 ξ2 space. Thus, the two control functions can be set to zero if a uniform mesh is
desired [31].

In time dependent grid generation, both K and H are functions of time so that the
curvilinear mesh evolves as K and H changes. Alternatively, K and H may depend on a
time dependent variable such as the morphogens, as is the case here, which has to be solved
simultaneously with the grid generator.

3.3. Incorporation of Orthogonal Isothermal Criteria

The mesh generation technique developed in the previous sections can now be applied
to generate the curvilinear coordinate on the organism’s surface geometry in Cummings
model. In this model, the surface coordinates are both orthogonal and isothermal, therefore
upon applying the two conditions, g = g11 = g22 and g12 = 0, to (3.18) and using the
derived relation G3 = g2, this mesh generation equation reduces to

∂r
∂σ

= g

�
∂ 2

∂ξ 2
1

+
∂ 2

∂ξ 2
2

�
r�2ngH ; (3.20)
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where

g =

�
∂x1

∂ξ1

�2

+

�
∂x2

∂ξ1

�2

+

�
∂x3

∂ξ1

�2

=

�
∂x1

∂ξ2

�2

+

�
∂x2

∂ξ2

�2

+

�
∂x3

∂ξ2

�2

:

This method of mapping r onto ξ1;ξ2 by explicitly specifying g = g11 = g22
2 and g12 = 0

in the mesh generation equation is known as the strong constraint method in [28]. This
is particularly used when the physical geometry is yet to be determined and has to be
computed as part of the solution.

The boundary orthogonality is achieved by using Neumann condition. In-so-doing, the
control functions P’s in (3.19) remain as zero 3. This method allows grid point to slide
along the boundary until orthogonality property is achieved, (see [18]). To apply Neumann
condition along the boundary ξ1 = l, the formula g12 = 0, i.e.

∂x1

∂ξ1

∂x1

∂ξ2
+

∂x2

∂ξ1

∂x2

∂ξ2
+

∂x3

∂ξ1

∂x3

∂ξ2
= 0 ; (3.22)

is used in conjunction with

∂x3

∂ξ1
= R sech2ξ1 and

∂x3

∂ξ2
= 0 : (3.23)

The isothermal criteria is then satisfied by using the formula g 11 = g22, (see (3.20)),
The geometry near the region ξ1 = �l is assumed to be a sphere, thus the boundary

conditions are given by

x1 = R sech ξ1 cosξ2 ; x2 = R sech ξ1 sinξ2 ; x3 = R tanh ξ1 ; (3.24)

which is the Mercator’s transformation [14]. (Also see Appendix C). The radius R can
be obtained from K = 1=R2 or H = 1=R. This is chosen because the mapping of a sphere
solution already satisfies the orthogonal and isothermal criteria. Along the boundaries
ξ2 = 0;2π , periodic conditions are incorporated except for the value of x 2, which is found
from,

x2(ξ2 = 0) = x2(ξ2 = 2π)�2π : (3.25)

This is chosen simply to enforce the continuity of the solution across the boundaries ξ 2 =

0;2π .

3.4. Time Dependent Version of Cummings Model

The version of Cummings model used in this work can now be stated. The key aspect of
Cummings model that remains unchanged is that the biochemical reactions on the surface
forms a morphogen pattern of which the local concentration is used to define local surface
curvatures, (see [11,12]). The surface geometry is obtained by solving the mesh generation
equation, i.e. (3.20), to obtain the Euclidean geometry r directly. The metric tensor g
can be computed from r as a posterior calculation. Note that it is the Mean curvature

2Note that in [28], the isothermal condition g = g11 = g22 was interpreted as

f (ξ1;ξ2) =
p

g22=g11 : (3.21)

3Alternatively, if Dirichlet condition is used, non-zero control functions P’s have to be used in order to safe-
guard boundary orthogonality [18].
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H that is used as the input to the geometry specification in (3.20). In this version, the
growth continues with time, one therefore solves a parabolic IBVP (initial boundary value
problem). In contrast, the metric tensor g is solved for directly as a solution of the Gauss
equation, i.e. (1.7). The Euclidean geometry r is then reconstructed using (1.8), i.e. it
is obtained from posterior calculation. Moreover, from (1.7), K is used as the input for
geometry specification in the computation of g. The growth in the original is parametrised
by the surface area and it evolves in a series of steady states, i.e. one solves a elliptic BVP
(boundary value problem). In both versions, g has to be computed, either as a posterior
calculation in solving the mesh generation equation or directly from the Gauss equation,
for the use of the geometry definition in the Laplace-Beltrami operator in the computation
of morphogens’ concentration, (see (1.1)). The overall alternative algorithm is illustrated
in Fig.4, (compared with the original one illustrated in Fig.2).

@r

@�
= g

�
@2

@�2
1

+

@2

@�2
2

�
r� 2ngH

Biochemistry                       K,H

Geometry                             g,r
Solve 

specified
functions

Input H
Coupling through
specification of g

FIG. 4 An overview of an alternative algorithm of Cummings model. The coupling between ‘Bio-
chemistry’ and ‘Geometry’ is achieved via the input of H (Mean curvature) into the mesh generation
in the ‘Geometry’ block and the g (metric) into the pattern generation in the ‘Biochemistry’ block.

4. ARTIFICIAL CURVATURES GENERATION

In the foregoing sections, an algorithm has been derived which can generate asymmet-
ric geometries from known curvature fields K;H. In a full model of the type proposed by
Cummings, the curvature fields are generated from the biochemistry. Before this can be in-
vestigated it is necessary to have a means of computational model to simulate the ‘growth’
of simple organisms. It is this computational model that will be demonstrated here. The
investigation of a suitable reaction scheme that is capable of generating asymmetric ge-
ometries is the subject of our future work [1]. For the purposes of this demonstration, it is
necessary only to generate the curvatures K and H somehow in order to model the shape
change. The approach adopted here is then to compute K and H as known components in
the shape formation model and then to demonstrate that the resulting model can compute
the shape change of organisms.

4.1. Curvature Formulation

In order to artificially generate the curvature fields of a surface, the surface has to be
first parametrised on known coordinates u1;u2. (Note that the u1;u2 parametrisation of the
curvature fields may or may not coincide with the curvilinear coordinates ξ 1;ξ2.) Suppose
the spherical polar coordinate is used for the parametrisation,

r(u1;u2) = (Rcosu1 cosu2;Rcosu1 sinu2;Rsinu1) ; (4.26)
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where R = R(u1;u2) is a radius function. The curvatures K;H can be generated using the
following formulae, (see [23]),

K =



ru1u1

ru1
ru2

�

ru2u2

ru1
ru2

�
�


ru1u2

ru1
ru2

�2

�
k ru1

k2k ru2
k2 �

�
ru1

� ru2

�2�2 ; (4.27)

H =



ru1u1

ru1
ru2

�
k ru2

k2 �2


ru1u2

ru1
ru2

��
ru1

� ru2

�
+



ru2u2

ru1
ru2

�
k ru1

k2

2
�
k ru1

k2k ru2
k2 �

�
ru1

� ru2

�2�3=2
; (4.28)

where the subscripts u1;u2 of r denote their corresponding partial derivatives. and the
operator < abc > denotes the triple product a �b� c. With these formulae, the remaining
task is the construction of the radius function R(u1;u2) for the generation of the desired
geometry, which, in this case, should exhibit asymmetry.

4.2. An Example of Asymmetric Geometry: Tentacle

A simple form of asymmetry can be obtained by superposition of tentacles onto a
simple axisymmetric geometry such as a sphere. In terms of spherical polar coordinate,
(see (4.26)), the radius function for a sphere is simply a constant R s. The radius function
for a tentacle unit can be generated by the following function,

R j
t (u1;u2;A

j
; p1

j
; p2

j
; p3

j
;q1

j
;q2

j
;q3

j
) =

f A j

4

�
1+erf[p1

j
(u1� p2

j
)]

��
erfc[p3

j
(u1� p2

j
)]

�
��

1+ erf[q1
j
(u2�q2

j �q3
j
)]

��
erfc[q1

j
(u2 +q2

j�q3
j
)]

�
; (4.29)

where A is the length of the fully grown tentacle and f (t) controls the growth of the ten-
tacle as a function of time and the p’s and q’s are the shape controlling parameters. Pa-
rameters p j

1
, p j

3
, q j

1
and q j

2
control the aspect ratio of the tentacle. The larger the num-

bers, the more elongated the tentacle. The parameter (p j
2
, q j

3
) is the location of the ten-

tacle in (u1,u2) coordinate. The superscript j denotes the index of the tentacle unit, thus
R j

t (u1;u2;A
j
; p1

j
; p2

j
; p3

j
;q1

j
;q2

j
;q3

j
) stands for radius function of the jth tentacle. Sup-

pose there are n number of tentacles on the surface of a sphere of radius R s, the radius
function R of the complete structure is then generated by the superposition of all the tenta-
cle units onto Rs,

R(u1;u2) = Rs +

n

∑
j=1

R j
t (u1;u2;A

j
; p1

j
; p2

j
; p3

j
;q1

j
;q2

j
;q3

j
) : (4.30)

The partial derivatives of r needed for the computation of K and H , ((4.27) and (4.28)
), can be obtained by the trivial exercise of differentiating (4.29) and substituting into the
spherical polar coordinates derivatives defined by (4.26).

4.3. Mesh Generation and Curvatures Mapping

In Sections 4.1 and 4.2, the curvatures are generated in spherical polar coordinate
(u1;u2), they have to be mapped onto the curvilinear coordinate (ξ 1;ξ2) before they can
be used in solving the mesh generation equation. Nevertheless, it has to be realised that
this mapping from (u1;u2) to (ξ1;ξ2) are yet to be found. Therefore, the mapping of local
curvatures to the corresponding location in (ξ 1;ξ2) is then solved simultaneously with the
mesh generation equation, as is shown in the next section.
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5. MAPPING OF CURVATURE FIELDS

The mapping of local curvature value from coordinate (u 1;u2) to (ξ1;ξ2) can be en-
visaged as a procedure of mesh improvement, i.e. the generation of a mesh (ξ 1;ξ2) that
has the desired qualities, such as the orthogonal and isothermal properties in this case,
from (u1;u2) that doesn’t. This method has been used to improve the mesh quality of an
existing mesh that has been generated using other technique such as NURBS or algebraic
grid generators [17,19]. It has also been used in [15] to generate conformal mappings with
different mesh aspect ratios on various 2D and 3D domains. Here, it is used to provide the
desired geometry on which an isothermal mesh is to be generated. The governing equation
can be obtained from the transformation of (3.13) through the change of variables from
(x1;x2;x3) to (u1;u2), (see Appendix D). This yields the equation,

g

�
∂ 2

∂ξ 2
1

+
∂ 2

∂ξ 2
2

�
u� J2∆̄2u� ∂u

∂σ
= 0 : (5.31)

The Laplace-Beltrami operator applied to the components of u is given by,

∆̄2u1 =

q
Ḡ3

2
4 ∂

∂u1

0
@ ḡ22q

Ḡ3

1
A� ∂

∂u2

0
@ ḡ12q

Ḡ3

1
A
3
5
;

∆̄2u2 =

q
Ḡ3

2
4 ∂

∂u2

0
@ ḡ11q

Ḡ3

1
A� ∂

∂u1

0
@ ḡ12q

Ḡ3

1
A
3
5
; (5.32)

where the variables J, ḡ11, ḡ12 and ḡ22 are given by

J =
∂u1

∂ξ1

∂u2

∂ξ2
� ∂u1

∂ξ2

∂u2

∂ξ1
; ḡ11 �

∂r
∂u1

� ∂r
∂u1

; ḡ12 �
∂r
∂u1

� ∂r
∂u2

; ḡ22 �
∂r
∂u2

� ∂r
∂u2

: (5.33)

Since the geometry r(x1;x2;x3) are parameterised in terms of (u1;u2), the quantities ḡi j (i; j =
1;2) are exact.

Equation (5.31) is solved with the following boundary conditions: at ξ 1 = �l, sphere
solution is used

u1 = sin�1 tanhξ1 ; u2 = ξ2 ; (5.34)

at ξ1 = l, the orthogonal property is enforced, i.e. g 12 = 0 is incorporated, this gives

¯g12
∂u1

∂ξ2
+ ¯g22

∂u2

∂ξ2
= 0 : (5.35)

This is used in conjunction with the following condition,

∂u1

∂ξ1
=

q
1� tanh2ξ1 ; (5.36)

which has taken into account the assumption that the geometry approaches to a sphere in
the vicinity of the region ξ1 = l. Along the boundaries ξ2 = 0;2π , periodic conditions are
incorporated except for the functional value of u 2 which takes the form,

u2(ξ2 = 0) = u2(ξ2 = 2π)�2π : (5.37)

These boundary conditions are applied in the same way as those described in Section 3.3.
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6. NUMERICAL IMPLEMENTATION (VLUGR2)

Vlugr2 (Vectorized Local Uniform Grid Refinement 2D) [3] is used to solve the sys-
tem of differential equations, (3.20), and (equations (5.31)). This code has been designed
to solve initial boundary value problems for general systems of time-dependent partial dif-
ferential equations in two dimensions of the form

F

�
t;ξ1;ξ2;r;

∂r
∂ t

;

∂r
∂ξ1

;

∂r
∂ξ2

;

∂ 2r
∂ξ 2

1

;

∂ 2r
∂ξ1∂ξ2

;

∂ 2r
∂ξ 2

2

�
= 0 ; (ξ1;ξ2) 2Ω ; t > t0 ;

(6.38)
where r is the solution vector and Ω denotes an arbitrary domain that can be described
by right-angled polygons. Along the boundary ∂Ω, the boundary condition is assumed to
have the form:

B

�
t;ξ1;ξ2;r;

∂r
∂ξ1

;

∂r
∂ξ2

�
= 0 ; (ξ1;ξ2) 2 ∂Ω ; t > t0 ; (6.39)

and the initial condition is assumed to be,

r(t0;ξ1;ξ2) = r0(ξ1;ξ2) ; (ξ1;ξ2) 2Ω[∂Ω : (6.40)

The system of PDE’s are solved using the method of lines [29]. The underlying principle
is that spatial discretization is used to transform the PDE’s in both space and time into
a system of ODE’s in time alone. The spatial discretization can be done using various
schemes such as finite differences or finite elements with desired order of accuracy while
the resultant system of ODE’s can then be solved using standard methods such as Runge-
Kutta or BDF to preserve the accuracy and stability in the time integration. Modified
Newton’s method in combination with sparse matrix solver GMRES is used to solve the
resultant system of nonlinear algebraic equations, (see [3]).

Finite differences are used in Vlugr2 for spatial discretization with central difference
formulae to approximate both the first and the second derivatives,

∂r
∂ξi

=
ri+1� ri�1

2∆ξi
;

∂ 2r
∂ξ 2

i

=
ri+1� ri + ri�1

∆ξ 2
i

; (6.41)

which are both second order. Along the boundary, the derivatives are approximated using
one-sided formula

∂r
∂ξi

=
3rn�4rn�1 + rn�2

2ξi
: (6.42)

Spatial mesh refinement is used to improve solution accuracy with a user-defined max-
imum mesh level. The solution accuracy is monitored by the curvature function spcmon

spcmon(i; j) ∝





�����∆ξ 2

1
∂ 2rc

∂ξ 2
1

����+
����∆ξ 2

2
∂ 2rc

∂ξ 2
2

����
� 





∞
; (6.43)

where i; j denote the current grid point, ∆ξ1 and ∆ξ2 are the grid size of the current mesh
level, rc denotes the component c of the solution vector r and the norm is the maximum
among all solution components at the node (i; j). When the local value of spcmon exceeds
its tolerance, the current grid point and each of its eight immediate neighbourhood will be
subdivided uniformly into four sub-grid points. Thus, patches of refined mesh are formed
in the next mesh level where it is required. The system of PDE’s are then re-computed on
this refined level with the initial estimate taken from the solution of the previous mesh level.

11



Interpolations are performed on those newly-created grid points. Refinement terminates
only when either the solution accuracy has been reached or the maximum level has been
reached.

The time integration in Vlugr2 is performed using second order BDF (Backward Dif-
ferentiation Formula) method with variable time step control in order to take into account
the stiffness of the time rate of change of solution. The formula for the time derivative
approximation is given by

∂r
∂ t

= a0rn+1
+a1rn

+a2rn�1
; (6.44)

where

a0 =
1+2α
1+α

1
∆t

; a1 =
(1+α)

2

1+α
1
∆t

; a2 =
α2

1+α
1
∆t

; α =
∆t

∆told
: (6.45)

Backward Euler (α = 0) is used at the first step. The time step ∆t is monitored at a all
mesh levels and is modified according to the function timmon(L) which depends on the
time rate of change of solution components at mesh level L,

timmon(L) ∝




∆t

�����∂ rc

∂ t

����
�





∞
; ∆tnew =

1
2 timmonmax

∆t ; (6.46)

where ∆tnew denotes the new time step and timmonmax is the maximum value of timmon
among all mesh levels.

When all the spatial and temporal accuracy has been satisfied, computation advances
to the next time step. The initial estimate of the next step is injected from the solution of
the highest mesh level at the previous step.

6.1. Computational Mesh Refinement Strategy

A user defined mesh refinement facility is also provided in the subroutine chspcm
in Vlugr2 so that particular regions can be refined regardless of the local curvature of the
solutions. This additional facility is incorporated to monitor the local Gauss curvature K i; j
to insert extra refinement region where either of the following occurs:

� Ki+1; j �Ki; j < 0, this is incorporated in order to monitor region where invagination
or evagination takes place;

� ∂K=∂ξ1ji+1; j � ∂K=∂ξ1ji; j < 0, this is incorporated simply to detect any large rate
of change of local K .

These two monitor criteria are incorporated so that both changes in sign and large spatial
changes in K can be resolved as they incur the formation of ‘sharp’ edges and saddle
regions, thus represent crucial geometrical development and have to be resolved in order
to capture the corresponding geometry changes.

6.2. Overview of Computational Procedures

The overall computational procedures of mesh generation algorithm can now be stated,
(see Fig.5). At the beginning of a time step,

1 an initial estimate of the solutions of u0 and r0 are taken from the solution of the
previous time step,
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2 Vlugr2 is then called to form the residual of (5.31) and (3.20), at every point on the
computational mesh:

(a) Use u0 to compute ḡ11, ḡ12 and ḡ22 from geometry specifications; ∆̄2u1 and
∆̄2u2 using (5.32);

(b) Compute the g by using the formula

g = ḡ11
∂u1

∂ξ1

2

+ ḡ12
∂u1

∂ξ1

∂u2

∂ξ1
+ ḡ22

∂u2

∂ξ1

2

;

(c) Substitute g, J, ∆̄2u1, ∆̄2u2 into (5.31) to form the associated residual;

(d) Input u0 into (4.28) in combination with geometry specification to compute the
exact H;

(e) Use r0 to compute g using

g =

�
∂x1

∂ξ1

�2

+

�
∂x2

∂ξ1

�2

+

�
∂x3

∂ξ1

�2

;

and n using (3.14)

(f) Substitute g, n and H into (3.20) to obtain its residual,

3 The system of residual is then iterated using Newton’s method to give u 1 and r1,

4 The solution accuracy is measured, the complete procedure is repeated until subse-
quence modification in solution falls below a tolerance.

The computation then advances to next time step. Note that the above procedure has not
included the solution algorithm in Vlugr2, it merely outlines the steps involved in forming
the residual associated with the governing equations.

g

�
@
2

@�
2

1

+
@
2

@�
2

2

�
u� J

2 ��2u�

@u

@�
= 0

K,H on (u1,u2)

mapping (u1,u2) onto (ξ1,ξ2)

solve

generate mesh (x1,x2,x3) on (ξ1,ξ2)

solve

input K,H on (ξ1,ξ2)

@r

@�
= g

�
@2

@�2
1

+

@2

@�2
2

�
r� 2ngH

FIG. 5 An overview of computational scheme for mesh generation with artificial input of K;H.

7. DEMONSTRATIONS OF GROWING TENTACLES

Three examples are illustrated: 1) a single tentacle on a sphere, this shows the sim-
plest non-axisymmetric geometry that can be modelled, the resultant geometry however
is bilaterally symmetrical; 2) three unevenly spaced tentacles on a sphere, this shows a
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geometry that is neither axisymmetrical nor bilaterally symmetrical; 3) unevenly spaced
multi-tentacles of different sizes and shapes on a sphere, this demonstrates a general asym-
metric geometry, six tentacles were used in the experiment.

In all examples, the tentacle structure is generated using (4.30). The parameters defin-
ing the tentacles for all examples are summarised in Table I. The parameters A, p 1 to p3
and q1 to q3 are defined in (4.30). In Example 1, the radius function is given by,

R(u1;u2) = Rs +R j
t (u1;u2;A

j
; p1

j
; p2

j
; p3

j
;q1

j
;q2

j
;q3

j
) ; j = 1 ; (7.47)

where j = 1 denotes the first tentacle parameters set is used, (see Table I). Similarly, in
Example 2, the overall radius function R(u1;u2) of the three tentacle structure is obtained
by the summation of three individual tentacle units,

R(u1;u2) = Rs +

3

∑
j=1

R j
t (u1;u2;A

j
; p1

j
; p2

j
; p3

j
;q1

j
;q2

j
;q3

j
) ; (7.48)

where the first three parameters sets are used. In Example 3, the overall radius function
R(u1;u2) is formed by the summation of all six tentacle sets,

R(u1;u2) = Rs +

6

∑
j=1

R j
t (u1;u2;A

j
; p1

j
; p2

j
; p3

j
;q1

j
;q2

j
;q3

j
) : (7.49)

TABLE I
Parameter values used for tentacle specification.

jth tentacle unit A j p1
j p2

j p3
j q1

j q2
j q3

j

1 2 2 0.3π 8 3 0.3 π
2 2 2 0.2π 8 3 0.3 0:4̇π
3 2 2 0.2π 8 4 0.2 1:4̇π
4 1 4 -0.1π 6 5 0.3 1:05̇π
5 1.2 2 0.0 8 5 0.3 1:3̇π
6 1.5 2 -0.1π 7 4 0.3 1: 6̇π

The Euclidean geometry of the three fully grown tentacle organisms are illustrated in
Fig.6 (a)-(c). The computational meshes corresponded to the three fully grown tentacle
organisms are illustrated in Fig.6 (d)-(f). Only the region [�2 < ξ 1 < 2]� [0< ξ2 < 2π ] is
drawn since no refinement was performed on the remaining regions. It can be seen that the
mesh was refined in one region only in the case of a single tentacle organism, whereas the
mesh was refined in three different regions in the case of the three tentacle organism, which
corresponds to the three tentacles, and in the case of the six tentacle organism, refinement
were performed in six different regions.

Notice in Fig.6(d)-(f), the location of the tentacle units have been mapped from the
spherical coordinate u1;u2 to the surface coordinate ξ1;ξ2. For example, in Example 1,
the location of the single tentacle is located at (u1;u2) = (p1

2;q
1
3) = (0:3π ;π), after the

mapping, the corresponding location on the surface is approximately (ξ 1;ξ2) = (0:9;π).
Thus, the mapping has been distorted in the vicinity of the tentacle, and is deviated from
that of a sphere. The mapping of a sphere is given by the Mercator transformation, (see
Appendix C),

sinu1 = tanhξ1 : (7.50)
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Upon the substitution of u1 = 0:3π into (7.50) yields ξ1 = 1:1. In contrast, the u2 coor-
dinate remains close to the ξ2. This is because of the bilateral symmetric nature of the
tentacle. The location of the six tentacles in u1;u2 coordinates and in the corresponding
ξ1;ξ2 coordinates are listed in Table II. The corresponding location in ξ 1 mapped by using
the Mercator transformation are also included for comparison. (Note that the ξ 2 is not af-
fected in the Mercator transformation and is equal to u 2.) It is noticed that the distortion of

TABLE II
A comparison of the location of the tentacle units in u1;u2 coordinates and in the corresponding

ξ1;ξ2 coordinates. The coordinate ξm
1 is the location assuming the Mercator transformation.

jth tentacle units u1 u2 ξ1 ξ2 ξ m
1

1 0:3π π 0.90 π 1.1
2 0:2π 0:4̇π 0.50 0:44π 0.67
3 0:2π 1:4̇π 0.50 1:43π 0.67
4 �0:1π 1:05̇π -0.38 1:03π -0.32
5 0:0 1:3̇π 0.125 1:35π 0.0
6 �0:1π 1:6̇π -0.44 1:67π -0.32

the mesh due to the formation of tentacle units is localised around the tentacles. However,
when two tentacles are sufficiently close, the corresponding meshes can affect each other.
This can be observed in the case of the 4th, 5th and the 6th tentacles. Note that even though
their u1 coordinate are identical, the corresponding ξ 1 coordinate are not the same.

The metric tensor g and the corresponding Gauss curvature K of the three examples of
tentacle organisms are illustrated in Fig.7. This figure shows that when the Gauss curvature
K of a tentacle unit takes the form of a ‘spike’ with a region of negative values surround-
ing it. In the case of the example with three tentacles, it can be seen that there are three
spikes surrounded by a negative region. Similarly, there are six spikes in example 3. These
examples therefore suggest that the Gauss curvature of an organism with tentacles can be
generated by the superposition of such K (a spike with a surrounding negative region) units
onto an existing K distribution. This knowledge is particular useful when a complex or-
ganism is generated using only the Gauss curvature. This also provides a feasible method
towards the engineering of the parametrisation of the curvatures using morphogens’ con-
centration.

8. TOWARDS GENERATING REALISTIC ORGANISMS

Part of the more extended goal of this work is to simulate the morphological evolution
of a wide range of organisms such as hydroid polyps, medusae and hydranth, (see Fig.8).
As have been demonstrated in the generation of tentacle organisms, the organisms can be
created by the superposition of various components of the final geometry onto the initial
sphere. For example, the geometry of the polyp can be dissected into the components of
: (a) evagination (protruding or elongation in the formation of limb bud); (b) invagination
(the in-folding of a region of cells, like the indenting of a soft rubber ball when poked, im-
portant of the formation of a mouth and through-gut during development); and (c) a ring of
tentacles (for food capturing in certain organisms). In terms of spherical polar coordinate,
both the invagination and evagination can be generated using the same parametrisation,

Rvg(u1) =
fvgA

2
[1+ cos(π�φ)]tanh(cφ d

) ; φ =
π(u1�b)

π=2�b
; (8.51)
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where A is positive in the case of evagination and negative in the case of invagination, and
f is a function of time. Instead of superposing individual tentacles to form a ring, the ring
of tentacles is generated as a completed unit using the formula,

Rring(u1;u2) = fringA

�
1�cos[n(u2� c)]

2

�m�1+ cos[(u1�b)=p]

2

�
: (8.52)

The entire organism is therefore generated by the summation of all the radius functions

R(u1;u2) = Rs +Rvg(u1)+Rring(u1;u2) ; (8.53)

where Rs is the radius of the initial sphere as before. The function f (t) takes the form

f (t) =

�
(t� t0)=(t1� t0) for t0 � t � t1 ;

1 for t � t1 ;
(8.54)

where the interval [t0; t1] = [0;0:5] determines the evolution of both the invagination and
evagination while the interval [t0; t1] = [0:5;1:0] determines the evolution of the tentacle
ring. This allow different components to evolve one after another. The parameters used in
the case of the polyp (shown in Fig.8) are listed in Table III. These parametrisations and
their derivatives are then used for the computations of the Gauss and the Mean curvatures
as in the case of the tentacle examples.

TABLE III
The parameter values used for polyp specification.

parameters evagination invagination tentacle ring
A 1.4 -1.2 0.4
b 0:5̇π 0:3̇π π=2�2p
c 2 4 0
d 4 4 /
p / / 0:06π
n / / 5
m / / 4

The evolution of the simulated polyp is illustrated in Fig.8. Part (a)-(d) of this figure
show the sphere evaginates on the top into a bud while it invaginates simultaneous at the
centre the bud to form a ’mouth’. From part (e)-(h) onward, both the evagination and
invagination have already terminated, while the ring of tentacles start to grow. At part
(h), the completed organism is fully grown. The Mean curvature of the corresponding
snapshots are shown in Fig.8.

9. CONCLUSION

The method defined above and the results shown demonstrate the ability to model the
shape change of simple organisms. In particular the idea of Cummings that generated
Mean and Gauss curvatures may be used to compute non-axisymmetric changing surface
geometries has been shown to work in a practical system for generating shape change.
It is now possible to investigate the detailed chemical interactions that may be plausible
agents for shape change. Examples of such interactions are given by Cummings in recent
work [11, 12]. The use of true agents will form the basis of our future work.
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APPENDIX A: A BRIEF DESCRIPTION OF SURFACE CURVATURES

The nature of a surface, i.e. whether it is concave or convex, around a general point, p,
can be described by the rate of change of tangents (or the curvatures) at that point, just as
a curve can be described by same quantity. Although it is possible to draw infinitely many
curves passing through p on a surface. There are two curves that intersect in directions
perpendicular with each other and are associated with the maximum and the minimum cur-
vatures at p. The two curvatures, denoted by k I and kII , are called the principal curvatures,
(illustrated in Fig.11). It is a convention to associate a positive k with a curve on a convex
surface and a negative k on a concave one. Therefore, when the curvature k varies between
two positive values, .i.e. when both kI and kII are positive, they describe a convex surface.
However, when kI and kII span from negative to positive, they describe a saddle surface.
When kI and kII span from zero to a non-zero value, they describe either a ridge (denoted
by a positive maximum and zero minimum curvature) or a valley (characterised by a zero
maximum and a negative minimum curvature). When both k I and kII are zero, the surface
is a plane. It is possible to describe a surface with the Gauss and the Mean curvatures K
and H which are defined in terms of kI and kII as follows,

K = kIkII ; H = (kI + kII)=2 : (A.55)

A brief graphical descriptions of the nature of a surface and its corresponding K and H are
illustrated in Fig.12.

APPENDIX B: DERIVATION OF THE MESH GENERATION EQUATION

The mesh generator can be derived from the equations of Gauss, (see [34–36,38]),

∂ 2r
∂ξ1∂ξ1

= ϒ1
11

∂r
∂ξ1

+ϒ2
11

∂r
∂ξ2

+b11
∂r
∂ξ3

; (B.56)

∂ 2r
∂ξ1∂ξ2

= ϒ1
12

∂r
∂ξ1

+ϒ2
12

∂r
∂ξ2

+b12
∂r
∂ξ3

; (B.57)

∂ 2r
∂ξ2∂ξ2

= ϒ1
22

∂r
∂ξ1

+ϒ2
22

∂r
∂ξ2

+b22
∂r
∂ξ3

; (B.58)

which are the rate of change of the two tangent vectors ∂r=∂ξ 1;∂r=∂ξ2 in the two direc-
tions ξ1;ξ2, i.e. their curvatures. Performing g22� (B.56) �2g12� (B.57) +g11� (B.58)
yields

g22
∂ 2r
∂ξ 2

1

�2g12
∂ 2r

∂ξ1∂ξ2
+g11

∂ 2r
∂ξ 2

2

=

�
g22ϒ1

11�2g12ϒ1
12 +g11ϒ1

22

	 ∂r
∂ξ1

+

�
g22ϒ2

11�2g12ϒ2
12 +g11ϒ2

22

	 ∂r
∂ξ2

+

�
g22b11�2g12b12 +g11b22

	 ∂r
∂ξ3

(B.59)
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Using the formulae

g11
=

g22

G3
; g12

= g21
=�g12

G3
; g22

=
g11

G3
; G3 = g11g22�g2

12 ;

ϒn
i j = gkn

[i j;k] ; [i j;k] =
1
2

 
∂gik

∂ξ j
+

∂g jk

∂ξi
�

∂gi j

∂ξk

!
; (B.60)

and expanding

ϒ1
11 = g11

[11;1]+g12
[11;2] =

g22

2G3

∂g11

∂ξ1
� g12

2G3

�
2

∂g12

∂ξ1
� ∂g11

∂ξ2

�
(B.61)

ϒ1
12 = g11

[12;1]+g12
[12;2] =

g22

2G3

∂g11

∂ξ2
� g12

2G3

∂g22

∂ξ1
(B.62)

ϒ1
22 = g11

[22;1]+g12
[22;2] =

g22

2G3

�
2

∂g12

∂ξ2
� ∂g22

∂ξ1

�
� g12

2G3

∂g22

∂ξ2
(B.63)

it can be readily shown that

g22ϒ1
11�2g12ϒ1

12 +g11ϒ1
22 =�G3∆2ξ1 (B.64)

and similarly
g22ϒ2

11�2g12ϒ2
12 +g11ϒ2

22 =�G3∆2ξ2 (B.65)

where ∆2 is the Laplace-Beltrami operator,

∆2 =
∂

∂ξ1

 
g22p

G3

∂
∂ξ1

� g12p
G3

∂
∂ξ2

!
+

∂
∂ξ2

 
g11p

G3

∂
∂ξ2

� g12p
G3

∂
∂ξ1

!
: (B.66)

Realising that the two principal curvatures kI and kII can be found by finding the extrema
from the definition [23]

kn =
b11 +2b12λ +b22λ 2

g11 +2g12λ +g22λ 2 : (B.67)

(Here λ is a variable and it denotes the principal direction.) The sum of the two principal
curvatures kI + kII can be readily obtained as

G3(kI + kII) = g22b11�2g12b12 +g11b22 = G32H (B.68)

Combining (B.59) and (B.68) and upon realising n = ∂r=∂ξ 3, it yields

g22
∂ 2r
∂ξ 2

1

�2g12
∂ 2r

∂ξ1∂ξ2
+g11

∂ 2r
∂ξ 2

2

+G3

�
∆2ξ1

∂r
∂ξ1

+∆2ξ2
∂r
∂ξ2

�
= nG32H : (B.69)

APPENDIX C: MERCATOR TRANSFORMATION

The Mercator Transformation relates the spherical polar coordinate r = (R cosθ cosφ ;
R cosθ sinφ ; Rsinθ ) to the orthogonal isothermal curvilinear coordinate r(R;ξ 1;ξ2) and
can be readily obtained as follows: Upon realising that a sphere is a surface of revolution
and that ξ2 = φ , the curvilinear coordinate can be given by

r(ξ1;ξ2) = (F(ξ1)cosξ2;F(ξ1)sinξ2;G(ξ1)) : (C.70)
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By applying the isothermal conditions

∂r
∂ξ1

� ∂r
∂ξ1

=

�
dF
dξ1

�2

+

�
dG
dξ1

�2

=
∂r
∂ξ2

� ∂r
∂ξ2

= F(ξ1)
2
: (C.71)

Moreover, a comparison with the spherical polar coordinate yields

F(ξ1) = R cosθ ; G(ξ1) = R sinθ : (C.72)

which gives

G(ξ1)
2
= R2�F(ξ1)

2 hence

�
dG
dξ1

�2

=
F(ξ1)

2

R2�F(ξ1)
2

�
dF
dξ1

�2

: (C.73)

Upon substitution of (C.73) into (C.71) yields an ode for F(ξ 1)

dF
dξ1

=� 1
R

F(ξ1)

q
R2�F(ξ1)

2
: (C.74)

(The positive sign is chosen such that the top, θ = π=2, corresponds to ξ 1 = l.) Upon
solving for F(ξ1) yields

F(ξ1) = cosθ = sechξ1 ; G(ξ1) = sinθ = tanhξ1 ; (C.75)

which, upon substituting back into (C.70), gives the Mercator transformation.

APPENDIX D: DERIVATION OF THE MAPPING EQUATION

The equation that governs the mapping from (u 1;u2) to (ξ1;ξ2) can be derived from
(3.13), i.e.

g22
∂ 2r
∂ξ 2

1

�2g12
∂ 2r

∂ξ1∂ξ2
+g11

∂ 2r
∂ξ 2

2

+G3

�
∆2ξ1

∂r
∂ξ1

+∆2ξ2
∂r
∂ξ2

�
= nG32H : (D.76)

Upon applying chain rule, ∂=∂ξα = ∂=∂u1(∂u1=∂ξα)+ ∂=∂u2(∂u2=∂ξα) (α = 1;2), the
first three terms on the LHS leads to

g22
∂ 2r
∂ξ 2

1

�2g12
∂ 2r

∂ξ1∂ξ2
+g11

∂ 2r
∂ξ 2

2

= J2
�

ḡ22
∂ 2r
∂u2

1

�2ḡ12
∂ 2r

∂u1∂u2
+ ḡ11

∂ 2r
∂u2

2

�

+L1u1
∂r
∂u1

+L1u2
∂r
∂u2

; (D.77)

where the operatorL1 stands for

L1 = g22
∂ 2

∂ξ 2
1

�2g12
∂ 2

∂ξ1∂ξ2
+g11

∂ 2

∂ξ 2
2

: (D.78)

Similarly, the last two terms on the LHS yields

G3

�
∆2ξ1

∂r
∂ξ1

+∆2ξ2
∂r
∂ξ2

�
= G3

�
L2u1

∂r
∂u1

+L2u1
∂r
∂u2

�
; (D.79)
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where the operatorL2 stands for

L2 = ∆2ξ1
∂

∂ξ1
+∆2ξ2

∂
∂ξ2

: (D.80)

Since n(kI + kII) in (ξ1;ξ2) are identical to n̄(k̄I + k̄II) = ∆̄2r in (u1;u2), i.e. they are
invariant quantities, we have on the RHS

G3∆̄2r = J2
�

∆̄2u1
∂r
∂u1

+ ∆̄2u2
∂r
∂u2

+

�
ḡ22

∂ 2r
∂u2

1

�2ḡ12
∂ 2r

∂u1∂u2
+ ḡ11

∂ 2r
∂u2

2

��
: (D.81)

(Note that the relation G3 = Ḡ3J2 has been used.) The functions ∆̄2u1 and ∆̄2u2 in (D.81)
are given in (5.32). Upon regrouping (D.77), (D.79) and (D.81) yields

�
L1u1� J2∆̄2u1 +G3L2u1

� ∂r
∂u1

+

�
L1u2� J2∆̄2u2 +G3L2u2

� ∂r
∂u2

= 0 : (D.82)

The transient term ∂=∂ t is then incorporated into (D.82) by setting

∆2ξ1 = P+
c

G3

∂ξ1

∂ t
; ∆2ξ2 = Q+

c
G3

∂ξ2

∂ t
;

∂u1

∂ t
=�(

∂u1

∂ξ1

∂ξ1

∂ t
+

∂u1

∂ξ2

∂ξ2

∂ t
) ;

∂u2

∂ t
=�(

∂u2

∂ξ1

∂ξ1

∂ t
+

∂u2

∂ξ2

∂ξ2

∂ t
) ; (D.83)

and substituting into the operatorL2 in (D.79) to give�
L1u1� J2∆̄2u1 +G3

�
P

∂u1

∂ξ1
+Q

∂u1

∂ξ2
� c

G3

∂u1

∂ t

��
∂r
∂u1

+�
L1u2� J2∆̄2u2 +G3

�
P

∂u2

∂ξ1
+Q

∂u2

∂ξ2
� c

G3

∂u2

∂ t

��
∂r
∂u2

= 0 : (D.84)

Upon equating the coefficients of ∂r=∂u1 and ∂r=∂u2 to zero yields the pair of equations
governing u1 and u2 respectively. Applying the orthogonal and isothermal properties into
(D.84) and setting P = Q = 0;σ = t=c yields (5.31).
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FIG. 6 The Euclidean geometry of (a) a single tentacle unit, (b) three tentacle units and (c) six
tentacle units growing on a sphere; and the associated computational meshes of (d) the single tentacle,
(e) the three tentacles and (f) the six tentacles.
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FIG. 7 The metric tensor g of (a) a single tentacle unit, (b) three tentacle units and (c) six tentacle
units growing on a sphere; and the associated Gauss curvature of (d) the single tentacle, (e) the three
tentacles and (f) the six tentacles.
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polyp medusa (jellyfish) hydranth

FIG. 8 A set of computationally simulated cnidarians (top row) and the corresponding
graphical illustrations (bottom row).

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 9 The snapshots of the evolution of a sphere into a polyp. The frames represent the corre-
sponding stages of growth at approximately: (a) 0.12; (b) 0.24; (c) 0.36; (d) 0.48; (e) 0.6; (f) 0.72;
(g) 0.84; and (h) 0.96 time unit respectively.
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FIG. 10 The snapshots of the evolution of the Mean curvature associated with the polyp. The frames
represent the corresponding stages of growth at approximately: (a) 0.12; (b) 0.24; (c) 0.36; (d) 0.48;
(e) 0.6; (f) 0.72; (g) 0.84; and (h) 0.96 time unit respectively.
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FIG. 11 An illustrations of the curves C1 and C2, passing through a general point p on a surface,
that are associated with the maximum and the minimum curvatures kI and kII . The vector n denotes
the surface normal.
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FIG. 12 A graphical description of various natures of a surface and the associated K and
H. The surface tangents rξ1

, rξ2
and n are also shown.
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