
Dynamic Adaptive Shadow Maps on Graphics Hardware

Aaron Lefohn
University of California, Davis

Shubhabrata Sengupta
University of California, Davis

Joe Kniss
University of Utah

Robert Strzodka
Caesar Research Institute, Bonn

John D. Owens
University of California, Davis

We present a novel implementation of adaptive shadow maps
(ASMs) that performs all shadow lookups and scene analysis on the
GPU, enabling interactive rendering with ASMs while moving both
the light and camera. Adaptive shadow maps [Fernando et al. 2001]
offer a rigorous solution to projective and perspective shadow map
aliasing while maintaining the simplicity of a purely image-based
technique. The complexity of the ASM data structure, however,
has prevented full GPU-based implementations until now. Our ap-
proach uses an entirely GPU-based data structure and a blend of
graphics and GPU stream programming. We support shadow map
effective resolutions up to 131,0722 and, unlike previous imple-
mentations, provide smooth transitions between resolution levels
by trilinearly filtering (mipmapping) the shadow lookups.

Implementation

Shadow maps, which are depth images rendered from the light po-
sition, offer an attractive solution to real-time shadowing because of
their simplicity. Their use is plagued, however, by projective alias-
ing, perspective aliasing, and false self-shadowing. ASMs nearly
eliminate shadow map aliasing by ensuring that the projected area
of a screen-space pixel into light space matches the shadow map
sample area. Figure 1 and the included movie compare our ASM
results to a traditional shadow map.

An ASM stores depth data in a quadtree of small shadow map
pages. Our structure represents a quadtree using two GPU tex-
tures, representing a mipmap hierarchy of page tables and a phys-
ical memory buffer. The page tables adaptively map shadow coor-
dinates into physical memory pages, and the mipmaps allow direct
access to arbitrary resolution levels in the quadtree. We use the
Glift template library for GPU data structures [Lefohn et al. 2005]
to build the ASM. The library makes it possible to quickly build
this structure and use it in a way similar to a conventional texture.
Below is an example of a Cg shader that performs an ASM lookup:

float4 main(uniform VMem2D asm,
float4 main(float3 shadowCoord) : COLOR {

return asm.vTex2Ds(shadowCoord);
}

Our ASM algorithm is faithful to Fernando et al.’s original ap-
proach [2001] and is summarized below.

refineASM {
AnalyzeScene : Identify shadow pixels with resol. mismatch
StreamCompaction : Pack these pixels into small stream
CpuReadback : Read refinement request stream
AllocPages : Draw new PTEs into mipmap page tables
CreatePages : Draw depth into ASM for each new page

}

The algorithm begins by performing a scene analysis to deter-
mine which camera-space pixels require refinement. A pixel re-
quires refinement if it lies on a shadow boundary and its required
resolution is not in the current ASM. We use a Sobel edge detec-
tor to identify shadow boundaries and compute required resolutions
using derivatives of the shadow coordinates. We then pack the pix-
els needing refinement into a small contiguous stream using Horn’s
stream compaction algorithm [2005]. This small image (usually
tens of pixels) is read back to the CPU to initiate new shadow data
generation. The CPU adds new shadow data to the ASM by first
rendering new page allocations into the GPU-based page tables,

Figure 1: This GPU-based adaptive shadow map has an effective
shadow map resolution of 131,0722, uses 37 MB of GPU mem-
ory, and supports trilinear (mipmapped) filtering. The detail at top
right shows the ASM, and the detail at bottom right shows a 20482

standard shadow map.

then rendering the scene geometry from the light into the new phys-
ical pages. We repeat this refinement algorithm to convergence, but
implementations could interrupt it to maintain a target frame rate.

Performance Results

We tested our ASM implementation on an NVIDIA GeForce 6800
GT using a window size of 5122. For a 45k polygon model and
an effective shadow map resolution of 131,0722, our implementa-
tion achieves 13–16 frames per second while the camera is mov-
ing. We achieve 5–10 fps while interactively moving the light
for the same model, thus rebuilding the entire ASM each frame.
Our ASM lookup performance is between 73–91% of a traditional
20482 shadow map. The total frame rate is dominated by the stream
compaction step of the refinement algorithm. This computation re-
duces CPU readback cost at the expense of an O(n logn) GPU algo-
rithm, where n is the number of pixels in the camera image. Hard-
ware support for variable-length output streams would reduce the
cost of this operation to O(n). Further frame rate improvements are
possible by using CPU-based frustum culling to send only a small
portion of the scene geometry when generating ASM pages.

Conclusions

Adaptive shadow maps offer the simplicity of a purely image-based
shadow algorithm, yet deliver quality comparable to object-based
solutions. We show that GPU-based adaptive shadow maps can be
used at interactive rates on moderately complex models; making
them an effective option for high-quality GPU shadows.

References

FERNANDO, R., FERNANDEZ, S., BALA, K., AND GREENBERG, D. P. 2001. Adap-
tive shadow maps. In Proceedings of ACM SIGGRAPH 2001, Computer Graphics
Proceedings, Annual Conference Series, 387–390.

HORN, D. 2005. Stream reduction operations for GPGPU applications. In GPU Gems
2, M. Pharr, Ed. Addison Wesley, Mar., ch. 36, 575–591.

LEFOHN, A. E., KNISS, J., STRZODKA, R., SENGUPTA, S., AND OWENS, J. D.
2005. Glift: Generic, efficient, random-access GPU data structures. ACM Trans-
actions on Graphics. To appear.

