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Abstract

Despite recent large-scale profiling efforts, the best prognostic predictor of glioblastoma multiforme (GBM) remains the
patient’s age at diagnosis. We describe a global pattern of tumor-exclusive co-occurring copy-number alterations (CNAs)
that is correlated, possibly coordinated with GBM patients’ survival and response to chemotherapy. The pattern is revealed
by GSVD comparison of patient-matched but probe-independent GBM and normal aCGH datasets from The Cancer Genome
Atlas (TCGA). We find that, first, the GSVD, formulated as a framework for comparatively modeling two composite datasets,
removes from the pattern copy-number variations (CNVs) that occur in the normal human genome (e.g., female-specific X
chromosome amplification) and experimental variations (e.g., in tissue batch, genomic center, hybridization date and
scanner), without a-priori knowledge of these variations. Second, the pattern includes most known GBM-associated changes
in chromosome numbers and focal CNAs, as well as several previously unreported CNAs in w3% of the patients. These
include the biochemically putative drug target, cell cycle-regulated serine/threonine kinase-encoding TLK2, the cyclin E1-
encoding CCNE1, and the Rb-binding histone demethylase-encoding KDM5A. Third, the pattern provides a better prognostic
predictor than the chromosome numbers or any one focal CNA that it identifies, suggesting that the GBM survival
phenotype is an outcome of its global genotype. The pattern is independent of age, and combined with age, makes a better
predictor than age alone. GSVD comparison of matched profiles of a larger set of TCGA patients, inclusive of the initial set,
confirms the global pattern. GSVD classification of the GBM profiles of an independent set of patients validates the
prognostic contribution of the pattern.
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Introduction

Glioblastoma multiforme (GBM), the most common brain

tumor in adults, is characterized by poor prognosis [1]. GBM

tumors exhibit a range of copy-number alterations (CNAs), many

of which play roles in the cancer’s pathogenesis [2–4]. Recent

large-scale gene expression [5–7] and DNA methylation [8]

profiling efforts identified GBM molecular subtypes, distinguished

by small numbers of biomarkers. However, despite these efforts,

GBM’s best prognostic predictor remains the patient’s age at

diagnosis [9,10].

To identify CNAs that might predict GBM patients’ survival,

we comparatively model patient-matched GBM and normal array

CGH (aCGH) profiles from The Cancer Genome Atlas (TCGA)

by using the generalized singular value decomposition (GSVD)

[11]. Previously, we formulated the GSVD as a framework for

comparatively modeling two composite datasets [12] (see also

[13]), and illustrated its application in sequence-independent

comparison of DNA microarray data from two organisms, where,

as we showed, the mathematical variables and operations of the

GSVD represent experimental or biological reality. The variables,

subspaces of significant patterns that are uncovered in the

simultaneous decomposition of the two datasets and are

mathematically significant in either both (i.e., common to both)

datasets or only one (i.e., exclusive to one) of the datasets, correlate

with cellular programs that are either conserved in both or unique

to only one of the organisms, respectively. The operation of

reconstruction in the subspaces that are mathematically common

to both datasets outlines the biological similarity in the regulation

of the cellular programs that are conserved across the species.

Reconstruction in the common and exclusive subspaces of either

dataset outlines the differential regulation of the conserved relative

to the unique programs in the corresponding organism.

We now find that also in probe-independent comparison of

aCGH data from patient-matched tumor and normal samples, the

mathematical variables of the GSVD, i.e., shared tumor and

normal patterns of copy-number variation across the patients and

the corresponding tumor- and normal-specific patterns of copy-
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number variation across the tumor and normal probes, represent

experimental or biological reality. Patterns that are mathemati-

cally significant in both datasets represent copy-number variations

(CNVs) in the normal human genome that are conserved in the

tumor genome (e.g., female-specific X chromosome amplification).

Patterns that are mathematically significant in the normal but not

the tumor dataset represent experimental variations that exclu-

sively affect the normal dataset. Similarly, some patterns that are

mathematically significant in the tumor but not the normal dataset

represent experimental variations that exclusively affect the tumor

dataset.

One pattern, that is mathematically significant in the tumor but

not the normal dataset, represents tumor-exclusive co-occurring

CNAs, including most known GBM-associated changes in

chromosome numbers and focal CNAs, as well as several

previously unreported CNAs in w3% of the patients [14]. This

pattern is correlated, possibly coordinated with GBM patients’

survival and response to therapy. We find that the pattern provides

a prognostic predictor that is better than the chromosome

numbers or any one focal CNA that it identifies, suggesting that

the GBM survival phenotype is an outcome of its global genotype.

The pattern is independent of age, and combined with age, makes

a better predictor than age alone.

We confirm our results with GSVD comparison of matched

profiles of a larger set of TCGA patients, inclusive of the initial set.

We validate the prognostic contribution of the pattern with GSVD

classification of the GBM profiles of a set of patients that is

independent of both the initial set and the inclusive confirmation

set [15].

Methods

To compare TCGA patient-matched GBM and normal (mostly

blood) aCGH profiles (Dataset S1 and Mathematica Notebooks S1

and S2), Agilent Human aCGH 244A-measured 365 tumor and

360 normal profiles were selected, corresponding to the same

N = 251 patients. Each profile lists log2 of the TCGA level 1

background-subtracted intensity in the sample relative to the

Promega DNA reference, with signal to background w2.5 for

both the sample and reference in more than 90% of the 223,603

autosomal probes on the microarray. The profiles are organized in

one tumor and one normal dataset, of M1 = 212,696 and

M2 = 211,227 autosomal and X chromosome probes, each probe

with valid data in at least 99% of either the tumor or normal

arrays, respectively. Each profile is centered at its autosomal

median copy number. The v0.2% missing data entries in the

tumor and normal datasets are estimated by using singular value

decomposition (SVD) as described [12,16]. Within each set, the

medians of profiles of samples from the same patient are taken.

The structure of the patient-matched but probe-independent

tumor and normal datasets D1 and D2, of N patients, i.e., N-

arrays | M1-tumor and M2-normal probes, is of an order higher

than that of a single matrix. The patients, the tumor and normal

probes as well as the tissue types, each represent a degree of

freedom. Unfolded into a single matrix, some of the degrees of

freedom are lost and much of the information in the datasets might

also be lost.

To compare the tumor and normal datasets, therefore, we use

the GSVD, formulated to simultaneously separate the paired

datasets into paired weighted sums of N outer products of two

patterns each: One pattern of copy-number variation across the

patients, i.e., a ‘‘probelet’’ vT
n , which is identical for both the tumor

and normal datasets, combined with either the corresponding

tumor-specific pattern of copy-number variation across the tumor

probes, i.e., the ‘‘tumor arraylet’’ u1,n, or the corresponding

normal-specific pattern across the normal probes, i.e., the ‘‘normal

arraylet’’ u2,n (Figure 1),

D1~U1S1VT~
XN

n~1

s1,nu1,n6vT
n ,

D2~U2S2VT~
XN

n~1

s2,nu2,n6vT
n : ð1Þ

The probelets are, in general, non-orthonormal, but are

normalized, such that vT
n vn~1. The tumor and normal arraylets

are orthonormal, such that UT
1 U1~UT

2 U2~I .

The significance of the probelet vT
n in either the tumor or

normal dataset, in terms of the overall information that it captures

in this dataset, is proportional to either of the weights s1,n or s2,n,

respectively (Figure S1 in Appendix S1),

p1,n~s2
1,n=

XN

n~1

s2
1,n,

p2,n~s2
2,n=

XN

n~1

s2
2,n: ð2Þ

The ‘‘generalized normalized Shannon entropy’’ of each dataset,

0ƒd1~(log N){1
XN

n~1

p1,n log p1,nƒ1,

0ƒd2~(log N){1
XN

n~1

p2,n log p2,nƒ1, ð3Þ

measures the complexity of the data from the distribution of the

overall information among the different probelets and correspond-

ing arraylets. An entropy of zero corresponds to an ordered and

redundant dataset in which all the information is captured by a

single probelet and its corresponding arraylet. An entropy of one

corresponds to a disordered and random dataset in which all

probelets and arraylets are of equal significance. The significance

of the probelet vT
n in the tumor dataset relative to its significance in

the normal dataset is defined in terms of an ‘‘angular distance’’ hn

that is proportional to the ratio of these weights,

{p=4ƒhn~arctan(s1,n=s2,n){p=4ƒp=4: ð4Þ

An angular distance of +p=4 indicates a probelet that is exclusive

to either the tumor or normal dataset, respectively, whereas an

angular distance of zero indicates a probelet that is common to

both the tumor and normal datasets. The probelets are arranged

in decreasing order of their angular distances, i.e., their

significance in the tumor dataset relative to the normal dataset.

We find that the two most tumor-exclusive mathematical

patterns of copy-number variation across the patients, i.e., the first

probelet (Figure S2 in Appendix S1) and the second probelet

(Figure 2 a–c), with angular distances w2p=9, are also the two

most significant probelets in the tumor dataset, with *11% and
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22% of the information in this dataset, respectively. Similarly, the

five most normal-exclusive probelets, the 247th to 251st probelets

(Figures S3, S4, S5, S6, S7 in Appendix S1), with angular distances

*v{p=6, are among the seven most significant probelets in the

normal dataset, capturing together *56% of the information in

this dataset. The 246th probelet (Figure 2 d–f), which is the second

most significant probelet in the normal dataset with *8% of the

information, is relatively common to the normal and tumor

datasets with an angular distance w{p=6.

To biologically or experimentally interpret these significant

probelets, we correlate or anticorrelate each probelet with relative

copy-number gain or loss across a group of patients according to

the TCGA annotations of the group of n patients with largest or

smallest relative copy numbers in this probelet among all N

patients, respectively. The P-value of a given association is

calculated assuming hypergeometric probability distribution of

the K annotations among the N patients, and of the subset of

k(K annotations among the subset of n patients, as described

Figure 1. Generalized singular value decomposition (GSVD) of the TCGA patient-matched tumor and normal aCGH profiles. The
structure of the patient-matched but probe-independent tumor and normal datasets D1 and D2, of the initial set of N = 251 patients, i.e., N-arrays |
M1 = 212,696-tumor probes and M2 = 211,227-normal probes, is of an order higher than that of a single matrix. The patients, the tumor and normal
probes as well as the tissue types, each represent a degree of freedom. Unfolded into a single matrix, some of the degrees of freedom are lost and
much of the information in the datasets might also be lost. The GSVD simultaneously separates the paired datasets into paired weighted sums of N
outer products of two patterns each: One pattern of copy-number variation across the patients, i.e., a ‘‘probelet’’ vT

n , which is identical for both the
tumor and normal datasets, combined with either the corresponding tumor-specific pattern of copy-number variation across the tumor probes, i.e.,
the ‘‘tumor arraylet’’ u1,n , or the corresponding normal-specific pattern across the normal probes, i.e., the ‘‘normal arraylet’’ u2,n (Equation 1). This is
depicted in a raster display, with relative copy-number gain (red), no change (black) and loss (green), explicitly showing only the first though the 10th
and the 242nd through the 251st probelets and corresponding tumor and normal arraylets, which capture *52% and 71% of the information in the
tumor and normal dataset, respectively. The significance of the probelet vT

n in the tumor dataset relative to its significance in the normal dataset is
defined in terms of an ‘‘angular distance’’ that is proportional to the ratio of these weights (Equation 4). This is depicted in a bar chart display,
showing that the first and second probelets are almost exclusive to the tumor dataset with angular distances w2p/9, the 247th to 251st probelets are
approximately exclusive to the normal dataset with angular distances *v{p=6, and the 246th probelet is relatively common to the normal and tumor
datasets with an angular distance w{p=6. We find and confirm that the second most tumor-exclusive probelet, which is also the most significant
probelet in the tumor dataset, significantly correlates with GBM prognosis. The corresponding tumor arraylet describes a global pattern of tumor-
exclusive co-occurring CNAs, including most known GBM-associated changes in chromosome numbers and focal CNAs, as well as several previously
unreported CNAs, including the biochemically putative drug target-encoding TLK2 [22–25]. We find and validate that a negligible weight of the
global pattern in a patient’s GBM aCGH profile is indicative of a significantly longer GBM survival time. It was shown that the GSVD provides a
mathematical framework for comparative modeling of DNA microarray data from two organisms [12,39]. Recent experimental results [40] verify a
computationally predicted genome-wide mode of regulation [41,42], and demonstrate that GSVD modeling of DNA microarray data can be used to
correctly predict previously unknown cellular mechanisms. This GSVD comparative modeling of aCGH data from patient-matched tumor and normal
samples, therefore, draws a mathematical analogy between the prediction of cellular modes of regulation and the prognosis of cancers.
doi:10.1371/journal.pone.0030098.g001
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Figure 2. Significant probelets and corresponding tumor and normal arraylets uncovered by GSVD of the patient-matched GBM
and normal aCGH profiles. (a) Plot of the second tumor arraylet describes a global pattern of tumor-exclusive co-occurring CNAs across the tumor
probes. The probes are ordered, and their copy numbers are colored, according to each probe’s chromosomal location. Segments (black lines)
identified by circular binary segmentation (CBS) [20,21] include most known GBM-associated focal CNAs (black), e.g., EGFR amplification. CNAs
previously unrecognized in GBM (red) include an amplification of a segment containing the biochemically putative drug target-encoding TLK2. (b)
Plot of the second most tumor-exclusive probelet, which is also the most significant probelet in the tumor dataset (Figure S1a in Appendix S1),
describes the corresponding variation across the patients. The patients are ordered and classified according to each patient’s relative copy number in
this probelet. There are 227 patients (blue) with high (w0.02) and 23 patients (red) with low, approximately zero, numbers in the second probelet.
One patient (gray) remains unclassified with a large negative (v20.02) number. This classification significantly correlates with GBM survival times
(Figure 3a and Table S1 in Appendix S1). (c) Raster display of the tumor dataset, with relative gain (red), no change (black) and loss (green) of DNA
copy numbers, shows the correspondence between the GBM profiles and the second probelet and tumor arraylet. Chromosome 7 gain and losses of
chromosomes 9p and 10, which are dominant in the second tumor arraylet (Figure 2a), are negligible in the patients with low copy numbers in the
second probelet, but distinct in the remaining patients (Figure 2b). This illustrates that the copy numbers listed in the second probelet correspond to
the weights of the second tumor arraylet in the GBM profiles of the patients. (d) Plot of the 246th normal arraylet describes an X chromosome-
exclusive amplification across the normal probes. (e) Plot of the 246th probelet, which is approximately common to both the normal and tumor
datasets, and is the second most significant in the normal dataset (Figure S1b in Appendix S1), describes the corresponding copy-number
amplification in the female (red) relative to the male (blue) patients. Classification of the patients by the 246th probelet agrees with the copy-number
gender assignments (Table 1 and Figure S9 in Appendix S1), also for three patients with missing TCGA gender annotations and three additional
patients with conflicting TCGA annotations and copy-number gender assignments. (f) Raster display of the normal dataset shows the correspondence
between the normal profiles and the 246th probelet and normal arraylet. X chromosome amplification, which is dominant in the 246th normal
arraylet (Figure 2d), is distinct in the female but nonexisting in the male patients (Figure 2e). Note also that although the tumor samples exhibit
female-specific X chromosome amplification (Figure 2c), the second tumor arraylet (Figure 2a) exhibits an unsegmented X chromosome copy-
number distribution, that is approximately centered at zero with a relatively small width.
doi:10.1371/journal.pone.0030098.g002
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[17], P(k; n,N,K)~
N

n

� �{1Pn
i~k

K

i

� �
N{K

n{i

� �
(Table 1).

We visualize the copy-number distribution between the annota-

tions that are associated with largest or smallest relative copy

numbers in each probelet by using boxplots, and by calculating the

corresponding Mann-Whitney-Wilcoxon P-value (Figures S8 and

S9 in Appendix S1). To interpret the corresponding tumor and

normal arraylets, we map the tumor and normal probes onto the

National Center for Biotechnology Information (NCBI) human

genome sequence build 36, by using the Agilent Technologies

probe annotations posted at the University of California at Santa

Cruz (UCSC) human genome browser [18,19]. We segment each

arraylet and assign each segment a P-value by using the circular

binary segmentation (CBS) algorithm as described (Dataset S2)

[20,21]. We find that the significant probelets and corresponding

tumor and normal arraylets, as well as their interpretations, are

robust to variations in the preprocessing of the data, e.g., in the

data selection cutoffs.

Results

We find that, first, the GSVD identifies significant experimental

variations that exclusively affect either the tumor or the normal

dataset, as well as CNVs that occur in the normal human genome

and are common to both datasets, without a-priori knowledge of

these variations. The mathematically most tumor-exclusive

probelet, i.e., the first probelet (Figure S2 in Appendix S1),

correlates with tumor-exclusive experimental variation in the

genomic center where the GBM samples were hybridized at, with

the P-values v10{5 (Table 1 and Figure S8 in Appendix S1).

Similarly, the five most normal-exclusive probelets, i.e., the 247th

to 251st probelets (Figures S3, S4, S5, S6, S7 in Appendix S1),

correlate with experimental variations among the normal samples

in genomic center, DNA microarray hybridization or scan date as

well as the tissue batch and hybridization scanner, with P-values

v10{3. Consistently, the corresponding arraylets, i.e., the first

tumor arraylet and the 247th to 251st normal arraylets, describe

copy-number distributions which are approximately centered at

zero with relatively large, chromosome-invariant widths.

The 246th probelet (Figure 2e), which is mathematically

approximately common to both the normal and tumor datasets,

describes copy-number amplification in the female relative to the

male patients that is biologically common to both the normal and

tumor datasets. Consistently, both the 246th normal arraylet

(Figure 2d) and 246th tumor arraylet describe an X chromosome-

exclusive amplification. The P-values are v10{38 (Table 1 and

Figure S9 in Appendix S1). To assign the patients gender, we

calculate for each patient the standard deviation of the mean X

chromosome number from the autosomal genomic mean in the

patient’s normal profile (Figure 2 f ). Patients with X chromosome

amplification greater than twice the standard deviation are

assigned the female gender. For three of the patients, this copy-

number gender assignment conflicts with the TCGA gender

annotation. For three additional patients, the TCGA gender

annotation is missing. In all these cases, the classification of the

patients by the 246th probelet agrees with the copy-number

assignment.

Second, we find that the GSVD identifies a global pattern of

tumor-exclusive co-occurring CNAs that includes most known

GBM-associated changes in chromosome numbers and focal

CNAs. This global pattern is described by the second tumor

arraylet (Figure 2a and Dataset S3). The second most tumor-

exclusive probelet (Figure 2b), which describes the corresponding

copy-number variation across the patients, is the most significant

probelet in the tumor dataset. Dominant in the global pattern, and

frequently observed in GBM samples [2], is a co-occurrence of a

gain of chromosome 7 and losses of chromosome 10 and the short

arm of chromosome 9 (9p). To assign a chromosome gain or loss,

we calculate for each tumor profile the standard deviation of the

mean chromosome number from the autosomal genomic mean,

excluding the outlying chromosomes 7, 9p and 10. The gain of

chromosome 7 and the losses of chromosomes 10 and 9p are

greater than twice the standard deviation in the global pattern as

well as the tumor profiles of *20%, 41% and 12% of the patients,

respectively.

Focal CNAs that are known to play roles in the origination and

development of GBM and are described by the global pattern

Table 1. Enrichment of the significant probelets in TCGA annotations.

Relative DNA Copy Number Gain Relative DNA Copy Number Loss

Probelet Phenotype Annotation n K k P-value Annotation n K k P-value

1 Tumor Sample
Center

HMS 183 34 34 8:5|10{6 MSKCC 68 103 55 3:9|10{15

246 Patient
Gender

Female 86 86 84 8:0|10{62 Male 165 165 163 8:0|10{62

247 Normal Sample
Scan Date

10.8.2009 51 6 6 5:5|10{5 7.22.2009 38 11 10 2:0|10{8

248 Normal Sample
Batch/Scanner

HMS 8/2331 19 19 19 6:2|10{29 – – – – –

249 Normal Sample
Batch/Scanner

– – – – – HMS 8/2331 22 19 19 9:6|10{26

250 Normal Sample
Scan Date

4.18.2007 26 9 9 3:3|10{10 7.22.2009 25 11 9 1:1|10{8

251 Normal Sample
Center

HMS 139 46 46 2:8|10{14 MSKCC 112 101 89 2:1|10{32

Probabilistic significance of the enrichment of the n patients, with largest or smallest relative copy numbers in each significant probelet, in the respective TCGA
annotations. The P-value of each enrichment is calculated assuming hypergeometric probability distribution of the K annotations among the N = 251 patients of the

initial set, and of the subset of k(K annotations among the subset of n patients, as described [17], P(k; n,N,K)~
N

n

� �{1Pn
i~k

K

i

� �
N{K

n{i

� �
.

doi:10.1371/journal.pone.0030098.t001
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include amplifications of segments containing the genes MDM4

(1q32.1), AKT3 (1q44), EGFR (7p11.2), MET (7q31.2), CDK4

(12q14.1) and MDM2 (12q15), and deletions of segments

containing the genes CDKN2A/B (9p21.3) and PTEN (10q23.31),

that occur in w3% of the patients. To assign a CNA in a segment,

we calculate for each tumor profile the mean segment copy

number. Profiles with segment amplification or deletion greater

than twice the standard deviation from the autosomal genomic

mean, excluding the outlying chromosomes 7, 9p and 10, or

greater than one standard deviation from the chromosomal mean,

when this deviation is consistent with the deviation from the

genomic mean, are assigned a segment gain or loss, respectively.

The frequencies of amplification or deletion we observe for these

segments are similar to the reported frequencies of the corre-

sponding focal CNAs [4].

Novel CNAs, previously unrecognized in GBM, are also

revealed by the global pattern [14]. These include an amplification

of a segment that contains TLK2 (17q23.2) in *22% of the

patients, with the corresponding CBS P-valuev10{140. Copy-

number amplification of TLK2 has been correlated with

overexpression in several other cancers [22,23]. The human gene

TLK2, with homologs in the plant Arabidopsis thaliana but not in the

yeast Saccharomyces cerevisiae, encodes for a multicellular organisms-

specific serine/threonine protein kinase, a biochemically putative

drug target [24], which activity is directly dependent on ongoing

DNA replication [25]. On the same segment with TLK2, we also

find the gene METTL2A. Another amplified segment (CBS P-

valuev10{13) contains the homologous gene METTL2B (7q32.1).

Overexpression of METTL2A/B was linked with prostate cancer

metastasis [26], cAMP response element-binding (CREB) regula-

tion in myeloid leukemia [27], and breast cancer patients’ response

to chemotherapy [28].

An amplification of a segment (CBS P-valuev10{145) encom-

passing the cyclin E1-encoding CCNE1 (19q12) is revealed in

*4% of the patients. Cyclin E1 regulates entry into the DNA

synthesis phase of the cell division cycle. Copy number increases of

CCNE1 have been linked with multiple cancers [29,30], but not

GBM. Amplicon-dependent expression of CCNE1, together with

the genes POP4, PLEKHF1, C19orf12 and C19orf2 that flank

CCNE1 on this segment, was linked with primary treatment failure

in ovarian cancer, possibly due to rapid repopulation of the tumor

after chemotherapy [31].

Another rare amplification in *4% of the patients, of a

segment (CBS P-valuev10{28) that overlaps with the 59 end of

KDM5A (12p13.33), is also revealed. The protein encoded by

KDM5A, a retinoblastoma tumor suppressor (Rb)-binding lysine-

specific histone demethylase [32], has been recently implicated

in cancer drug tolerance [33]. The same amplified segment

includes the solute carrier (SLC) sodium-neurotransmitter

symporters SLC6A12/13, biochemically putative carriers of

drugs that might overcome the blood-brain barrier [34]. On

the same segment we also find IQSEC3, a mature neuron-

specific guanine nucleotide exchange factor (GEF) for the ADP-

ribosylation factor (ARF) ARF1, a key regulator of intracellular

membrane traffic [35].

Note that although the tumor samples exhibit female-specific X

chromosome amplification (Figure 2c), the second tumor arraylet

exhibits an unsegmented X chromosome copy-number distribu-

tion, that is approximately centered at zero with a relatively small

width. This illustrates the mathematical separation of the global

pattern of tumor-exclusive co-occurring CNAs, that is described

by the second tumor arraylet, from all other biological and

experimental variations that compose either the tumor or the

normal dataset, such as the gender variation that is common to

both datasets, and is described by the 246th probelet and the

corresponding 246th tumor and 246th normal arraylets.

Third, we find that the GSVD classifies the patients into two

groups of significantly different prognoses. The classification is

according to the copy numbers listed in the second probelet, which

correspond to the weights of the second tumor arraylet in the

GBM aCGH profiles of the patients. A group of 227 patients, 224

of which with TCGA annotations, displays high (w0.02) relative

copy numbers in the second probelet, and a Kaplan-Meier (KM)

[36] median survival time of *13 months (Figure 3a). A group of

23 patients, i.e., *10% of the patients, displays low, approxi-

mately zero, relative copy numbers in the second probelet, and a

KM median survival time of *29 months, which is more than

twice longer than that of the previous group. The corresponding

log-rank test P-value is v10{3. The univariate Cox [37]

proportional hazard ratio is 2.3, with a P-value v10{2 (Table

S1 in Appendix S1), meaning that high relative copy numbers in

the second probelet confer more than twice the hazard of low

numbers. Note that the cutoff of +0.02 was selected to enable

classification of as many of the patients as possible. Only one of the

251 patients has a negative copy number in the second probelet

v20.02, and remains unclassified. This patient is also missing the

TCGA annotations. Survival analysis of only the chemotherapy

patients classified by GSVD gives similar results (Table S2 and

Figure S10a in Appendix S1). The P-values are calculated without

adjusting for multiple comparisons [38]. We observe, therefore,

that a negligible weight of the global pattern in a patient’s GBM

aCGH profile is indicative of a significantly longer survival time, as

well as an improved response to treatment among chemotherapy

patients.

A mutation in the gene IDH1 was recently linked with improved

GBM prognosis [1,6] and associated with a CpG island methylator

phenotype [8]. We find, however, only seven patients (six

chmeotherapy patients), i.e., v3%, with IDH1 mutation. This is

less than a third of the 23 patients in the long-term survival group

defined by the global pattern. The corresponding survival analyses

are, therefore, statistically insignificant (Figures S11 and S12 in

Appendix S1).

Chromosome 10 loss, chromosome 7 gain and even loss of 9p,

which are dominant in the global pattern, have been suggested as

indicators of poorer GBM prognoses for over two decades [2,3].

However, the KM survival curves for the groups of patients with

either one of these chromosome number changes almost overlap

the curves for the patients with no changes (Figure S13 in

Appendix S1). The log-rank test P-values for all three classifica-

tions are *>10{1, with the median survival time differences *v3

months. Similarly, in the KM survival analyses of the groups of

patients with either a CNA or no CNA in either one of the 130

segments identified by the global pattern (Figure S14 in Appendix

S1), log-rank test P-values v5|10{2 are calculated for only 12 of

the classifications. Of these, only six correspond to a KM median

survival time difference that is *>5 months, approximately a

third of the *16 months difference observed for the GSVD

classification.

One of these segments contains the genes TLK2 and METTL2A

and another segment contains the homologous gene METTL2B,

previously unrecognized in GBM. The KM median survival times

we calculate for the 56 patients with TLK2/METTL2A amplifi-

cation and, separately, for the 19 patients with METTL2B

amplifications are *5 and 8 months longer than that for the

remaining patients in each case. Similarly, the KM median

survival times we calculate for the 43 chemotherapy patients with

TLK2/METTL2A amplification and, separately, for the 15

chemotherapy patients with METTL2B amplification, are both

GSVD Reveals Global CNAs Predicting GBM Survival
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Figure 3. Survival analyses of the three sets of patients classified by GSVD, age at diagnosis or both. (a) Kaplan-Meier (KM) [36] curves
for the 247 patients with TCGA annotations in the initial set of 251 patients, classified by copy numbers in the second probelet, which is computed by
GSVD for the 251 patients, show a median survival time difference of *16 months, with the corresponding log-rank test P-value v10{3 . The
univariate Cox [37] proportional hazard ratio is 2.3, with a P-value v10{2 (Table S1), meaning that high relative copy numbers in the second probelet
confer more than twice the hazard of low numbers. The P-values are calculated without adjusting for multiple comparisons [38]. (b) Survival analyses
of the 247 patients classified by age, i.e., w50 or v50 years old at diagnosis, show that the prognostic contribution of age, with a KM median survival
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*7 months longer than that for the remaining chemotherapy

patients in each case (Figure S15 in Appendix S1). This suggests

that drug-targeting the kinase that TLK2 encodes and/or the

methyltransferase-like proteins that METTL2A/B encode may

affect not only the pathogenesis but also the prognosis of GBM as

well as the patient’s response to chemotherapy.

Taken together, we find that the global pattern provides a better

prognostic predictor than the chromosome numbers or any one

focal CNA that it identifies. This suggests that the GBM survival

phenotype is an outcome of its global genotype.

Despite the recent genome-scale molecular profiling efforts, age

at diagnosis remains the best prognostic predictor for GBM in

clinical use. The KM median survival time difference between the

patients w50 or v50 years old at diagnosis is *11 months,

approximately two thirds of the *16 months difference observed

for the global pattern, with the log-rank test P-value v10{4

(Figure 3b). The univariate Cox proportional hazard ratio we

calculate for age is 2, i.e., similar to that for the global pattern.

Taken together, the prognostic contribution of the global pattern is

comparable to that of age. Similarly we find that the prognostic

contribution of the global pattern is comparable to that of

chemotherapy (Figure S16a in Appendix S1).

To examine whether the weight of the global pattern in a

patient’s GBM aCGH profile is correlated with the patient’s age at

diagnosis, we classify the patients into four groups, with prognosis

of longer-term survival according to both, only one or neither of

the classifications (Figure 3c). The KM curves for these four groups

are significantly different, with the log-rank test P-value v10{4.

Within each age group, the subgroup of patients with low relative

copy numbers in the second probelet consistently exhibits longer

survival than the remaining patients. The median survival time of

the 16 patients v50 years old at diagnosis with low copy numbers

in the second probelet is *34 months, almost three times longer

than the *12 months median survival time of the patients w50

years old at diagnosis with high numbers in the second probelet.

The multivariate Cox proportional hazard ratios for the global

pattern and age are 1.8 and 1.7, respectively, with both

corresponding P-values v3|10{2. These ratios are similar,

meaning that both a high weight of the global pattern in a patient’s

GBM aCGH profile and an age w50 years old at diagnosis confer

similar relative hazard. These ratios also do not differ significantly

from the univariate ratios of 2.3 and 2 for the global pattern and

age, respectively. Taken together, the prognostic contribution of

the global pattern is not only comparable to that of age, but is also

independent of age. Combined with age, the global pattern makes

a better predictor than age alone. Similarly, we find that the global

pattern is independent of chemotherapy (Figure S16b in Appendix

S1).

To confirm the global pattern, we use GSVD to compare

matched profiles of a larger, more recent, set of 344 TCGA

patients, that is inclusive of the initial set of 251 patients [15].

Agilent Human aCGH 244A-measured 458 tumor and 459

normal profiles were selected, corresponding to the inclusive

confirmation set of N = 344 patients (Dataset S4). The profiles,

centered at their autosomal median copy numbers, are organized

in one tumor and one normal dataset, of M1 = 200,139 and

M2 = 198,342 probes, respectively. Within each set, the medians

of profiles of samples from the same patient are taken after

estimating missing data by using SVD. We find that the significant

probelets and corresponding tumor and normal arraylets, as well

as their interpretations, are robust to the increase from 251

patients in the initial set to 344 patients in the inclusive

confirmation set, and the accompanying decreases in tumor and

normal probes, respectively.

The second tumor arraylet computed by GSVD for the 344

patients of the inclusive confirmation set correlates with that of the

initial set, with the correlation *0.99. To classify the patients

according to the copy numbers listed in the corresponding second

probelet of the inclusive confirmation set, the classification cutoff

+0.02 of the initial set of 251 patients is scaled by the norm of the

copy numbers listed for these patients, resulting in the cutoff

+0.017. Only four of the 251 patients in the initial set, i.e.,

*1.5%, with copy numbers that are near the classification cutoffs

of both sets, change classification. Of the 344 patients, we find that

315 patients, 309 with TCGA annotations, display high (w0.017)

and 27, i.e., *8%, display low, approximately zero, relative copy

numbers in the second probelet. Only two patients, one missing

TCGA annotations, remain unclassified with large negative

(v20.017) copy numbers in the second probelet. Survival

analyses of the inclusive confirmation set of 344 patients give

qualitatively the same results as these of the initial set of 251

patients. These analyses confirm that a negligible weight of the

global pattern, which is described by the second tumor arraylet,

i.e., a low copy number in the second probelet, is indicative of a

significantly longer survival time (Figure 3d). Survival analysis of

only the chemotherapy patients in the inclusive confirmation set

classified by GSVD gives similar results (Figure S10b in Appendix

S1). These analyses confirm that the prognostic contribution of the

global pattern is comparable to that of age (Figure 3e) and is

independent of age (Figure 3 f ). Similarly, we confirm that the

time difference of *11 months and a univariate Cox hazard ratio of 2, is comparable to that of GSVD. (c) Survival analyses of the 247 patients
classified by both GSVD and age, show similar multivariate Cox hazard ratios, of 1.8 and 1.7, that do not differ significantly from the corresponding
univariate hazard ratios, of 2.3 and 2, respectively. This means that GSVD and age are independent prognostic predictors. With a KM median survival
time difference of *22 months, GSVD and age combined make a better predictor than age alone. (d) Survival analyses of the 334 patients with TCGA
annotations and a GSVD classification in the inclusive confirmation set of 344 patients, classified by copy numbers in the second probelet, which is
computed by GSVD for the 344 patients, show a KM median survival time difference of *16 months and a univariate hazard ratio of 2.4, and confirm
the survival analyses of the initial set of 251 patients. (e) Survival analyses of the 334 patients classified by age confirm that the prognostic
contribution of age, with a KM median survival time difference of *10 months and a univariate hazard ratio of 2, is comparable to that of GSVD. (f)
Survival analyses of the 334 patients classified by both GSVD and age, show similar multivariate Cox hazard ratios, of 1.9 and 1.8, that do not differ
significantly from the corresponding univariate hazard ratios, and a KM median survival time difference of *22 months, with the corresponding log-
rank test P-value v10{5 . This confirms that the prognostic contribution of GSVD is independent of age, and that combined with age, GSVD makes a
better predictor than age alone. (g) Survival analyses of the 183 patients with a GSVD classification in the independent validation set of 184 patients,
classified by correlations of each patient’s GBM profile with the second tumor arraylet, which is computed by GSVD for the 251 patients, show a KM
median survival time difference of *12 months and a univariate hazard ratio of 2.9, and validate the survival analyses of the initial set of 251 patients.
(h) Survival analyses of the 183 patients classified by age validate that the prognostic contribution of age is comparable to that of GSVD. (i) Survival
analyses of the 183 patients classified by both GSVD and age, show similar multivariate Cox hazard ratios, of 2 and 2.2, and a KM median survival time
difference of *41 months, with the corresponding log-rank test P-value v10{5 . This validates that the prognostic contribution of GSVD is
independent of age, and that combined with age, GSVD makes a better predictor than age alone, also for patients with measured GBM aCGH profiles
in the absence of matched normal profiles.
doi:10.1371/journal.pone.0030098.g003
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global pattern is independent of chemotherapy (Figures S16 c and

d in Appendix S1).

To validate the prognostic contribution of the global pattern, we

classify GBM profiles of an independent set of 184 TCGA

patients, that is mutually exclusive of the initial set of 251 patients.

Agilent Human aCGH 244A-measured 280 tumor profiles were

selected, corresponding to the independent validation set of 184

patients with available TCGA status annotations (Dataset S5).

Each profile lists relative copy numbers in more than 97.5% of the

206,820 autosomal probes among the M1 = 212,696 probes that

define the second tumor arraylet computed by GSVD for the 251

patients of the initial set. Medians of profiles of samples from the

same patient are taken. To classify the 184 patients according to

the correlations of their GBM profiles with the second tumor

arraylet of the initial set, the classification cutoff of the initial set of

251 patients is scaled by the norm of the correlations calculated for

these patients, resulting in the cutoff +0.15. For the profiles of 162

patients we calculate high (w0.15) and for 21, i.e., *11%, low,

approximately zero, correlation with the second tumor arraylet.

One patient remains unclassified with a large negative (v20.15)

correlation.

We find that survival analyses of the independent validation set

of 184 patients give qualitatively the same results as these of the

initial set of 251 patients and the inclusive confirmation set of 344

patients (Figures 2 g–i and Figures S10c, and S16 e and f in

Appendix S1). These analyses validate the prognostic contribution

of the global pattern, which is computed by GSVD of patient-

matched tumor and normal aCGH profiles, also for patients with

measured GBM aCGH profiles in the absence of matched normal

profiles.

Discussion

Previously, we showed that the GSVD provides a mathematical

framework for sequence-independent comparative modeling of

DNA microarray data from two organisms, where the mathemat-

ical variables and operations represent experimental or biological

reality [12,29]. The variables, subspaces of significant patterns that

are common to both or exclusive to either one of the datasets,

correlate with cellular programs that are conserved in both or

unique to either one of the organisms, respectively. The operation

of reconstruction in the subspaces common to both datasets

outlines the biological similarity in the regulation of the cellular

programs that are conserved across the species. Reconstruction in

the common and exclusive subspaces of either dataset outlines the

differential regulation of the conserved relative to the unique

programs in the corresponding organism. Recent experimental

results [40] verify a computationally predicted genome-wide mode

of regulation [41,42], and demonstrate that GSVD modeling of

DNA microarray data can be used to correctly predict previously

unknown cellular mechanisms.

Recently, we mathematically defined a higher-order GSVD

(HO GSVD) for more than two large-scale matrices with different

row dimensions and the same column dimension [13]. We proved

that this novel HO GSVD extends to higher orders almost all of

the mathematical properties of the GSVD. We showed, compar-

ing global mRNA expression from the three disparate organisms S.

pombe, S. cerevisiae and human, that the HO GSVD provides a

sequence-independent comparative framework for more than two

genomic datasets, where the variables and operations represent

experimental or biological reality. The approximately common

HO GSVD subspace represents biological similarity among the

organisms. Simultaneous reconstruction in the common subspace

removes the experimental artifacts, which are dissimilar, from the

datasets.

We now show that also in probe-independent comparison of

aCGH data from patient-matched tumor and normal samples, the

mathematical variables of the GSVD, i.e., shared probelets and

the corresponding tumor- and normal-specific arraylets, represent

experimental or biological reality. Probelets that are mathemat-

ically significant in both datasets, correspond to normal arraylets

representing copy-number variations (CNVs) in the normal

human genome that are conserved in the tumor genome (e.g.,

female-specific X chromosome amplification) and are represented

by the corresponding tumor arraylets. Probelets that are

mathematically significant in the normal but not the tumor

dataset represent experimental variations that exclusively affect the

normal dataset. Similarly, some probelets that are mathematically

significant in the tumor but not the normal dataset represent

experimental variations that exclusively affect the tumor dataset.

We find that the mathematically second most tumor-exclusive

probelet, which is also the mathematically most significant

probelet in the tumor dataset, is statistically correlated, possibly

biologically coordinated with GBM patients’ survival and response

to chemotherapy. The corresponding tumor arraylet describes a

global pattern of tumor-exclusive co-occurring CNAs, including

most known GBM-associated changes in chromosome numbers

and focal CNAs, as well as several previously unreported CNAs,

including the biochemically putative drug target-encoding TLK2

[14]. We find that a negligible weight of the second tumor arraylet

in a patient’s GBM aCGH profile, mathematically defined by

either the corresponding copy number in the second probelet, or

by the correlation of the GBM profile with the second arraylet, is

indicative of a significantly longer GBM survival time. This GSVD

comparative modeling of aCGH data from patient-matched tumor

and normal samples, therefore, draws a mathematical analogy

between the prediction of cellular modes of regulation and the

prognosis of cancers.

We confirm our results with GSVD comparison of matched

profiles of a larger set of TCGA patients, inclusive of the initial set.

We validate the prognostic contribution of the pattern with GSVD

classification of the GBM profiles of a set of patients that is

independent of both the initial set and the inclusive confirmation

set [15].

Additional possible applications of the GSVD (and also the HO

GSVD) in personalized medicine include comparisons of multiple

patient-matched datasets, each corresponding to either (i) a set of

large-scale molecular biological profiles (such as DNA copy

numbers) acquired by a high-throughput technology (such as

DNA microarrays) from the same tissue type (such as tumor or

normal); or (ii) a set of biomedical images or signals; or (iii) a set of

anatomical or clinical pathology test results or phenotypical

observations (such as age). GSVD comparisons can uncover the

relations and possibly even causal coordinations between these

different recorded aspects of the same medical phenomenon.

GSVD comparisons can be used to determine a single patient’s

medical status in relation to all the other patients in the set, and

inform the patient’s diagnosis, prognosis and treatment.

Supporting Information

Appendix S1 Figures S1, S2, S3, S4, S5, S6, S7, S8, S9,
S10, S11, S12, S13, S14, S15, S16 and Tables S1 and S2. A

PDF format file, readable by Adobe Acrobat Reader.

(PDF)

Mathematica Notebook S1 Generalized singular value
decomposition (GSVD) of the TCGA patient-matched
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tumor and normal aCGH profiles. A Mathematica 8.0.1

code file, executable by Mathematica 8.0.1 and readable by

Mathematica Player, freely available at http://www.wolfram.

com/products/player/.

(NB)

Mathematica Notebook S2 Generalized singular value
decomposition (GSVD) of the TCGA patient-matched
tumor and normal aCGH profiles. A PDF format file,

readable by Adobe Acrobat Reader.

(PDF)

Dataset S1 Initial set of 251 patients. A tab-delimited text

format file, readable by both Mathematica and Microsoft Excel,

reproducing The Cancer Genome Atlas (TCGA) [4] annotations

of the initial set of 251 patients and the corresponding normal and

tumor samples. The tumor and normal profiles of the initial set of

251 patients, in tab-delimited text format files, tabulating log2

relative copy number variation across 212,696 and 211,227 tumor

and normal probes, respectively, are available at http://www.

alterlab.org/GBM_prognosis/.

(TXT)

Dataset S2 Segments of the significant tumor and
normal arraylets, computed by GSVD for the initial set
of 251 patients. A tab-delimited text format file, readable by

both Mathematica and Microsoft Excel, tabulating segments

identified by circular binary segmentation (CBS) [20,21].

(TXT)

Dataset S3 Segments of the second tumor arraylet,
computed by GSVD for the initial set of 251 patients. A

tab-delimited text format file, readable by both Mathematica and

Microsoft Excel, tabulating, for each of the 130 CBS segments of

the second tumor arraylet, the segment’s coordinates, the CBS P-

value, and the log-rank test P-value corresponding to the Kaplan-

Meier (KM) survival analysis of the initial set of 251 patients

classified by either a gain or a loss of this segment.

(TXT)

Dataset S4 Inclusive confirmation set of 344 patients. A

tab-delimited text format file, readable by both Mathematica and

Microsoft Excel, reproducing the TCGA annotations of the

inclusive confirmation set of 344 patients. The tumor and normal

profiles of the inclusive confirmation set of 344 patients, in tab-

delimited text format files, tabulating log2 relative copy number

variation across 200,139 and 198,342 tumor and normal probes,

respectively, are available at http://www.alterlab.org/

GBM_prognosis/.

(TXT)

Dataset S5 Independent validation set of 184 patients. A

tab-delimited text format file, readable by both Mathematica and

Microsoft Excel, reproducing the TCGA annotations of the

independent validation set of 184 patients. The tumor profiles of

the independent validation set of 184 patients, in a tab-delimited

text format file, tabulating log2 relative copy number variation

across 212,696 autosomal and X chromosome probes, are

available at http://www.alterlab.org/GBM_prognosis/.

(TXT)
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