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Abstract — The method of Moving Least Squares (MLS) is a popular framework for reconstructing continuous functions from scattered
data due to its rich mathematical properties and well-understood theoretical foundations. This paper applies MLS to volume rendering,
providing a uni ed mathematical framework for ray casting o f scalar data stored over regular as well as irregular grids. We use the
MLS reconstruction to render smooth isosurfaces and to compute accurate derivatives for high-quality shading effects. We also
present a novel, adaptive preintegration scheme to improve the ef ciency of the ray casting algorithm by reducing the ov erall number
of function evaluations, and an ef cient implementation of our framework exploiting modern graphics hardware. The resulting system
enables high-quality volume integration and shaded isosurface rendering for regular and irregular volume data.

Index Terms —Volume Visualization, Unstructured Grids, Moving Least Squares Reconstruction, Adaptive Integration
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1 INTRODUCTION

. N . 2. PREVIOUS WORK
Volume visualization has become an integral component of the sCi-
enti ¢ discovery process and the simulation pipeline. Data coming Direct Volume Rendering: The generation of high-quality im-
from scanning devices such as MRI or ultrasound machines, as welbaes of volume data relies on methods that accurately solve the vol-
results from simulations in elds like computational uid dynamics,ume rendering integral [28], which models a volume as a medium that
geophysics, and biomedical computing, are often represented vatan emit, transmit, and absorb light. The standard method for solv-
metrically. These volumes, however, can be de ned over regular img this integral is ray casting, and was proposed by Levoy [21] for
irregular grids, giving rise to several distinct classes of rendering algregular grids, and by Garrity [14] for irregular grids, speci cally tetra
rithms and a plethora of implementations. hedral meshes. Splatting, an alternative to ray casting, was proposed

In this paper we propose a unied framework for generatin"%’_ Westover [49] for regular grids, anc_:l has been e_xtended to irnegula
high-quality visualizations of arbitrary volumetric datasets using tH&1dS [25, 51]. In either case, a continuous function must be recon-
method oMoving Least Squarg®LS). MLS is a popular scheme for Structed from the discrete volume data. _

reconstructing continuous functions from scattered data due to its wellWhile there are well-established mathematical frameworks for re-
understood mathematical foundations. Furthermore, the MLS franfénstruction of continuous functions from regular volume data 10, 18,
work contains several distinct components that provide a high lev&(. 9], irregular volumes are more challenging as there is no implied

of control over the function reconstruction, and allows for a tunabfpPatial structure to the data points. Ray casting of tetrahedral meshes
amount of data smoothing as well as interpolation. allows a direct interpolation of the data at ray-triangle intersections us-

ing homogeneous coordinates [14]. For curvilinear grids, interpolation
§¢more complicated [45] and is typically performed at the intersection
castingto generate high-quality images with volume integration angloints With cell faces [6] or in computational space [13]. Anothe_r pop-

h - lar algorithm for rendering tetrahedral meshes is the cell projection
isosurfaces, such as that shown in Figure 1. method [42], in which tetrahedral cells are projected in back to front
The volume MLS framework enables computing analytic derivasrder onto the image plane [5, 11]. However, a correct depth-imgler
tives for high-quality isosurface shading with specularities. To def cells does not always exist, and great care must be taken to avoid
crease the over-all number of MLS function evaluations we proposesigual artifacts [50]. Finally, another class of algorithms uses a sweep-

noveladaptive preintegratiotechnique. plane through the volume followed by rendering of 2D cells [15, 43].

The main contributions of this work are: a uni ed MLS framework In the case where no explicit structure of the data is given, scattered
for reconstructing continuous functions and their derivatives froth bodata reconstruction schemes are applied. Arguably the most promi-
regular grids and unstructured volume data; a novel adaptive preintent method among these are radial basis functions (RBFs) that were
gration scheme for ray casting continuous functions with transfer funetroduced to volume rendering by Jagigal [17]. While RBFs can be
tions that include isosurfaces; and a system that combines high-quatitaluated and rendered ef ciently [31], the method requires a costly
isosurface rendering and volume integration. We provide details on tiial solution to a global system of equations, the size of which is
theoretical foundations of the MLS framework, along with an expldied to the number of data points. Other methods proposed in the con-
ration of the various tunable parameters. We also present an imglext of volume visualization are inverse distance weighting [35], which
mentation of volume MLS ray casting on modern graphics processera special case of MLS [41], and discrete Sibson interpolation [36].
units (GPUSs), provide details of our system implementation, and shdwis latter method inherently relies on resampling the data onto a reg-
results on several regular and irregular volume data sets. ular grid. In contrast to these approaches, volume MLS ray casting
provides a unifying mathematical framework for the reconstruction of
arbitrarily sampled volume data that allows the user to control the re-
construction and data smoothing in a principled manner.

Using MLS, we reconstruct continuous functions from data stor
on regular as well as irregular grids. We introdua#ume MLS ray
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MLS does not require a solution to a global system of equations.



Volume Integration: During ray casting, a transfer function (TF),
which maps scalar values and (optionally) gradients to colors a
opacities, is applied to the volume function. These color and ope
ity properties of the volume are integrated along rays to obtain tl
nal pixel colors. The TF must be smooth in order to compute the nt
merical integral ef ciently and accurately as no general, closed-for
solutions are available. For the case of a smooth TF, well-known ad:
tive numerical schemes can be employed [32], and theory from Mor
Carlo integration can guide their design [7]. Also, interval arithmeti
has been proposed to make the above approaches robust [33].

In practice, however, smooth TFs limit the range of achievable re
dering effectse.g, isosurface rendering via thin spikes in the TF thai
in theory, require an in nite sampling density. To circumvent thit
problem Roettgeet al. [39] introducepreintegration which avoids
visual artifacts by precomputing the volume rendering integral fc
ray segments, assuming that the underlying scalar function is |i
ear. Recent efforts focus on accelerating the precomputation [8, 2
faster approximation algorithms [24], multidimensional transfer func
tions [30], and preintegrated lighting [24, 29].

In this paper we propose an adaptive integration scheme based on
preintegration. This scheme is similar in spirit to other numerical intg55 1. The continuous temperature function of a simulated heptane
gration schemes, such as adaptive Simpson [32] and the secovat defjjume rendered with volume MLS ray casting.
tive re nement scheme of Roettget al. [38].

A

3 VOLUME MLS
fX)=g ()1

In order to generate high-quality images, a ray caster must evaluate a
continuous representation, and the associated derivatives, of welume
ric data. For volume data de ned over a grid, two approaches can be f
taken: rst, the connectivity of the grid can be used to de ne a recon- '
struction scheme over the locally connected data points; or second,
the data points can be used independently of their grid connections
in a scattered data reconstructioscheme. The rst approach works ; :
well for regular grids, where higher order polynomials are often em- X; X
ployed to reconstruct functions of arbitrary continuity. For irregular
grids, however, reconstructions are challenging for anything other thﬁg. 2. MLS reconstruction of a given set of scattered data points (x;; fi)
piecewise linear interpolation. Thus, we advocate a uni ed reconstrug-1D. The local WLS approximation gy for the point x is shown in blue.
tion framework that takes the latter approach, allowing for continuouts computation and evaluation at every point of the domain yields the
and differentiable representations of regwad irregular grids. complete MLS reconstruction shown in red.

Scattered data reconstruction takes a seh ofata points,p; =
(xi; fi), de ned over a volumeé/, and computes an approximation
(or interpolation) to the data point(x) : V! R. One such well- andevaluating a local approximatiagx atx (shown in blue):
studied, meshless scheme is MLS, whéfe) is obtained by approxi-
mating the local neighborhood &fin a weighted least squares (WLS) f(X) = gx(¥): (1)
sense. The MLS method has a high degree of exibility, making it . . . . . L
particularly appealing for the reconstruction of volumetric data, whilé€ local approximatiomy is obtained by the following WLS mini-
avoiding the artifacts often incurred by reconstruction schemes that ¥&ation problem:
constrained to arbitrarily poor connectivitieise(, interpolation over .o . 5
poorly shaped mesh elements). This exibility provides the capacity gx = argming wi(x)jg(xi)  fij; O]
for (controllably) handling noise due to measurement errors in scanne g i

data or numerical errors in simulated data. Furthermore, the MLS erewi () is the weight of the samplg; for the current evaluation
proximation is a continuous reconstruction with well-de ned, smootagﬁ;imx_ These weights typically decrease with distance frofsee
derivatives which allows for high-quality shading effects. Section 3.1.2). Assuming can be represented as a linear combina-
In this section, we rst describe the MLS framework and matheon of k basis functiond(x) = [ by(X);::::b(x)]T with coef cients
matical foundations in the context of reconstructing continuous f“”E; STy
tions from scattered data. We then discuss and explore the variglig,:
components of the MLS method as they relate to reconstructing data ¢ = min k(p W(x)Bc f)k2- @)
stored over regular and irregular grids speci cally for generating-high C2RK '
quality visualizations by ray casting. Our notation is as follows: bold g _ )
face lower-case variables denote column vectors, sughrds y 47, whekreW.(x) = diagwy(x);:: : ;Wn(x)) 2 R™ " andB;; = bi(x;);B 2
while bold face upper-case variables denote matrices, such as the id@h-- Itis well-known from linear algebra that the above least squares
tity matrix |. We note that the MLS discussion and mathematical delfroblem can be solved using thermal equation Substituting the so-

inition holds for arbitrary dimensions, even though we restrict our efdtion for ¢, into f(x) = b(x) " ¢x yields the following explicit formu-
amples and results ®°. lation of the MLS approximating function:

3.1 The MLS Framework f(x) = b(x)"(BTW(x)B) BTW(X)f . (4)

The main idea behind the MLS reconstruction method is depicted fohis function is smooth, assuming the weight$x) are smooth [19],
a 1D signal in Figure 2. Shown in red, a continuous approximatiand can be computed as long as the weighted covariance matrix
f(x) is reconstructed from a set nfdata pointgx;; f;) by computing BTW(x)B is invertible, which is the case iink(W(x)B)  k — this
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Fig. 3. The effects of using different basis functions and support sizes for reconstructing the Marschner-Lobb data set. In the rst row, the data is
approximated using a linear basis with support size 1.8 (left), 2.4 (middlg), 4 (right). The second row shows a quadratic basis with support size 2.6
(left), 3 (middle), 4 (right). The boundary behavior of the MLS reconstruction is due to the divergence of the function during extrapolation [19].

implies that at leadt weights have to be nonzero. We emphasize thaupport, only points within a distant¢eof x have to be taken into ac-
the matrixW(x) depends on the evaluation point, and hence the leasiunt, which allows for ef cient computation while avoiding square

squares system must be solved at every roots in the distance computations. The effect of the support size in
In the MLS framework, the smoothness of the reconstruction, &se reconstruction is depicted in Figure 3.
well as thetightnesf the approximation to the data valuég( inter- To reconstruct irregular, and possibly anisotropic, datasets we use

polation), is controlled through the choice of the basis and weightirige weighting scheme proposed by Adamson and Alexa [1], and attach
functions. Each of these components are discussed in the followielfjpsoidal weight supportsl; to each input sample:
sections.

, _ wi(x) = g (kHi(x  x;)k) . O
3.1.1 Basis Functions
When choosing the basigg, b(x)), the main trade-offs are approx_The weight t.ransfo.rmsHi, are obtgined using_a covariance analysis
imation power versus ef ciency. Lower order polynomial bases a/@ the one-ring neighborhoods. Figure 6 depicts an example of such
less accurate at approximating the data due to fewer degrees of fRYSOtropic weight supports. For irregular datasets that do not gresen
dom in the function. Higher order polynomial bases, however, are [62§i cantanisotropy, itis suf cient to replace the expensive ellipsoids
ef cient as a larger linear system must be solved, as well as the d¥.Palls, reducing the 3 3 matricesH; to a single scalar radius.
termination of a larger neighborhood to maintain stability in the linear " @ddition to data approximation, the MLS framework is also ca-
system computation. Furthermore, a too-large basis can yield ngjable of_ data interpolation using weighting functions that co_ntaln a
tting. We have experimented with several bases, and for ray castig§'gularity [41]. One such function proposed by Adamebal.[2] is:
MLS volumes, we advocate the use of linégx) = ( 1;x;y;2) T basis 5
functions. Indeed, as shown in Figure 3, a quadratic basis does not q(x) = In(x)= x*+2x 1 0 x 1 ®)
give much better results while increasing the computational burden by 0 x>1

more than a factor of two. ) . . R
Compared with other interpolating weighting schemes, such as those
3.1.2 Weighting Functions ased on inverse distances [41, 35], Equation 8 has a nite support,
ghting based on i di 41, 35], E ion 8 h i

; ; . hich is important for ef cient evaluation. One property of interpo-
Once the basis function has been xed, the quality of the reconstryc:. e :
tion highly depends on the weights assigned to the neighboring s hl.ng. ML|S Wthh'c?f's notewo;thyt Its> the z#]spot %herlon;ftsr?on [41, 19].
ples. For uniform data sets, we employ the following simple weightin IS implies that for a constan ai's’ € gradient of the approxima-
scheme: n at any data point is zerd f(xj) = 0. To avoid this undesirable

characteristic a higher order basis can be used.
kx  xik
wi(x)= g T‘ ; (5) 3.2 Gradient Computation
The generation of high-quality shading effects requires accurate grad
whereh is the support size, ang is a smooth, decreasing weightent information, as does the adaptive preintegration scheme discussed
function for which several options have been proposed in the literi@- Section 4. There are two established methods for computing the
ture [47]. In this work, we use the following compactly supportegradient within the MLS framework. The most accurate method is to
polynomial: analytically compute the gradient from the partial derivatives of the
MLS scalar eld formula (Equation 4):
(1 2  ifx<1

a0 = 0 otherwise. (©) 7fx) _ Th(x) '
- X
where the power factoa controls the speed at which the weighting Ll Ll
function decreases. Although larger valuesaofncreases the con- b()TA(X) * TA(X) o+ BT TWX) ©)
tinuity of the function, large values also require a wider support for Xk Xk

stable computation. A good compromiseais= 4, which guarantees
a C3 reconstruction. Note that in Equation 4, singé) has a nite  whereA(x) is the weighted covariance mati{ W(x)B.



In the remainder of this section we rst formulate an approximation
of the volume rendering integral using arbitrary length evaluation in-
tervals (Section 4.1), which is followed by a description of the interval
length adaptation scheme (Sections 4.2 and 4.3). We then include de-
tails on the computation of the preintegration tables and a description
of how to handle clipped ray segments incurred from intersecting rays
with irregular grids (Section 5).

Fig. 4. MLS reconstructions shaded using the local approximate nor- 4.1 Approximating the Volume Integral

mals (left), and the exact analytic normals (right). In this section we derive an approximation of the volume render-

ing equation [28] for use with the proposed adaptive preintegration
method. Speci cally, the derivation allows for the integration along
A more computationally ef cient alternative is to compute the graa ray to be approximated with a composition of colors and opacities
dient of the local WLS approximatiogx, which has been shown to computed over arbitrary-length subintervals of the ray. To begin, the
reasonably approximate the gradient of the underlying function [22}volume rendering integral is given as:

Zp

T ] o
109 o) _ 109 " (10) 1= o(f ) LR e o LI My, (11)
X Xk X« 0

In practice we nd that images shaded using either the local gritherec is the emitted color and is the extinction which changes
dient or the analytic formula most often lead to indistinguishable r&ith the scalar functiorf along the rayx(/'). For use with preinte-
sults, except for models presenting high frequencies, such as the regration, the domaiid of the integral can be split into the intervals [8]

shown in Figure 4. Hence we advocate, in general, the use of the mdfe: dil;:::;[dn 1;dn]), wheredy = 0 andd, = D. the opacity &) and
ef cient local gradient. color (C) for arbitrary length intervals can then be de ned as:

Zdi+
4  ADAPTIVE PREINTEGRATION agd.g = 1 exp 1t(f(x(l )))d/ (12)

The uni ed MLS framework proposed in this paper incurs a more ex-
pensive scalar eld function evaluation than other lower order recon-
struction schemes. As such, we proposeadaptivepreintegration Zg., R .
scheme that modi es the length of evaluation intervals along rays, g4, = c(F(x(I ) E(F(x(1 ) e d LAUMA TGy 4.3
focusing the computation along segments where the volume integral = di
changes the fastest. We observe that all of the information needed . . .
to robustly determine an appropriate interval length for evaluating N9 Equations 12 and 13 we arrive at the well-known recursive
volume integral is contained in the preintegration tables and the scdf&@nt-to-back composition formulas for opacity and color:
function itself. First, because the preintegration tables ensure that iso-
surfaces will be composited as long as the scalar function is monotonic air1 = ai+(1l aiag;q,, (14)
over an interval, the interval length can be increased with increasing
composited opacity values. And second, because isosurfacesxnear e
trema in the scalar function can be missed, the interval length must CG+1 = GC+(1 a)Cyq.q,q (195)
decrease near these features.

From these observations we propose a novel, adaptive preinteguiierel = Cp+ lpan andag = Co = 0. This reformulation is exact,
tion method for computing the volume rendering integral. An illusand because there are no assumptions about the length of the intervals,
trative result of the method is shown in Figure 5, where the adaptitfee step size can be varied along the ray. Furthermore, as Equations
sample locations along one ray are shown. The behavior of the scdldrand 15addthe contribution of the intervdti;; d;+ 1], this contribu-
function along the ray is shown in red while the accumulated opalien is fully determined by1 ai)ag;q,,) and(1 ai)Cyq.d,,]- This
ity is shown in blue. It can be seen that the sampling of the adaptipeoperty is important in Section 4.2.
scheme (bold vertical lines) becomes more coarse as the accumulatedlssuming thatf (x(/ )) is a linear function on the intervd;; di- 1],
opacity increases. Re nement occurs, however, around scatar fuayy. ; andCyg.q,,; can be precomputed in a 3D table. This pre-
tion extrema to ensure that all isosurface intersections are deteci@hputation depends on the value of the scalar fundtianthe front
Finally, the sampling is terminated when the opacity is saturated. d;) and the backf(di; 1) of the interval, as well as on the length
contrast, standard preintegration methods [8] can only take advantaged,, ; d; of the interval. We note that these table values are only an
of early ray termination while choosing a conservative step size sugBproximation to the true integral over the interval because the func-
that extrema in the scalar function are adequately sampled, prodiign is, in general, nonlinear and the table has a nite resolution.

slowly. color of an interval (stored in a preintegration table) @y 1
Cig:d,, ) @nd similarly, the approximated opacity&g+ 11 a[g:d, ,]-
b | i ] 4.2 Interval Length Adaptation
EZ ] B The accuracy of the volume integral approximation along a interval
ool i A e can be increased by further subdivision along the interval. As such, the

interval can be progressively re ned until the difference of the vaum
Fig. 5. An illustration of the sampling along a ray with adaptive (vertical !ntegral approximation between any two successive subdivision levels
lines). The function is plotted in red while the opacity along the ray is 1S below some error threshold.

shown in blue. It can be seen that the adaptive scheme re nes n ear S'tarting with a coarse step si;e, the initial \./olu.me integral approxi-
local extrema and at the beginning of the ray where the contribution to ~ mation along an interval for color.¢., the contribution of the interval

the integral is large while the interval length increases with increasing  in Equation 14)Cy, is:
opacity. C1= G+ (16)



To increase the accuracy of this approximation, the interval is subdicremental subrange preintegration such that we can control the max-
vided, and the contributiorC,, becomes a summation over the twamal step size of the numerical integration, i.e., we supersample inter-

subintervals: vals if necessary. While the table of lendfhcan also be computed
. . from the table of length=2 using the idea of incremental preintegra-
Co= Gijw 1212+t (1 &jiiv 1201=0)Civ 1211+ 1122 tion [46], we found it dif cult to control the errors in such a scheme.

The need for high accuracy preintegration also implies larger tables.
The subdivided contributions for opacity are de ned similarly as:  All the results in this paper use tables with a resolution o512hile
these large tables increase the memory footprint of the system (the ta-
bles require approximately 72MB), they are relatively fast to compute
(up to 10 seconds on the CPU) and could likely be generated on the
E;PU at faster speeds, enabling interactive user control of the TFs.
In the case where an interval is clipped against the bounding geom-
y of the volume we must compute the integral for a length that is not
. R present in any of the tables. For this scenario, the integral can be deter-
Based on the volume integral approximatidbsand C; we de- mined by carefully combining values from different tables. Because

e thg relative error of the approximation ajC; — Cj5Col, where happens only twice per ray, this additional complexity is virtually
jCi= Cir?2+ C:g?+ C:b? — note that this isiotindependent from |,nnoticeable.

the opacity (see Equations 15 and 16). To adapt the sampling as th
opacity increases we multiply the relative error@dy a). The nal
termination criteria for the recursive subdivision is:

8i+11 Aiirt=21=2 (1 Bisiv 122122) Eit 120+ 1122

This subdivision continues recursively until the difference in the vo
ume integral approximation over the entire interval changes by oné)(r
some small amount.

Riext, the ray caster intersects each ray with the boundary of the
volume, nding all the intervals that lie within the (possibly noncon-
vex) hull of the grid. These intersection points are important as the
MLS function approximation is ill-de ned away from the data points.
Along each of the intersected ray segments, integration intervals are
In the recursion itis importantto rst subdivide the interja: d ] determine_d using the e}daptive scheme described in Section 4, and the
) P R ; P+ 1=2 MLS function and gradient are computed at the front and back of each
such tha®;, 1, is known when subdividing the intervigh, 15 di+ 1] interval (see next section). Finally, the volume integration along the
This is becausa, 1 is used in the computation of the terminationnterval is computed via lookups into the preintegration tables. The
criteria for the intervald;, 1-»; di+ 1]. Note that this scheme is automat-resulting color and opacity are composited with the stored values on
ically optimal for constant transfer functions and linear scalar eldghe ray. Early ray termination occurs when the opacity value is greater
sinceC; andC; will be equal to within numerical errors. than some threshold close to one (for the results in this paper we use
0.99).

(1 a)iCt CiaGj< e @an

4.3 Handling Scalar Function Extrema

The subdivision scheme in the previous section works well as long2d Fast and Robust MLS Evaluation

the scalar function is monotonic over an interval. If this property is Virhe most time critical part of our rendering system is the evaluation
olated, an isosurface may exist near an extrema of the scalar functighe MLS function and its gradient, which involves both a neighbor-
which is never recovered during subdivision. The MLS reconstrugpod query and solving a linear system. The complexity of the latter
tions are not guaranteed to be monotonic over an arbitra_ry interval@garation depends on the size of the neighborhood and the number of
they are not linear. Because of that, we allow extrema in the scal@ggrees of freedom in the basis. For a small basis, once the cowarianc
function to induce subdivisions in the adaptive preintegration SChemﬁatriX BTW(X)B is computed, solving the normal equation itself is

~ We propose using the derivatives at the beginning and end of gflatively cheap and can be done ef ciently using a Cholesky decom-
interval to determine whether the interval contains an extrema. Thiggsition without square roots of the covariance matrix. Given
an interval[d;; d;+ 1] will be further subdivided if

Dv(f(x(di)) Dv(f(x(di+1))) < O (18)
whereDy(f(x(d;))) is the derivative of the scalar functidnat x(d;)

in the direction of the raw. To computeDy(f(x(d;))) we use the
standard formulation:

B'W(x)B = LDLT, (20)

wherel is a lower triangular matrix with unit diagonal, afmdlis a
diagonal matrix, we can sole as:

ox = L ™Dt BTwWXf . (21)
Dy(f(x))= Nf(x) v. (29)

] ) ) ) Not only does avoiding the computation of square roots improve per-
Equation 19 is ef cient to compute in the proposed MLS frameworkyrmance, but it also increases the stability of the system. Moreover,
asNf(x) is already determined for shading, and imposes very litti§oth stability and ef ciency can be further improved by shifting the
overhead in an MLS function evaluation. It should be noted that ﬂéﬁigin of the basis to the the evaluation poing., b(x;) = b(x; X),
accuracy of the termination criteria heavily depends on the accuragiich is mathematically equivalent and avoids large numbers when
of the computed gradiemMf(x). computing the function far from the origin. Since the basis function
is only evaluated ax, i.e., at the origin, it is therefore suf cient to
compute the constant coef ciesi of cx, hence avoiding most of the
The rst step in the proposed volume MLS ray casting system is alculation in Equation 21.
compute the preintegration tables based on an input transfer functionThe computations of the neighbor samples, on the other hand, re-
We compute the table for opacity, as well asplaeked tablefor shad- quires ef cient spatial-data structures. More precisely, given ak eva
ing and material properties, using the incremental subrange preintegration pointx, the challenge is to nd all samplgg having strictly
tion algorithm proposed by Lurt al.[24]. In the adaptive preintegra- positive weights. Therefore, the choice of both the data structure and
tion scheme implementation we must choose two paramétgssand  search algorithm is related to the weighting scheme. For the weighting
Imin, Which bound the length of an interval. Since we know that durinfyinction de ned in Section 3.1.2, we need to nd all the ellipsoids (or
the subdivision process only intervals of lendithuy Imax=2;:::;Imin  balls) containingk. In our CPU implementation this is accomplished
will be used, only those tables need to be computed. using a kd-tree partitioning of the space where a sample is referenced

We found that our adaptive preintegration scheme is sensitive lig all leaves intersecting its corresponding ellipsoid. Our kd-tree is
numerical errors in the preintegration tables. To be able to explibtilt recursively from top to bottom until the size of the node is smaller
itly control the accuracy of the preintegration tables we improved thkan the average radius of the node's samples.

5 IMPLEMENTATION



Table 1. This table lists the data sets presented in this paper, along with the timings of our GPU implementation for the standard and adaptive
integration schemes as well as the number of function evaluations needed by both schemes to satisfy the RMSE shown. We also show the step
size parameters Imin, Imax @nd the termination criterion e (see Section 4.2) for the adaptive scheme which were used to generate these results.

Data Set Grid Size FPS FPS #Func Evals  # Func Evals Min/Max e RMSE
Type Standard Adaptive Standard Adaptive Interval Length

Marschner-Lobb  regular 41x41x41 0.28 0.46 22M 9.4M 0.16&/2. 0.03 0.044

Heptane Plume regular 302x302x302 0.72 0.69 44.6M 18.8M 1% 0.03 0.044

Blunt Fin irregular 180K tets 241s(CPU)  196s(CPU) 1.7M 1.4M 4.6/1.15 0.08 0.017

Bucky Ball irregular 1.2M tets 0.45 0.64 26M 10M 0.25/4 0.03 .01

Torso irregular 1.1M tets 1.9 3.2 5.4M 1.9M 0.25/4 0.05 0.043

5.2 CUDA Implementation To compare the MLS system with existing ray casting methods,

In order to achieve nearly interactive performance we implemented’§ Implemented a standard piecewise-linear scheme with weighted
GPU-based version of the raycaster using CUDA [34]. In our Cup_ormals'[Z(?‘] for te.trahedra.ll meshes (see Figure 6 (Ieft))_. The.lmage
rent implementation, each thread processes a single ray, and the JagVVs Signi cant visual artifacts, even though we are using weighted

traversal is entirely decoupled from the volume data structure. For the. mals. Figure 7 (mlddlg) shows the.result of CUb.'C B-spline convo-

ray traversal we implemented both a constant step size strategy n for the reconstruction of_a continuous function over a _regular

the adaptive algorithm described in Section 4. In the latter case, .MThe E-splanebgegopstrl:ctzlt;n h_?r? been shqwn tohbe OFt);:n:aI:/IE)Sr
recursion is managed via a small stack stored in local memory. To € Marschner-Lo ataset [27]. € comparison Snows tha

ciently nd neighbor samples, we use théynamic redundant octree reconstruction obtains competitive results. Using a linear MLS ba-

of Guennebauét al. [16]. This spatial search data structure is particS!S ON @ regular grid does not reduce approximation errors at the grid

ularly ef cient for GPU applications, allowing for dynamic updates a oints [44], which explains why t.he MLS approximation Is not tighter.
owever, we note that convolution is equivalent to MLS with a con-

well as intuitive control of the memory footprint versus performance, ¢ basis function [44 King MLS i ¥ K
We did not yet implement the anisotropic weights discussed in S ant basis function [ ] making IS a more general framewor
at subsumes convolution.

tion 3.1.2 on the GPU, even though that is possible.

6 RESULTS

In this section we present results of the proposed MLS framework for
several well-known regular and irregular datasets. Except wheeel no
otherwise, all of the MLS images were generated using a linear basis
with approximate gradients and the proposed adaptive preintegration
scheme with our GPU-based implementation.

Table 1 provides information on each data set, including the rele-
vant parameters used to generate the images and performance results
The results were computed on a 2.6GHz Intel Core 2 Duo with 8 GB
of RAM and an NVIDIA Quadro FX5600 GPU with 1.5 GB of video
memory. The parameters in Table 1 lead to a root mean square error
(RMSE) below 5% compared to ground truth images computed us-
ing a very small step size. We found that this error tolerance leads

to visually indistinguishable r_esults fr(_)m the ground "!J.th images. Q‘g 8. Our MLS framework allows for high-quality isosurface shading,
all the parameters (see Section 4.2) is the least sensitive for the re?ﬁcluding specularity, combined with volume integration. This is illus-

sulting image quality_, Wh”e ato?"arge value ﬂqrax_(see S_eCtion 5) trated for the irregular bucky ball dataset (left) and the torso model
can cause the adaptive integration scheme to entirely miss extremgiltht). The torso model displays the sampling density of the sample

the volume integral by inducing an early termination of the automatigints estimated using the k-nearest neighbor radius.
re nement scheme. This early termination results in visible disconti-
nuities in the nal image. A too-large segment length for the standard
integration scheme also introduces artifacts, but those are harde
detect because the images is less likely to exhibit discontinuites as
sampling positions on neighboring rays are very similar. In theory, the complexity of our algorithm B(m p (k+ log(n)))

The capabilities of the MLS system for regular grids are showfor irregular data sets whereis the number of pixelsp is the number
in the renderings of the heptane plume dataset in Figure 1 and tifdunction evaluations per raw,is the size of the dataset, akit the
Marschner-Lobb dataset in Figure 7. To illustrate MLS ray casting amber of neighbors used. As pointed out in Section 4.2, the number
curvilinear grids we show renderings of the highly anisotropic NASAf function evaluations per ray depends on the complexity of the scalar
blunt n dataset in Figure 6. We show performance numbers for refunction and transfer function. The runtime of a function evaluation is
dering the blunt n on the CPU because we did not yet implemef@(k+ log(n)), whereO(log(n)) represents the traversal complexity of
anisotropic weights on the GPU. Note that the CPU implementatithe hierarchical data structure — in practice the size of the dataset has
is not optimized and takes orders of magnitude longer than the GRery little impact on the evaluation cost that is highly dominated by the
implementation. Irregular grid renderings of tetrahedral meshes aiee of the neighborhoods. Using an adaptive scheme, the total num-
shown in Figure 8 with the bucky ball dataset (left) and the Utah tordxer of function evaluations can be signi cantly reduced (see Table 1).
model (right). For the torso model we estimated the sampling densitpwever, the limited exibility of current GPU architectures makes it
at the input samples using tkenearest neighbor radius and renderestery challenging to take full advantage of this gain. In our experiments
the reconstructed function. In all of these images, the high-qualitye observed that more complex datasets, those that contain more
shading of smooth isosurfaces con rms the quality of the MLS rdiigh-frequency features) bene ted the most from the adaptiversehe
construction, while the range of datasets and grid-types illustrates theTo give further insight into the complexity of a function evaluation
versatility of the MLS scheme. we compare the number of oating point operations ( ops) used for

rt .
% Performance Analysis



Fig. 6. The irregular blunt n data set rendered using a stand ard tetrahedral rendering scheme (left), the proposed MLS technique with adaptive
preintegration (middle), and the anisotropic weights used in the MLS reconstruction (right).

Fig. 7. This image shows a comparison of different reconstructions of the Marschner-Lobb dataset sampled on a 41 41 41 grid. We show the
analytic function (left), a reconstruction with a B-spline lter ( middlg, and a reconstruction using MLS with linear basis and a support size of 2.4
samples (right).

the evaluation of a number of reconstructing functions in Table 2. We CONCLUSIONS & FUTURE WORK

compare standard trilinear interpolation of the normals and standard

tetrahedral ray casting with weighted normals [26] to MLS ray castingolume MLS ray casting produces high-quality images and provides

with constant and linear basis functions. The MLS performance isad easy to understand mathematical framework with intuitive param-

function of the number of neighbork)( In practice k usually varies eters. Itis a rst step towards creating an ef cient framework which

between 8 and 20. From this analysis we conclude that the ops fiarable to handle any kind of data regardless of its topology. A next

one MLS evaluation is usually less then three times that of a trilistep in this direction would be to remove the necessary boundary in-

ear interpolation. For irregular datasets the most expensive part dbamation and compute a (possibly) nonconvex hull of the data purely

function evaluation remains the neighborhood query. based on the sampling. Our volume MLS framework ties in nicely
with a wealth of existing tools for MLS reconstruction. For example,
one could extend this work to include exact reconstruction of sharp

Table 2. This table compares the number of ops needed to comp ute features.

one function evaluation for different function approximation schemes The proposed system lends itself well to streaming data. Since an
and k neighbor samples. For the constant basis we computed the an-  additional data point only affects the scalar function in a bounded re-
alytic MLS gradient while we included the approximate gradient for the  gion, a local update of the image could be computed and no global
linear basis. For the trilinear interpolation we included a central differ-  system has to be solved. The ray casting approach is attractive due to
ence gradient. its simplicity and because it can easily be extended to include complex
cut and region of interest geometry. Finally, our adaptive preintegra-
tion scheme is immediately useful for other ray casting frameworks.
We believe that progress on the theory of the convergence of preinte-

‘ TriLinear ~ Standard Tetrahedral Constant Linear
gration could improve the ef ciency and robustness of our scheme.

Kernel Ray Casting Basis Basis

function 30 7 15*k+1  39*k + 56
gradient 186 20 14*k +9 free
total 216 27 (+52ray intersect.) 29*k+10 39*k + 56
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