
SCIRun Haptic Display for Scientific Visualization
Lisa J K Durbeck, Nicholas J Macias, David M Weinstein, Chris R Johnson, John M Hollerbach

Introduction

The overall goal of this research is to
enhance scientific visualization by the use of
haptic feedback. We have chosen to
approach this goal by incorporating a haptic
interface into an existing full-featured
scientific visualization tool.

People who use scientific visualizations are
generally trying to analyze or solve a
scientific problem. The visualizations are
usually animations or interactive graphics
that scientists create for themselves. The
visualizations are intermediate
representations intended to represent the
problem or its solution graphically (1, 2).
Ideally these visualizations are accurate,
information-rich, interactive, and illustrative of
key features of the phenomenon or data set.
They should make the problem (or its
solution) easier to understand. Toward this
goal we augmented existing graphical
visualizations with force feedback (3), as well
as true 3-D interaction, in ways that highlight
key features such as flow lines. The haptic
interface we have developed allows the user
to form a high-level view of his data more
quickly and accurately.

Scientific visualization research has been
underway at the University of Utah for much
of this decade (4). One outcome of that
research is a problem-solving environment
for scientific computing called SCIRun (5,6).
For this project, we interfaced SCIRun to a
haptic device, and we then used SCIRun to
create two displays, one graphic and one
haptic, which operate together on a common
visualization. The work described here uses
the system to interact with vector fields, 3-D
volumes in which every point in the volume
has a vector associated with it. Examples of
vectors are gravity, pressure, force, current,
and velocity as well as scalar gradients.

Users of our new system can simultaneously
see and feel a vector field. Haptic feedback
is displayed on a SensAble PHANToM
Classic 1.5 (7). The graphics are displayed
on an SGI Octane. The user has a haptic
display registered to a graphic display. She
directs both displays by moving the
PHANToM endpoint through the haptic
representation of the data volume. The
haptic display presents each vector as a
force corresponding to the vector's
magnitude and direction. The graphic display
presents a subset of the vector field as lit
directional line segments (8) or as the
traditional arrow glyphs.

Fig 1. Illustration of user interaction with flow line. The display sweeps
out the path to and from the current endpoint position. The pencilled
arrow indicates the direction of travel. The sphere represents the
current PHANToM endpoint position; the fatter, darker lit lines are the
path already taken by the user; the thin, lighter lines are the flow line
leading from the current position.

This haptic/graphic display is useful for
displaying flow fields, vector fields such as
fluid flow models for airplane wings in which
the vectors tend to align into strong
directional paths (9). The haptics feel as if
you put your fingertip into a river: the vectors
act upon your fingertip, drawing it in the

same direction as the local flow field. If the
user does not apply any force, the forces
displayed onto the PHANToM endpoint
naturally draw his finger along the flow lines.
This allows the user to trace his finger along
the various flow lines within the vector field.
The user can also move his finger onto a new
path, and again the endpoint begins to follow
this new path. This interface allows the
vector field to act upon the PHANToM
endpoint in a similar manner as a traditional
visualization technique called seed point
insertion or particle advection (1). The
graphical display reinforces the haptic
display by showing the endpoint moving
along the flow line and by showing the part of
the flow line that lies ahead of the current
position. The user receives haptic and visual
feedback which helps him stay on the path.
Figure 1 shows a still image from a user's
interaction with a flow line and Figure 2
shows an image of several traced flow lines
composited over time.

Fig. 2 Illustration of 3 separate flow line traces
composited into one image. As the user interrogates the
volume, the display forms an image of the flow lines
within the field.

System Architecture

Figure 3 shows a high-level view of the
software and hardware used for this system.

Fig. 3 High level view of system hardware & software

The software runs on an SGI, 02 or better,
with a PCI or ISA slot for the PHANToM
card.1 SCIRun and the PHANToM controller
are two separate client-server applications
(10,11,12,13) which communicate via
sockets. The PHANToM controller acts as
the server and SCIRun acts as the client. The
Appendix contains a full listing of our
PHANToM control loop, written using a small
subset of the Ghost SDK. As the size of this
listing illustrates, the PHANToM controller is
minimal: all the data and computations are
handled by the program within SCIRun.
Figure 4 shows a dataflow diagram
representing the program we wrote within the
SCIRun programming environment. The
program consists of two loops, the haptic
display loop and the graphic display loop.
Within the haptic display loop, the program
receives the latest PHANToM endpoint
position, calculates a force based on that
position, and sends out a force to the
PHANToM controller. Within the graphic
display loop, the program receives the latest
PHANToM endpoint position, redraws the
endpoint in the graphic display, and
recalculates and redraws the vector field
display.

Fig. 4 Dataflow diagram of our software. Each labelled
boxes represents a distinct component of the software

1 Typically we use an SGI Octane with dual 195 MHz
R10000 processors, 128 MB memory, and an SGI MXI
graphics card.

system. All components within the shaded box run within
SCIRun; the rest run outside of the SCIRun runtime
environment. The components above the line are
particular to the haptic display, while those below are
particular to the graphical display.

Future Work

The user can change aspects of the graphic
and haptic displays at runtime. One
interesting visualization technique we would
like to explore is user-defined transfer
functions. Rather than mapping data vectors
linearly to force vectors, we could map them
based on a nonlinear or piecewise linear
function defined by the user. Figure 5a)
shows an example of a function that could be
used to re-map one dimension of the vector
field such as magnitude. Vectors with
magnitude X along the x-axis are mapped to
forces with magnitude Y. The transfer
function in Figure 5a) amplifies the effect of
small vectors and could be used to fine-tune
the display for examining small vectors. The
transfer function graphed in Figure 5b)
effectively weeds out all vectors in the field
except for those within the specified range. If
the full range of force magnitudes is used
within this smaller data range, then the effect
is a haptic "zoom". Note that in 1 dimension,
these transfer functions look like traditional
force profiles (14) but are data-dependent,
not position-dependent.

We also anticipate making use of
multiprocessor scheduling on the Octane in
order to maintain interactive rates for large
visualizations or complex force calculations.

Fig 5a (top), 5b (bottom). Simple nonmonotonic transfer
functions which map from data vector magnitude to force
magnitude.

Acknowledgments
This work was supported in part by the
Department of Defense through a DURIP
equipment grant, the National Science
Foundation, and the Department of Energy.
Furthermore, the authors appreciate access
to facilities that are part of the SGI-Utah
Visual Supercomputing Center.

Bibliography

1 R. S. Gallagher, ed. Computer Visualization: Graphics Techniques for Scientific and Engineering Analysis.
CRC Press, Boca Raton, 1995.

2 W. Schroeder, K. Martin, & B. Lorensen. The Visualization Toolkit, 2nd edition. Prentice Hall, New York, 1998.

3 J.P. Fritz & K.E. Barner. Haptic Scientific Visualization. Proceedings of the First PHANToM User’s Group
Workshop, 1996.

4 see http://www.cs.utah.edu/~sci/publications

5 S.G. Parker, D.M. Weinstein, & C.R. Johnson. The SCIRun computational steering software system.
Modern Software Tools in Scientific Computing, E. Arge, A.M. Bruaset, & H.P.Langtangen, eds. Birkhuaser
Press, 1997: 1-44.

6 S.G. Parker & C.R. Johnson. SCIRun: A Scientific Programming Environment for Computational Steering.
Supercomputing '95, 1995.

7 T.H. Massie. Design of a Three Degree of Freedom Force-Reflecting Haptic Interface. SB Thesis,
Department of Electrical Engineering and Computer Science, M.I.T. May 1993

8 M. Zockler, D. Stalling, H.C. Hege. Interactive Visualization of 3D-Vector Fields Using Illuminated Stream
Lines. Visualization ’96, 1996: pp 107-113.

9 J. Helman & L. Hesselink. Visualizing Vector Field Topology in Fluid Flows . IEEE Computer Graphics and
Applications, May 1991.

10 W.R. Mark, S.C. Randolph, M. Finch, J.M. Van Verth, R.M. Taylor II. Adding Force Feedback to Graphics
Systems: Issues and Solutions. Siggraph ’96 Computer Graphics Proceedings, 1996: 447-452.

11 W. Plesniak & J. Underkoffler. SPI Haptics Library. Proceedings of the First PHANToM User’s Group
Workshop, 1996.

12 S. Vedula & D. Baraff. Force Feedback in Interactive Dynamic Simulation. Proceedings of the First
PHANToM User’s Group Workshop, 1996.

13 S.W. Davidson. A Haptic Process Architecture using the PHANToM as an I/O Device in a Virtual
Electronics Trainer. Proceedings of the First PHANToM User’s Group Workshop, 1996.

14 A.J. Kelley & S.E. Salcudean. The Development of a Force Feedback Mouse and its Integration into
a Graphical User Interface. In Proceedings of the International Mechanical Engineering Congress and
Exposition. Chicago USA 1994. DSC-Vol. 55-1: 287-294

Appendix

Program listing for PHANToM Controller

// PHANToM_controller.cpp - main loop for PHANToM Controller program
// derived from hello.cpp provided by SensAble
#include <stdlib.h>
#include <gstBasic.h>
#include <gstSphere.h>
#include <gstPHANToM.h>
#include <gstSeparator.h>
#include <gstScene.h>
#include "ljdForceInput.h"
#include "server.c"

main() {
gstScene *scene = new gstScene;
gstSeparator *root = new gstSeparator;
gstPHANToM *PHANToM = new gstPHANToM("PHANToM.ini");

root->addChild(PHANToM);
scene->setRoot(root);

ljdForceInput * forces = new ljdForceInput; // force from SCIRun
PHANToM->setEffect(forces);
PHANToM->startEffect();

printf("put the PHANToM in neutral position and hit return...\n");
getchar();

scene->startServoLoop();
gstPoint pos; // holds current PHANToM position
double u,v,w;

sock_init();
while (!scene->getDoneServoLoop()) {

 pos = PHANToM->getPosition_WC();
 write_triple(pos.x(), pos.y(), pos.z()); // send position to client, SCIRun
 if (read_triple(&u,&v,&w) == 0) { // read resulting force from SCIRun
 // copy to readable location
 scirun_force = gstVector(u,v,w);
 // the next time calcEffectForce() happens, it will see this new force.
 }
 else {
 printf("client scirun has shut down.\n");
 sock_deinit();
 }
}
PHANToM->stopEffect(); // quit my force input
}

--
// ljdForceInput.h derived directly from Ghost SDK CalcEffect.h
#include <math.h>
#include <gstBasic.h>
#include <gstEffect.h>

gstVector scirun_force; // set by main loop

class ljdForceInput:public gstEffect
{
public:

ljdForceInput():gstEffect(){} //Constructor
~ljdForceInput() {} // Destructor

virtual gstVector calcEffectForce(void *PHANToMN)
 {
 if (PHANToMN); // To remove compiler warning
 if (!active) return gstVector(0.0, 0.0, 0.0); // check first
 gstPoint pos;
 double xc, yc, zc; // force vector components
 xc = scirun_force.x(); yc = scirun_force.y(); zc = scirun_force.z();
 return gstVector(xc, yc, zc);
 }
};

