
SCIRun2: A CCA Framework for
High Performance Computing

Keming Zhang, Kostadin Damevski, Venkatanand Venkatachalapathy, Steven G. Parker
SCI Institute, University of Utah

�
kzhang,damevski,venkat,sparker � @sci.utah.edu

Abstract

We present a parallel component framework (SCIRun2)
overview in this paper. SCIRun2 is based on the Common
Component Architecture (CCA)[3, 6] and the SCI insti-
tutes’ SCIRun[11]. SCIRun2 supports distributed com-
puting through distributed objects. Parallel components
are managed transparently over an MxN method invoca-
tion and data redistribution subsystem. A meta component
model based on CCA is used to accommodate multiple
component models such as CCA, CORBA and Dataflow.
A group of monitoring components built on top of the TAU
toolkit[13] evaluate the performance of the other compo-
nents.

1. Introduction

In recent years, component technology has been a suc-
cessful methodology for large-scale commercial software
development. Component technology combines a set of
frequently used functions in a component and makes the
implementation transparent to the users. Application de-
velopers typically connect a group of components from a
component repository, connecting them to create an appli-
cation.

Problem-Solving Environments (PSEs) often employ
component technology to bring a variety of computational
tools to an engineer or scientist that is solving a computa-
tional problem. In this scenario, the tools should be read-
ily available and simple to combine to create an applica-
tion.

SCIRun1 is a scientific Problem-Solving Environment
that allows the interactive construction and steering of
large-scale scientific computations [19, 18, 20]. A sci-
entific application is constructed by connecting computa-
tional elements (modules) to form a program (network),
as shown in Figure 1. This program may contain sev-

1Pronounced “ski-run.” SCIRun derives its name from the Scientific
Computing and Imaging (SCI) Institute at the University of Utah.

eral computational elements as well as several visualiza-
tion elements, all of which work together in orchestrating
a solution to a scientific problem. Geometric inputs and
computational parameters may be changed interactively,
and the results of these changes provide immediate feed-
back to the investigator. SCIRun is designed to facilitate
large-scale scientific computation and visualization on a
wide range of machines from the desktop to large super-
computers.

A number of component models have been devel-
oped. Java Beans[4], a component model from Sun, is a
platform-neutral architecture for the Java application en-
vironment. However, it requires a Java Virtual Machine
as the intermediate platform and the components must
be written in Java. Microsoft has developed the Com-
ponent Object Model (COM)[15], a software architecture
that allows applications to be built from binary software
components on the Windows platform. The Object Man-
agement Group (OMG) developed the Common Object
Request Broker Architecture (CORBA)[16], which is an
open, vendor-independent architecture and infrastructure
that computer applications can use to work together in a
distributed environment.

Many Problem-Solving Environments, such as
SCIRun, employ these component models, or one of
their own. As an example, SCIRun provides a dataflow-
based component model. The Common Component
Architecture (CCA) Forum, a group of researchers from
several national laboratories and academic institutions,
has defined a standard component architecture[3] for
high performance parallel computing. The CCA forum
has defined a minimal set of standard interfaces that a
high-performance component framework should provide
to implement high-performance components. This
standard promotes interoperability between components
developed by different teams across different institutions.
However, CCA has not yet fully addressed the architec-
ture of parallel components combined with distributed
computation.

A few research groups have implemented CCA frame-

Figure 1: A picture of the SCIRun PSE, showing a 3D finite element simulation of an implantable cardiac defibrillator.

works. XCAT[5], from Indiana University, supports ap-
plications built from components that are distributed over
a wide-area Grid of resources and distributed services.
Caffeine[2], developed at Sandia National Laboratory, is
considered the CCA “reference framework” implementa-
tion and supports distributed-memory parallel computing
with SPMD-style components.

In this paper, we present an overview of the archi-
tecture of SCIRun2, a framework that combines CCA
compatibility with connections to other commercial and
academic component models. SCIRun2 is based on the
SCIRun [11] infrastructure and the CCA specification.
It utilizes parallel-to-parallel remote method invocation
to connect components in a distributed memory environ-
ment, and is multi-threaded to facilitate shared memory
programming. It also has an optional visual-programming
interface.

Although SCIRun2 is designed to be fully compatible
with CCA, it aims to combine CCA compatibility with the
strength of other component models. A few of the design

goals of SCIRun2 are:

1. It is fully CCA compatible, thus any CCA compo-
nents can be used in SCIRun2 and CCA components
developed from SCIRun2 can also be used in other
CCA frameworks.

2. It accommodates several useful component mod-
els. In addition to CCA components and SCIRun
Dataflow Modules, CORBA components, and
Vtk[21] modules will be supported in SCIRun2.

3. It builds bridges between different component mod-
els, so that we can combine a disparate array of com-
putational tools to create powerful applications with
cooperative components from different sources.

4. It supports distributed computing. Components
created on different computers can work together
through a network and build high performance ap-
plications.

5. It supports parallel components in a variety of ways
for maximum flexibility. This is not constrained to
only CCA components, because SCIRun2 employ-
ees a � process to � process method invocation and
data redistribution (MxN) library [8] that potentially
can be used by many component models.

Overall, SCIRun2 provides a broad approach that will
allow scientist combine a variety of tools for solving a par-
ticular problem. The overarching design goal of SCIRun2
is to provide the ability for a computational scientist to
use the right tool for the right job.

Section 2 briefly reviews the Common Component Ar-
chitecture. The SCIRun2 meta-component architecture is
described in Section 3. In Section 4 we describe our ap-
proach to distributed components. The parallel compo-
nent architecture is discussed in Section 5, and integrated
performance evaluation in Section 6. Conclusions and fu-
ture work are discussed in Section 7.

2. CCA Overview

This section briefly reviews the Common Component Ar-
chitecture(CCA) for readers who are not familiar with the
CCA. It also provides some background knowledge for
the SCIRun2 architecture.

CCA consists of a framework and a expandable set of
components. The framework is a workbench for build-
ing, connecting and running the components. A compo-
nent is the basic unit of an application. A CCA compo-
nent consists of one or more ports, and a port is a group
of method-call based interfaces. There are two types of
ports: uses port and provides ports. A provides port (or
callee) implements its interfaces and waits for other ports
to call them. A uses port (or caller) issues method calls
that can be fulfilled by a type-compatible provides port on
a different component.

A CCA Framework provides a number of services for
the components. It maintains the component repository,
creates and destroys components. It gathers the port in-
formation and maintains the connections between ports.

CCA defines interfaces through a scientific interfaces
definition language (SIDL). For example, a port interface
can be defined by SIDL as follows,

package pkg_name{
interface string_port{

string getString(in int index);
}

}

where method getString is defined in the string port inter-
face. getString takes an input argument of integer type,

and returns a string type. For more information about
SIDL, see [12].

CCA places few constraints on how an interface is im-
plemented. An IDL compiler is usually used to compile
a SIDL interface description file into specific language
bindings. Generally, component language binding can
be provided for many different languages such as C/C++,
Java, Fortran, Python etc. The Babel [12] compiler group
is working on creating this support for different languages
within CCA.

Building an application with CCA components is quite
simple if a sufficient component set is available: the user
simply creates a set of components, connects the relevant
ports, and starts a special port (go port) on the driver com-
ponent.

3. Meta Component Model

SCIRun2 provides a meta component model that allows
components to be used together even if they do not share
the same underlying component architecture. SCIRun2
provides support for the DOE Common Component Ar-
chitecture, a model that is more familiar to programmers
who have used the Object Management Group’s (OMG)
CORBA[16], or Microsoft’s COM[15]. SCIRun2 also
combines support for old-style SCIRun dataflow compo-
nents, and we are planning support for CORBA, COM
and Vtk. As a result, SCIRun2 can utilize SCIRun com-
ponents, CCA components and others in the same simu-
lation. This provides a variety of components available to
the application developer, without requiring buy-in to any
one particular methodology. Furthermore, systems that
are not traditionally thought of as component models, but
have a well-designed regular structure can be mapped to a
component model and manipulated dynamically.

Figure 2 demonstrates with a simple example how
SCIRun2 handles different component models. Two CCA
components, Driver and Integrator, and one CORBA
component, Function, are created in the SCIRun2 frame-
work. In this simple example, the Driver is connected
to both the Function and Integrator. Inside SCIRun2,
two frameworks are hidden: the CCA framework and the
CORBA Object Request Broker (ORB). The CCA frame-
work creates the CCA components, Driver and Integrator.
The CORBA framework creates the CORBA component,
Function. The two CCA components can be connected
in a straightforward manner through the CCA component
model. However, the components Driver and Function
cannot be connected directly, because neither CCA nor
CORBA allow a connection from a component of a dif-
ferent model. Instead, a bridge component is created.
Bridges belong to a special internal component model

SCIRun2

CORBA

CCA

Integrator

Driver Function

 Integrator

Driver Bridge Function

Figure 2: Components of different models cooperate in
SCIRun2

that is used to build a connection between components
of different component models. In this example, Bridge
has two ports: one CCA port and one CORBA port. In
this way it can be connected to both CCA component
and CORBA component. The CORBA invocation is con-
verted to request to the CCA port inside the bridge com-
ponent.

Bridge components can be manually or automatically
generated. In situations where interfaces are easily
mapped between one interface and another, automati-
cally generated bridges can facilitate interoperability in
a straightforward way. More complex component inter-
actions may require manually generated bridge compo-
nents. Bridge components may implement heavy-weight
transformations between component models, and there-
fore have the potential to introduce performance bottle-
necks. For rapid prototyping, or for components that are
not performance-critical, this is completely acceptable.
However, for the few scenarios that require maximum
performance, reimplementation of both components in a
common, performance-orientedcomponent model may be
required.

The meta component model operates by providing
a plug-in architecture for component models. Ab-
stract components are manipulated and managed by the
SCIRun2 framework, while concrete component models
perform the actual work. This facility allows components
implemented with disparate component models to be or-
chestrated together.

4. Distributed Computing

SCIRun2 provides support for Remote Method Invocation
(RMI) based distributed objects. This support is utilized
in the core of the SCIRun framework in addition to dis-
tributed components. This section describes the design of
the distributed object subsystem.

A distributed object is a set of interfaces defined by
SIDL that can be referenced over network. The distributed
object is similar to the C++ object: it utilizes similar inher-
itance rules and all objects share the same code. However
only methods (interfaces) can be referenced, and the inter-
faces must be defined in SIDL. Using the SIDL language,
we implemented a straightforward distributed object sys-
tem. We extend the SIDL language and build upon this
system for implementing parallel to parallel component
connections, as discussed in the next section.

Using SIDL, we implement a straightforward dis-
tributed object system. We build upon this (in Section 5.)
for implementing parallel to parallel connections. A dis-
tributed object is implemented by a concrete C++ class,
and referenced by a proxy class. The proxy class is
a machine generated class that associates the user-made
method calls to a call by the concrete object. The proxy
classes are described in a SIDL file, and a compiler com-
piles the SIDL file and creates the proxy classes. The
proxy classes define the abstract classes with a set of pure
virtual functions. The concrete classes extends those ab-
stract proxy classes and implement each virtual functions.

There are two types of object proxies. One is called
server proxy, the other is called client proxy. The server
proxy (or skeleton) is the object proxy created in the same
memory address space as the concrete object. When the
concrete object is created, the server proxy starts and
works as a server, waiting for any local or remote meth-
ods invocations. The client proxy (or stub) is the proxy
created on a different memory address space. When a
method is called through the client proxy, the client proxy
will package the calling arguments into a single message,
and send the message to the server proxy, and then wait
for the server proxy to invoke the methods and return the
result and argument changes.

We created Data Transmitter, a separate layer, that is
used by the generated proxy code for handling messaging.
We also employ the concept of a Data Transmission Point
(DTP), which is similar to the start point and end points
used in Nexus [10]. A DTP is a data structure that contains
a object pointer pointing to the context of a concrete class.
Each memory address space has only one Data Transmit-
ter, and each Data Transmitter uses three communication
ports (sockets): one listening port, one receiving port and
one sending port. All the DTPs in the same address space
share the same Data Transmitter. A Data Transmitter is

identified by its universal resource identifier(URI): IP ad-
dress + listening port. A DTP is identified by its memory
address together with the Data Transmitter URI, because
DTP addresses are unique in the same memory address
space. Optionally, we could use other type of object iden-
tifiers.

The proxy objects package method calls into messages
by marshaling objects and then waiting for a reply. Non-
pointer arguments, such as integers, fixed sized arrays
and strings (character arrays), are marshaled by the proxy
into a message in the order that they are presented in the
method. After the server proxy receives the message, it
unmarshals the arguments in the same order. A array size
is marshaled in the beginning of an array argument, so the
proxy knows how to allocate memory for the array. SIDL
supports a special opaque data type that is can be used
to marshal pointers if the two objects are in the same ad-
dress space. Distributed object references are marshaled
by packaging the DTP UTI (Data Transmitter URI and
object ID). The DTP URI is actually marshaled as a string
and when it is unmarshaled, a new proxy of the appropri-
ate type is created based on the DTP URI.

C++ exceptions are handled as special distributed ob-
jects. In a remote method invocation, the server proxy
tries to catch an exception (also a distributed object) be-
fore it returns. If it catches one, the exception pointer is
marshaled to the returned message. Upon receiving the
message, the client proxy unmarshals the message and ob-
tains the exception. The exception is then re-thrown by
the proxy.

5. Parallel Components

This section introduces the CCA parallel component de-
sign and discusses issues of the implementation. Our de-
sign goal is to make the parallelism transparent to the
component users. In most cases, the component users can
use a parallel component as the way the use sequential
component without knowing that a component is actually
parallel component.

Parallel CCA Component (PCom) is a set of similar
components that run in a set of processes respectively.
When the number of process is one, the PCom is equiv-
alent to a sequential component. We call each compo-
nent in a PCom a member component. Member compo-
nents typically communicate internally with MPI [14] or
an equivalent message passing library.

PComs communicate with each other through CCA-
style RMI ports. We developed a prototype parallel com-
ponent infrastructure [7] that facilitates connection of
parallel components in a distributed environment. This
model supports two types of methods calls: independent

and collective, and as such our port model supports both
independent and collective ports.

An independent port is created by a single component
member, and it contains only independent interfaces. A
collective port is created and owned by all component
members in a PCom, and one or more of its methods are
collective. Collective methods require that all member
components participate in the collective calls in the same
order.

As an example of how parallel components interact, let
pA be a uses port of component A, and and pB be a pro-
vides port of component B, Both pA and pB have the same
port type, which defines the interface. If pB is a collective
port, and has the following interface,

collective int foo(inout int arg);

Then getPort(“pA”) returns a collective pointer which
points to the collective port pB. If pB is independent port,
getPort(“pA”) returns a pointer which points to a indepen-
dent port.

Component A can have one or more members, so each
member might obtain a (collective/independent) pointer
to a provides port. The component developer can decide
what subset (one, many, or all components) participate in
a method call foo(arg).

When any member component register a uses port, all
other members can share the same uses port. But for a
collective provides port, each member must call addPro-
videsPort to register each member port.

The MxN library takes care of the collective method
invocation and data distribution. We repeat only the
essentials here, one can reference [8] for details. If
a M-member PCom A obtains a pointer ptr pointing
to a N-member PCom’s B collective port pB. Then
ptr � foo(args) is a collective method invocation. The
MxN library index PCom members with rank 0,1,...,M-1
for A and 0,1,...,N-1 for B. If M=N, then the i-th member
component of A call foo(args) on the i-th component of
B. But if M � N, then we “extend” the A’s to 0,1,2,...,M, 0,
1,2,...M, ... N-1 and they call foo(args) on each member
component of B like the M=N case, but only the first M
calls request returns. The left panel of Figure 3 shows an
example of this case with M=3 and N=5. If M � N, we “ex-
tends” component B’s set to 0, 1, ..., N, 0, 1,...,N, ...,M-1
and only the first N member components of B are actually
called, and the rest are not called but simply return the re-
sult. We rely on collective semantics from the components
to ensure consistency without requiring global synchro-
nization. The right panel of Figure 3 shows an example of
this case with M=5 and N=3.

The MxN library also does most of the work for the
data redistribution. An multi-dimensional array can be
defined as a distributed array, which associates a distri-

0 0

1 1

2 2

0 3

1 4

M < N

0 0

1 1

2 2

3 0

4 1

M > N

Figure 3: MxN method invocation, with the caller on the
left and the callee on the right. In the left scenario, the
number of callers is fewer than the numbers of callees, so
some callers make multiple method calls. In the right, the
number of callees is fewer, so some callees send multiple
return values.

bution scheduler with the real data. Both callers and
callees define the distribution schedule before the remote
method invocation, using an first-stride-last representa-
tion for each dimension of the array. The SIDL compiler
creates the scheduler and scheduling is done in the back-
ground.

With independent ports and collective ports, we cover
the two extremes. Ports that require communication
among a subset of the member components present a
greater challenge. Instead, we utilize a sub-setting capa-
bility in the MxN system to produce ports that are asso-
ciated with a subset of the member components, and then
utilize them as collective ports.

SCIRun2 provides the mechanism to start a parallel
component either on shared memory multi-processors
computers, or clusters. SCIRun2 consists of a main
framework and a set of Parallel Component Loaders
(PCLs). A PCL can be started with ssh on a cluster, where
it gathers and reports its local component repository and
registers to the main framework. The PCL on a N-node
cluster is essentially a set of loaders, each running on
a node. When the user creates a parallel component, it
can dynamically choose a subset of nodes that the par-
allel component runs on, in which case a separate com-
municator is created for the subset. PCLs are responsible
to create and destroy components running on their nodes,
but they do not maintain the port connections. The main
framework maintains all component status and port con-
nections.

6. Performance Evaluation

This section discusses the performance monitoring and
modeling facility provided by a group of SCIRun2 com-
ponents, together referred to as PERFume. PERFume is
designed to help SCIRun2 developers and users in quanti-
fying and understanding the performance of its numerical
components including the overhead imposed by the com-
ponent model abstraction of CCA. Though designed pri-
marily for use with the SCIRun2 framework, the perfume
components adhere to the CCA specification and should
be interoperable with other CCA compliant frameworks.
The PERFume group of components consist of compo-
nents for performance monitoring, instrumentation, per-
formance data storage, performance modeling and perfor-
mance data visualization.

PERFume’s monitoring and instrumentation compo-
nents provide a facility for measuring a components’
performance, resource usage (processor, memory, net-
work), inter-component interactions so forth. This data is
recorded in a database, and use used to construct a perfor-
mance model/metric and provide a performance assess-
ment to the application developer with graphical visual-
izations. The performance monitoring and instrumenta-
tion components are built over the TAU library [13]. Us-
ing the TAU library, instrumentation can be done at vari-
ous granularity (whole component performance, function
calls, loop level measurements) and also at various stages
in component and application development. A notable
feature is that performance monitoring component can be
used for dynamic instrumentation of components in exe-
cution. Thus the performance monitoring component can
be turned on or off while the application is in execution.
This would enhance the ability to understand performance
bottlenecks that might be encountered at any stage of a
components execution. Also, the performance monitor-
ing and instrumentation components could be configured
easily to collect various performance data - memory us-
age patterns, function and loop execution profiles, specific
event traces etc. In the case of parallel SCIRun2 compo-
nents that use MPI, PERFume makes use of MPI’s perfor-
mance monitoring interface [14] .

The data gathered using the performance monitoring
and instrumentation components are stored in a database
managed by the PERFume database component. The
database component basically provides for storing and re-
trieving the TAU generated data along with the details of
the environment such as the interacting component group
and so forth. Performance data can be stored for either in-
dividual components or a group of components and can be
accessed using the component or component net ID. In the
latter case, we store a series of wait times – the time spent
by each component in waiting for the results of another.

This data would provide insight into remodeling individ-
ual or a set of components to provide more parallelism.
Also by default, we also record the time spent in waiting
for the services provided by the framework (memory al-
location, communication library). This data is useful for
understanding the overall as well as component specific
performance of the framework services.

Performance modeling is designed to be offline using
the data stored in the performance database. The com-
ponent developer, utilizing knowledge of the algorithms
employed by the component, can provide basic seman-
tic details and the theoretical complexity of the algorithm
to the performance modeler using a performance model
specification file (in XML). Using this detail as well as
historical performance of the component obtained from
the database, the modeler predicts the performance of the
component. Since performance of a component is tied
very much to the services provided by the framework,
the modeling component incorporates units that model the
different services provided by the SCIRun2 framework
(the communication library, memory allocator). The vi-
sualization component can obtain performance data from
either the monitoring components or the database or the
modeler. The source of the input also determines the se-
mantics and complexity of the visualization module. The
visualizations during run-time monitoring need to be fast
and dynamically configurable, while those bound to the
modeler or database need to operate on large scale data.
Most of the work in performance modeling and visualiza-
tion is currently in progress.

7. Conclusions and Future Work

We have presented an overview of the SCIRun2 compo-
nent framework. SCIRun2 integrates multiple component
models into a single visual Problem Solving Environment
and builds bridges between components of different com-
ponent models. In this way, a number of tools can be com-
bined into a single environment without requiring global
adoption of a common underlying component model. We
have also described a parallel component architecture uti-
lizing the Common Component Architecture, combined
with distributed objects and parallel MxN array redistribu-
tion. By incorporating performance measuring and mod-
eling tools we are equipping the user with the ability to
get better performance out of an application.

A prototype of the SCIRun2 framework has been de-
veloped, and we are using this framework for a number
of applications in order to demonstrate the SCIRun2 fea-
tures. Future applications will rely more on the system,
and will facilitate joining many powerful tools, such as
the SCI Institutes’ interactive ray-tracing system [17] and

Uintah [9]. Large scale applications are under construc-
tion and are beginning to take advantage of the capabili-
ties of SCIRun2.

Support for additional component-models, such as Vtk,
CORBA, and possibly others, will be added in the future.
PERFume components are an ongoing project, and we are
working towards further automation of the bridging mech-
anisms.

References

[1] CCA Specification 0.5. http://www.cca-
forum.org/bindings/old-0.5, 2003.

[2] B. A. Allan, R. C. Armstrong, A. P. Wolfe, and
J. Ray. The CCA core specification in a distributed
memory SPMD framework. Concurrency Computa-
tion, 14:1–23, 2002.

[3] R. Armstrong, D. Gannon, A. Geist, K. Keahey,
S. Kohn, L. McInnes, S. Parker, and B. Smolin-
ski. Toward a Common Component Architecture
for High-Performance Scientific Computing. In Pro-
ceedings of the 8th IEEE International Symposium
on High Performance Distributed Computing, 1999.

[4] Enterprise Java Beans.
http://java.sun.com/products/javabeans, 2003.

[5] R. Bramley, K. Chiu, S. Diwan, D. Gannon,
M. Govindaraju, N. Mukhi, B. Temko, and Yechuri
M. A component based services architecture for
building distributed applications. In Proceedings of
the 9th IEEE International Symposium on High Per-
formance Distributed Computing, 2000.

[6] Common Component Architecture Forum. see
www.cca-forum.org.

[7] K. Damevski. Parallel component interaction with
an interface definition language compiler. Master’s
thesis, University of Utah, 2003.

[8] K. Damevski and S. Parker. Parallel remote method
invocation and m-by-n data redistribution. In Pro-
ceedings of the 4th Los Alamos Computer Science
Institute Symposium, 2003.

[9] J. Davison de St. Germain, John McCorquodale,
Steven G. Parker, and Christopher R. Johnson. Uin-
tah: A Massively Parallel Problem Solving Envi-
ronment. In Proceedings of the Ninth IEEE Inter-
national Symposium on High Performance and Dis-
tributed Computing, August 2000.

[10] I. Foster, C. Kesselman, and S. Tuecke. The Nexus
approach to integrating multithreading and commu-
nication. Journal of Parallel and Distributed Com-
puting, 37:70–82, 1996.

[11] C. Johnson and S. Parker. The SCIRun Parallel Sci-
entific Compouting Problem Solving Enviroment. In
Proceedings of the 9th SIAM Conference on Parallel
Processing for Scientific Computing, 1999.

[12] S. Kohn, G. Kumfert, J. Painter, and C. Ribbens.
Divorcing language dependencies from a scientific
software library. In Proceedings of the 10th SIAM
Conference on Parallel Processing, Portsmouth, VA,
March 2001.

[13] Advanced Computing Laboratory. TAU: Tuning and
Analysis Utilities. Technical report, Los Alamos Na-
tional Laboratory, 1999.

[14] Message Passing Interface Forum. MPI: A Message-
Passing Interface Standard, June 1995.

[15] Component Object Model.
http://www.microsoft.com/com/tech/com.asp,
2003.

[16] OMG. The Common Object Request Broker: Archi-
tecture and Specification. Revision 2.0, June 1995.

[17] S. Parker, M. Parker, Y. Livnat, P. Sloan, and
P. Shirley. Interactive ray tracing for volume visu-
alization. IEEE Transactions on Visualization and
Computer Graphics, July-September 1999.

[18] S. G. Parker. The SCIRun Problem Solving Environ-
ment and Computational Steering Software System.
PhD thesis, University of Utah, 1999.

[19] S.G. Parker, D.M. Beazley, and C.R. Johnson. Com-
putational steering software systems and strate-
gies. IEEE Computational Science and Engineering,
4(4):50–59, 1997.

[20] S.G. Parker and C.R. Johnson. SCIRun: A scientific
programming environment for computational steer-
ing. In Supercomputing ‘95. IEEE Press, 1995.

[21] W. Schroeder, K. Martin, and B. Lorensen. The Vi-
sualization Toolkit, An Object-Oriented Approach to
3-D Graphics. Prentice Hall PTR, 2nd edition, 2003.

