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Abstract—The IDX data format provides efficient, cache
oblivious, and progressive access to large-scale scientific
datasets by storing the data in a hierarchical Z (HZ) or-
der. Data stored in IDX format can be visualized in an
interactive environment allowing for meaningful explorations
with minimal resources. This technology enables real-time,
interactive visualization and analysis of large datasets on a
variety of systems ranging from desktops and laptop computers
to portable devices such as iPhones/iPads and over the web.
While the existing ViSUS API for writing IDX data is serial,
there are obvious advantages of applying the IDX format to the
output of large scale scientific simulations. We have therefore
developed PIDX - a parallel API for writing data in an IDX
format. With PIDX it is now possible to generate IDX datasets
directly from large scale scientific simulations with the added
advantage of real-time monitoring and visualization of the
generated data.

In this paper, we provide an overview of the IDX file format
and how it is generated using PIDX. We then present a data
model description and a novel aggregation strategy to enhance
the scalability of the PIDX library. The S3D combustion
application is used as an example to demonstrate the efficacy
of PIDX for a real-world scientific simulation. S3D is used
for fundamental studies of turbulent combustion requiring
exceptionally high fidelity simulations. PIDX achieves up to
18 GiB/s I/O throughput at 8,192 processes for S3D to write
data out in the IDX format. This allows for interactive analysis
and visualization of S3D data, thus, enabling in situ analysis
of S3D simulation.

I. INTRODUCTION

The increase in computational power of supercomputers
is enabling unprecedented opportunities to advance science
in numerous fields such as climate science, astrophysics,
cosmology and material science. These simulations routinely
produce large volumes of data. Analyzing this data and
transforming it into useful insight is a key component of
scientific discovery that is generally hindered by bottlenecks
in I/O access.

The IDX format provides efficient, cache oblivious, and
progressive access to large-scale scientific data by storing
the data in a hierarchical Z (HZ) order [13]. The format
increases the locality of data access for common queries,

making it possible for scientists to interactively analyze
and visualize data of the order of several terabytes [15].
IDX has been used successfully in fields such as digital
photography [17], visualization of large scientific data and
it is a promising approach for analysis of HPC data as well
[14].

ViSUS, an IDX API, is serial in nature. This limits the use
of IDX to relatively small-scale applications. To overcome
the serial design of ViSUS, we developed PIDX - a parallel
API to capture the data models used by HPC application and
write it out in an IDX format. PIDX enables simulations to
write out data in parallel in the IDX format so that scientists
can interactively visualize and analyze the data. It utilizes the
computation resources of each compute node to efficiently
calculate the HZ ordering. It then coordinates file system
access using collective communication to write the dataset
in parallel. In this paper we present optimization strategies
to improve the performance of aggregation in PIDX at scale.
We demonstrate the efficacy of PIDX with S3D combustion
simulation on the Hopper2 supercomputer at NESRC. Addi-
tionally, we demonstrate an end-to-end pipeline using ViSUS
to remotely visualize this data interactively. This enables a
scientist to monitor the health of their simulations which can
assist in steering the simulation as well.

The remainder of this paper is organized as follows: We
present relevant background information on the IDX data
format in Section II. We present the PIDX API and design
in Section III. We evaluate the performance of our API in
Section IV using micro-benchmarks and application-level
benchmarks. Next, in section V, we describe an end-to-
end pipeline for S3D, from storing its simulation data using
PIDX to its visualization using ViSUS. We describe relevant
related work in section VI. In section VII, we present our
conclusions and discuss our plans for further research.

II. VISUS: IDX FILE FORMAT

IDX enables fast and efficient access to large-scale sci-
entific data. HZ ordering is the key idea behind IDX data
format. The HZ order is calculated for each data sample



HZ Start End Block Number
Level HZ HZ (File Number)

0 0 0 0(0)
1 1 1 0(0)
2 2 3 0(0)
3 5 7 0(0)
4 8 15 0(0)
5 16 31 0(0)
6 32 63 0(0)
7 64 127 0(0)
8 128 255 0(0)
9 256 511 1(0)

10 512 1023 2(1) 3(1)
11 1024 2047 4(2) 5(2) 6(3) 7(3)
12 2048 4095 8(4) 9(4) 10(5) 11(5)

12(6) 13(6) 14(7) 15(7)

Table I
BLOCK AND FILE DISTRIBUTION OF EACH HZ LEVEL IN A 163 IDX

DATA SET USING 256 ELEMENTS PER BLOCK AND 2 BLOCKS PER FILE.
LEVELS 10 THROUGH 12 SPAN MULTIPLE BLOCKS.

using the spatial coordinates of that sample. All data sample
points are then assigned a HZ level. The HZ level can be
calculated based on an index in the HZ order using the
formula level = blog2(HZindex)c + 1. Each HZ level
corresponds to data at a particular level of resolution. In
this formulation, with each increasing level, the number of
elements increases by a factor of two. Data in an IDX
file is written with an increasing HZ order. At storage,
the HZ ordered data samples are grouped in blocks of a
constant size. A preset number of blocks is written into each
binary file. A metadata .idx file contains all the required
associated information of the IDX file. For any IDX file, it
contains the bounding box (box), number of elements per
block (elements per block), number of blocks per binary
file (blocks per file), the bitmask and the filename template.
Table 1, for example shows block, HZ level as well as the
file layout for an IDX file of box (0, 0, 0 : 16, 16, 16), 256
elements per block and 2 blocks per file.

The conversion of data to IDX format can be considered
as converting an N-dimensional data to one dimension. The
HZ ordering and corresponding distribution of data into
different levels of resolution significantly reduces lag when
zooming or panning a large-scale dataset. As can be seen in
Table I, block 1 contains data up to HZ level 8. In general,
for each IDX file, the first block contains data up to level
log2(elements per block). Data in the first block spans the
entire volume in the lowest resolution. As we access the
blocks in linearly increasing order, the resolution level starts
to increase and spans a smaller part of the volume. A data
query to an IDX data set requires first checking the metadata
to find the intersection of the queried data with the data
blocks. Data can then be retrieved using lower resolution
data from initial blocks or higher resolution data from later
blocks. This scheme of access ensures an interactive and
progressive data access.

III. PARALLEL IDX
IDX is a desirable file format for visualization of large

scale HPC simulation results because of its ability to access
multiple levels of resolution with low latency for interactive
exploration. The existing ViSUS implementation is serial
in nature, which prevents parallel simulations from writing
directly into IDX format. Data could be converted as a post-
processing step; however, this would significantly increase
the analysis turn around time and make poor use of available
parallel I/O resources available in today’s leadership-class
computing facilities. We have therefore developed the Par-
allel IDX (PIDX) library, which enables simulations to write
IDX data directly [9]. PIDX coordinates data access among
participating processes so that they can write concurrently
to the same data set with coherent results.

In previous work [9], we successfully demonstrated the
use of PIDX in coordinating parallel access to multidi-
mensional datasets. We also explored optimizations both
for parallel HZ computation and for efficient access to
the underlying data files that make up an IDX dataset.
While this implementation was successful with synthetic
benchmarks at moderate scale (up to 512 processes), we
encountered two key challenges in employing PIDX for real-
world applications on leadership-class computing systems.
The first is that HPC simulations typically generate data for
several related multidimensional variables at each simulation
time step. If we store this collection of variables in a
naive manner, then we risk inefficiency from redundant HZ
ordering calculations and sub-optimal file access patterns.
We must therefore capture the application data model in a
way that provides a complete picture of the intended data
movement so that PIDX can calculate an optimal strategy for
its computation and I/O phases. The second challenge is that
the translation from multidimensional parallel application
data into a progressive linear data format results in an
extraordinary degree of noncontiguous data access, both in
application memory and within the file system. This access
pattern impedes scalability.

We address these challenges in PIDX using two related
strategies [4]. First, we introduce a new API that tailors
to the needs of HPC application data models. We then
introduce an aggregation algorithm that translates the ap-
plication data model into an efficient movement of data to
storage. These strategies are discussed in greater detail in
the following subsections.

A. Expressing HPC data models with PIDX

The first prototype implementation of PIDX presented
a single PIDX_write() function that could be used to
write a portion of a multi-dimensional dataset to disk. All
data passed into this function must reside in a contiguous,
row-major ordered memory region. While sufficient for
simple use cases, this API was not flexible enough for
more complex real-world applications. In particular, if there



were multiple variables, if the variables were strided in
memory, or if there were multiple samples per variable (ie,
a compound vector), then transferring a complete simulation
time step to IDX would require packing data into multiple
intermediate buffers and issuing multiple PIDX_write()
operations. This approach not only introduces small I/O
operations to the storage system, but also limits the scope
of potential I/O optimizations.

Listing 1. Enhanced PIDX API example

/∗ d e f i n e v a r i a b l e s a c r o s s a l l p r o c e s s e s ∗ /
va r1 = P I D X v a r i a b l e g l o b a l d e f i n e ( ” va r1 ” ,

samples , d a t a t y p e ) ;

/∗ add l o c a l v a r i a b l e s t o t h e d a t a s e t ∗ /
P I D X v a r i a b l e l o c a l a d d ( d a t a s e t , var1 ,

g l o b a l i n d e x , c o u n t ) ;

/∗ d e s c r i b e memory l a y o u t ∗ /
P I D X v a r i a b l e l o c a l l a y o u t ( d a t a s e t , var1 ,

memory address , d a t a t y p e ) ;

/∗ w r i t e a l l da ta ∗ /
PIDX wri te ( d a t a s e t ) ;

To overcome this problem, we devised an enhanced API
that decouples the definition of the application’s data model
from the actual transfer of data to storage. This technique
has proven successful in a variety of existing high level
libraries such as HDF5 [1] and pNetCDF [10]. The PIDX
API allows applications to store a collection of dense mul-
tidimensional variables. Each variable has its own type and
can be written from an arbitrary memory layout on each
process. An example of the use of this enhanced PIDX
API is shown in Listing 1. The first step is to define a
variable. This includes an indication of how many samples
make up an instance of the variable and what MPI datatype
will represent the variable. The second step is to add the
variable to the dataset if the local process uses that variable.
The third step is to describe how the variable is laid out
in local memory, including any striding information. These
initial three steps can be repeated as needed to describe all
variables to be included in an IDX dataset. The final phase
is the PIDX_write() command, which tells the library to
transfer the entire dataset to storage.

This organization allows PIDX to leverage as much con-
currency as possible by taking all variables into account
simultaneously. It also allows PIDX to reuse HZ calculations
where possible for variables that share the same dimensions.
In the following subsection we will explore aggregation
optimizations that take advantage of this global view of the
dataset as well.

B. Aggregation strategies

Once an HZ ordering is calculated in PIDX, each process
must write its local data into appropriate regions in the

Figure 1. Histogram of file accesses produced when a single process writes
a 22 x 36 x 22 volume without aggregation. Each element is 8 bytes.

underlying IDX dataset. The IDX data is divided into a col-
lection of files in a directory hierarchy to promote efficient
caching during visualization [17]. These files are further
broken down into blocks that each contain a contiguous set
of HZ ordered samples. The blocks are sparsely populated
according to the dimensions of the dataset. Each block may
contain samples from many different processes in an HPC
simulation, especially in the initial low resolution HZ levels.
As a result, each process holds a variety of data elements
that are destined for noncontiguous file regions. This access
pattern problem is exacerbated if the data dimensions are
not a power of two due to the fact that the IDX calculation
will result in a sparse linear ordering.

Figure 1 illustrates the noncontiguous nature of the file
accesses required to write a non power of two dataset using
PIDX. This example shows a histogram of the number
of contiguous elements (i.e. samples) in each underlying
write operation needed to transfer a single 22 x 36 x 22
volume. Each element is an 8 byte double precision floating
point number, yielding a total data size of roughly 136
KiB. The entire volume is written by a single process. In
this example, the two largest write accesses contain 2048
elements (16 KiB), but smaller file accesses are much more
common. There are 736 writes that transfer 3 elements or
less to storage. This type of small write access pattern is
known to scale poorly, especially on leadership-class storage
systems [2].

One solution to this problem is to aggregate data before
writing by using a two-phase I/O strategy [6]. In an MPI
environment, this can usually be accomplished by simply
issuing MPI-IO collective operations [18]. However, this
approach is not applicable in PIDX. Each IDX dataset is bro-
ken into a (possibly large) collection of smaller underlying
files and MPI-IO only allows collective writes to one file at a
time within a given communicator. It is therefore infeasible
to fully express all possible concurrent operations using
MPI-IO. We instead designed an aggregation algorithm
tailored specifically for IDX data sets, in which a subset
of processes are responsible for combining data from all



Figure 2. Schematic diagram of PIDX aggregation strategies: (A) No aggregation (B) Aggregation Implemented with RMA (C) Aggregation Implemented
with RMA and MPI Datatypes

processes into large contiguous buffers before writing to
storage.

The first step in tailoring aggregation to IDX is to se-
lect appropriate aggregators. We chose aggregator processes
such that each one is responsible for writing all the data
corresponding to a single IDX variable to a given binary
file. For example, a single variable dataset of dimensions
2563 would produce 16 underlying files when using the
default IDX parameters. 16 aggregators are therefore used to
write the files, regardless of the total number of processes
contributing data. If there were three variables, then there
would be three aggregators per file, bringing the total
number of aggregator processes to 48. The aggregators
are distributed evenly among all MPI ranks in order to
maximize throughput in cases where adjacent ranks share
I/O resources such as forwarding nodes. The buffer size of
each aggregator can be tuned using IDX-specific parameters;
the default configuration results in a 64 MiB aggregation
buffer for each aggregator when using double precision
floating point variables. This strategy must be adjusted in
corner cases where the dataset parameters would require
more aggregators than can be satisfied by the job size, but the
default organization offers several key advantages. Metadata
overhead is minimized by having each aggregator write to
no more than one file. All writes can also be perfectly block
aligned in storage by shifting the offset of each variable and
adjusting the IDX header information accordingly.

The second step in designing a custom aggregation algo-
rithm for IDX was to choose the communication mechanism
for transferring data from each process to the appropriate
aggregator. We elected to use MPI one-sided communication
for this purpose, with each aggregator presenting an RMA
window in which to collect data. The clients place data di-
rectly into appropriate remote buffer locations according to a
global view of the data set. This has two notable advantages
over point to point communication in this context. The first
is that it avoids redundant computation. The client can reuse

the results of its HZ ordering calculation to determine where
to write each contiguous set of samples without involving the
aggregators. This leads to a second advantage, in that each
process can govern how much data to transmit with each
MPI_Put() operation according to the nature of the local
IDX data and the complexity of the resulting memory access
pattern. Datatypes and buffers can be constructed iteratively
and broken into segments according to HZ level boundaries,
datatype size, or data buffer size with no additional synchro-
nization. MPI_Win_fence() is used for synchronization
once all transfers are complete.

Figure 2 illustrates the evolution of the aggregation strate-
gies used within PIDX. In Figure 2(A), each process writes
its own data directly to the appropriate underlying IDX
binary file, leading to a large number of small accesses to
each file. In Figure 2(B), each process uses MPI_Put()
operations to transmit each contiguous data segment to
an intermediate aggregator. Once the aggregator’s buffer is
complete then the data is written to disk using a single
large I/O operation. In Figure 2(C) we go one step further,
by bundling several noncontiguous memory accesses from
each process into a single MPI_Put() using MPI indexed
datatypes. This approach reduces the number of small net-
work messages needed to transfer data to aggregators.

C. PIDX I/O phases

The data model and I/O aggregation strategy presented in
the preceding subsections are just two steps in the complete
process of writing an IDX dataset. The entire process can
be summarized as follows:

1) Describe data model (see Section III-A)
2) Create an IDX block bitmap
3) Create underlying file and directory hierarchy
4) Perform HZ encoding
5) Aggregate data (see Section III-B)
6) Write data to storage
The creation of the IDX block bitmap is a critical compo-

nent of writing a large IDX dataset in parallel. This bitmap



indicates which IDX blocks must be populated in order
to store an arbitrary N-dimensional dataset. The maximum
number of IDX blocks can be determined trivially by round-
ing up the global dimensions to the nearest power of two and
dividing by the number of samples per block. This is only an
upper bound, however. We can limit the number of files and
the size of those files (especially for datasets that are just
over a power of two boundary) by calculating exactly which
blocks must be populated. This calculation is performed up
front and stored in a bitmap indicating which blocks are
used in the IDX dataset. This block bitmap is used for three
purposes: to determine what files and directories need to
be created within the IDX dataset, to generate the header
information indicating the location of each block within each
file, and to determine the correct file offset for each HZ
buffer that is written to storage. In order to generate the
block bitmap, the maximum number of blocks is calculated
first. An inverse HZ computation is done for the starting
and the ending HZ addresses of all the potential data blocks.
This step yields the bounding box in x, y and z coordinates
for each block. A block will contain data corresponding to
the global volume only if there is an intersection between
this bounding box and and the data being written by the
application.

The IDX file and directory hierarchy is created by the rank
0 process in the application before any I/O is performed. In
future, we plan to distribute this task among more processes
in order to parallelize this activity. The HZ encoding step
is performed independently on each process. In order to
minimize memory access complexity, all samples are copied
into intermediate buffers in a linear Z ordering. Note that
the Z ordered data from each process may span multiple
HZ levels or multiple files within the overall IDX dataset.
Aggregation is performed as described in Section III-B. The
final step is to write the HZ ordered data to disk. This step
is performed using independent MPI-IO write operations.
Due to explicit aggregation within PIDX there is no need
for collective I/O or derived data types at this step.

IV. EVALUATION

Our ultimate goal in this section is to evaluate the per-
formance of PIDX to directly write IDX datasets for each
time-step of the S3D combustion simulation.

S3D is a continuum scale first principles direct numerical
simulation code which solves the compressible governing
equations of mass continuity, momenta, energy and mass
fractions of chemical species including chemical reactions.
The computational approach in S3D is described in [3].
In the S3D code, each rank is responsible for a piece
of the three-dimensional domain; all MPI ranks have the
same number of grid points and the same computational
load under a Cartesian decomposition. S3D has been run
successfully on up to near the full size (216,000 cores) of the
NCCS XT5 jaguarpf, demonstrating near linear scaling up

to approximately half of the machine (approximately 120k
ranks) with the current validated production code base in
the weak scaling limit. Similarly, it has demonstrated near
linear scaling to 120,000 cores on the CrayXE6, Hopper2,
at NERSC. S3D can be compiled with support for several
I/O schemes which are then selected at runtime via a config-
uration parameter. S3D I/O extracts just the portion of S3D
concerning restart dumps, allowing us to focus exclusively
on I/O characteristics. For our evaluation, we used an S3D
I/O configuration wherein each process produced a 643

volume consisting of 4 fields (field 1 and 2 each of just 1
sample, field 3 with 3 samples and field 4 with 11 samples).
This produces 32 MiB of data per process. Because PIDX is
implemented in C, we developed a wrapper to facilitate the
use of PIDX with S3D, which is a Fortran code. We also
incorporated a custom I/O module in S3D to enable the use
of PIDX as an alternative to the existing I/O schemes.

Unless otherwise noted, all experiments presented in this
work were performed on the Hopper2 system at NERSC.
Hopper2 has a peak performance of 1.28 Petaflops/sec,
153,216 processors cores for running scientific applications,
212 TB of memory, and 2 Petabytes of online disk storage.
Hopper2’s compute nodes are connected via a custom high-
bandwidth, low-latency network provided by Cray. The
connectivity is in the form of a mesh in which each node is
connected to other nearby nodes like strands in a fishing net.
Each network node not only handles data destined for itself,
but also relays data to other nodes. The edges of the mesh
network are connected to each other to form a 3D torus. The
custom chips that route communication over the network are
know as Gemini and the entire network is often referred to as
the Cray Gemini Network. The Hopper2 system has access
to five different file systems which provide different levels
of disk storage, I/O performance, and file permanence. Two
identically configured Lustre file systems provide 25 GiB/s
scratch storage for large I/O intensive jobs. We used one
of these scratch file systems as the target for all benchmark
datasets in our evaluation. This same file system is also used
for production S3D jobs on hopper, although jobs typically
use Fortran I/O as their output method.

The Lustre scratch file system used in our evaluation
consisted of 26 I/O servers, each of which provides access to
6 object storage targets (OSTs). The compute node network
is connected to the servers via QDR Infiniband, and the
servers are in turn connected to 13 LSI 7900 disk controllers
via Fibre Channel 8. Our experiments used the default Lustre
striping parameters on Hopper2 in which each file is striped
across two OSTs.

We first investigate the impact of PIDX file parameters
on the achievable throughput. Next, we evaluate the efficacy
of the I/O optimization strategies for PIDX. Finally, we
compare the weak scaling performance of PIDX and Fortran
I/O for S3D I/O.



Figure 3. Impact of PIDX file parameters on achievable throughput. We see
that PIDX performs best on Hopper2 with a larger number of aggregators
and smaller file sizes.

A. Impact of PIDX file parameters

There are two main file parameters in PIDX that can
be varied to produce the same IDX dataset with different
numbers of files and different data distributions. The ele-
ments per block parameter controls the number of samples
that constitute an IDX block, while the blocks per file
parameter controls the number of blocks that constitute a
data file within IDX. Both can be increased in order to
reduce the total number of files and enlarge the size of each
file. These parameters can be used to tune PIDX to reflect
the characteristics of the underlying file system, as some
file systems are optimized towards performance for large
numbers files or performance for single shared files.

To understand the impact of these parameters, we wrote a
micro-benchmark to write out a 3D volume using PIDX.
In our evaluations on Hopper2, we vary the number of
processes from 256 to 4096. Each process writes a 643 sub-
volume of double precision floating point data to generate a
total volume of 512 MiB (256 processes) and 4 GiB (4096
processes). We varied elements per block from 215 to 218

and varied blocks per file to 128, 256 and 512. Varying
these parameters have a bearing on the aggregation time
spent during RMA communication as well as the file write
time. This means that it will take a different amount of
time to generate two IDX file with same box but different
elements per block or blocks per file.

Figure 3 depicts the maximum and minimum through-
puts achieved as we vary the tuning parameters. For each
data point we label the performance, the number of files
generated, and the elements per block and blocks per file
parameters that were used to achieve that result. As the num-
ber of files increases (smaller blocks per file), we achieve
a noticeable speed up for two reasons. First, the number of
aggregators is increased. Secondly, the underlying Lustre file
system performs better as data is distributed across a larger

Figure 4. Throughput comparison of all the versions of the API

number of files. We believe our design is flexible enough
to be tuned to generate small number of large shared files
or a large number of files depending on which is optimal
for the target system. We used 128 blocks per file and 215

elements per block in all further evaluations in this work.

B. Efficacy of Aggregation on PIDX I/O performance

Figure 4 depicts performance of the aggregation mecha-
nism in PIDX to write 10 time-steps in S3D I/O as we scale
the number of processes from 256 to 8192. Each process
writes out a (64)3 sub-volume with 4 variables. Three cases
are shown: one in which no aggregation is performed and
all processes write directly to storage with MPI independent
I/O, one in which aggregation is performed using a separate
MPI_Put() operation for each contiguous region, and
one in which MPI datatypes are used to transfer multiple
regions using a smaller number of MPI_Put() operations.
Aggregation with MPI datatypes yields a significant speed
up for I/O performance in comparison to a scheme that uses
no aggregation. At 256 processes, we achieve up to a 18-fold
speed up, and at 2048 processes, we achieve up to 30-fold
speed up over a scheme with no aggregation.

The aggregation strategy that utilized MPI datatypes
yielded a 20% improvement over the aggregation strategy
that issued a separate MPI_Put() for each contiguous re-
gion. An indexed datatype was used to describe all transfers
to a given aggregator at each HZ level. The reason for the
performance improvement is that the datatype reduced the
number of small messages transferred during aggregation,
therefore reducing network congestion. In future work we
believe that this could be optimized further by creating
datatypes that span multiple HZ levels.

C. Weak Scaling Performance

We evaluate the weak scaling performance of S3D I/O
using PIDX and Fortran I/O as we vary the number of
processes from 256 to 8192. In each run, S3D I/O wrote
out 10 time-steps wherein each process contributed a 643



Figure 5. Weak scaling of I/O mechanisms including PIDX and Fortran
I/O

block of double precision data (32 MiB) consisting of 4
variables. The variables were pressure, temperature, velocity
(3 components) and species (11 components). In order to
provide a baseline for the results obtained from PIDX and
Fortran I/O, we also executed IOR tests for each process
count. IOR is a general-purpose parallel I/O benchmark [16]
which we configured in this case to produce a similar access
pattern to that generated by S3D with Fortran I/O: each
process writes one complete file without fsync. This should
achieve near-optimal performance for the Lustre file system.
The IOR performance gives us a measure of the maximum
performance achievable for the filesystem. The S3D PIDX,
S3D Fortran I/O, and IOR weak scaling results are shown
in Figure 5. From the figure we see that at 8192 processes,
PIDX achieves a maximum I/O throughput of 18 GiB/s
( 90% of the IOR throughput). As we increase the number of
processes, the performance of PIDX increases as the number
of files increases leading to more aggregators participating
in I/O. IOR and Fortran I/O achieve similar throughput for
all the process counts. This is primarily due to the fact that
Fortran I/O in S3D behaves similarly to IOR test case with
each process populating a unique output file. Although PIDX
is not as fast as Fortran I/O for this benchmark, we can see
that the results are converging towards a comparable peak
performance at larger process sizes while offering significant
advantages over unstructured Fortran I/O data in terms of
visualization capability.

Figure 6 depicts the time taken by the various PIDX I/O
components - IDX file hierarchy creation, HZ computation,
aggregation time and the I/O write time. As we scale the
number of processes from 256 to 4096, the amount of data
written increases from 8 GiB per time-step to 128 GiB per
time-step. As the IDX data size increases with the number
of processes, the number of binary files required to represent
the data increases. This leads to an increase in time needed to
create the IDX file hierarchy. We believe that this time could
be reduced by distributing the creation of the file hierarchy

Figure 6. The proportion of time taken by the various I/O components as
we scale from 256 processes (8 GiB) to 4096 processes (128 GiB)

across a larger number of nodes, which we will confirm in
future work. HZ computation is embarrassingly parallel and
takes 0.17 secs as we weak scale the number of processes.
We observe that the percentage of total I/O time spent on
data aggregation increases with the process count due to the
increasing volume of network traffic. The actual I/O write
time dominates the total time. The write phase by itself
achieves rates that are similar to peak rates measured with
IOR, however. At 4096, if we consider just the I/O write
phase performance, then we achieve 19.7 GiB/s ( 96% of
the IOR performance).

V. VISUALIZATION PIPELINE

In addition to the efficient file format, ViSUS has been
shown to aid in the interactive exploration of very large
datasets [13], [17], [15]. ViSUS has been extended to support
a client-server model in addition to the traditional viewer.
The ViSUS server uses HTTP (a stateless protocol) in
order to support many clients. A traditional client/server
infrastructure, where the client established and maintained
a stable connection to the server, can only handle a limited
number of clients robustly. Using HTTP, the ViSUS server
can scale to thousands of connections.

In a typical ViSUS client-server session, the client only
requests the particular region needed for display. Due to the
resolution of modern displays this data is very small com-
pared to the total size of the data and optimized to minimize
latency. The Visus client keeps a number (48) of connections
alive in a pool using the “keep-alive” option of HTTP. The
use of lossy or lossless compression is configurable by the
user. For example, ViSUS supports JPEG and EXR for lossy
compression of byte and float data respectively. The ViSUS
server is an open client/server architecture, therefore possible
to port the server to any web server which supports a C++
module plugin (i.e. apache, IIS).

Ideally, a scientist would like to view a simulation as
it is computed, in order to steer or correct the simulation



Figure 7. A 2D slice of a S3D simulation time step seen through a remote
ViSUS client.

Figure 8. A volume render of an S3D simulation time step seen through
a remote ViSUS client.

as unforeseen events arise. A single time-step from the
S3D simulation is approximately 128 GB in size, which
would be infeasible to transfer offsite. For example, in our
testing the transfer of a single time-step from the Hopper2
system to our local file server took approximately 3 hours 38
minutes. In the time to transfer a single time-step, the user-
scientist would have lost any chance for significant steering
or correction. By using the IDX format in the simulation
checkpointing, we can link this data directly with an Apache
server using a ViSUS plug-in running on a log-in node for
the cluster system. ViSUS can handle missing or partial data,
therefore allowing the visualization of the data even as it is
being written to disk by the system.

ViSUS supports a wide-variety of clients: a stand-alone
application, a web-browser plug-in, or an iOS application
for the iPad or iPhone. Therefore an application scientist
can monitor an active simulation on practically any system
without any need to transfer the data off of the computing
cluster. Figures 7 and 8 show a volume render and a
2-dimensional slice of a S3D simulation time-step seen
through a ViSUS stand-alone remote client. The data can be
viewed remotely without moving the large simulation data
off of the high-performance system.

VI. RELATED WORK

Parallel scientific simulations often produce large volumes
of data, and a variety of high level libraries have been
developed to aid in structuring that data and accessing it
efficiently. The Hierarchical Data Format (HDF) is one

such library that allows developers to express data models
in a hierarchical organization [1]. Parallel NetCDF [10] is
another popular high level library with similar functionality
to HDF5 but in an file format that is compatible with
serial NetCDF from Unidata. Both HDF5 and PNetCDF
are implemented atop MPI and MPI-IO functionality. They
both leverage MPI-IO collective I/O operations for data
aggregation. While HDF5 and PnetCDF are both more
general-purpose and robust than PIDX, the chief advantage
of PIDX is that it reorders each individual sample to in a
manner that enables real-time multi-resolution visualization.
PIDX is not intended to serve as a general purpose data
format, but it may be suitable for use within HDF5 or
PNetCDF as an alternative data layout. ADIOS is another
popular library used to manage parallel I/O for scientific
applications [11]. One of the key features of ADIOS is that
it decouples the description of the data and transforms to
be applied to that data from the application itself. ADIOS
supports a variety of back-end formats and plug-ins that can
be selected at run time.

Previous work in multi-resolution data formats for par-
allel processing environments include work from Chiueh
and Katz in developing a multi-resolution video format
for parallel disk arrays [5]. They leveraged Gaussian and
Laplacian Pyramid transforms that were tailored to the
underlying storage architecture to improve throughput. Their
work focused on read-only workloads as opposed to write-
heavy workloads. Chaoli, Jinzhu and Han have presented
work in parallel visualization [19] of multiresolution data.
Their algorithm involves conversion of raw data to a mul-
tiresolution wavelet tree and focuses more on parallel vi-
sualization rather than a generic data format as in PIDX.
Many researchers previously have proposed various tech-
niques for multiresolution encoding and rendering of large
scale volumes [8], fewer studies were focused on designing
parallel algorithms for generating data itself in a more
interactive usable format like the IDX. The mechanism that
PIDX uses to split parallel I/O data into multiple files is
similar to the subfiling scheme implemented in PnetCDF [7].
That approach performs aggregation using default MPI-IO
collective operations on independent communicators rather
than a custom aggregation algorithm. Memik et al. also
proposed a generic method for aggregating I/O to multiple
files called Multicollective I/O [12]. Unlike Multicollective
I/O, our approach does not expose the underlying files to the
application nor does it require separate datatypes for each
file.

VII. CONCLUSION AND FUTURE WORK

There is a growing gap between data formats written
out by simulations optimized for write performance and the
formats required by analysis tools optimized for read perfor-
mance. This gap is likely to increase as storage systems are
unable to keep up with the volume of data being produced



by simulations. PIDX is an effective tool to help bridge
this gap by efficiently producing a cache oblivious, multi-
resolution data format. In this paper, we elucidate the PIDX
API design and implementation. We describe the efficacy of
PIDX to perform I/O for S3D combustion application. We
present PIDX performance up to 8,192 cores of the Hopper
2 supercomputer. PIDX achieves up to 18 GiB/s - 90% of
the achievable IOR bandwidth. Finally, we demonstrated an
end-to-end visualize pipeline to interactively visualize the
datasets written out by the S3D simulation. For future work,
we plan to design a tuning layer in PIDX to optimize its
performance for parallel file systems including Lustre, PVFS
and GPFS.
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