
Full-Resolution Interactive CPU Volume Rendering with Coherent BVH Traversal

Aaron Knoll∗

Argonne National Laboratory

Sebastian Thelen†

TU Kaiserslautern

Ingo Wald‡

Intel Corporation

Charles D. Hansen§

University of Utah

Hans Hagen¶

TU Kaiserslautern

Michael E. Papka‖

Argonne National Laboratory

Figure 1: 2048x2048x1920 Richtmyer Meshkov instability CFD simulation, rendered at full data resolution (without LOD) into a 2048x768 frame buffer at 5.7 fps
on a dual 4-core 2.67 GHz Intel Core i7 (X5550) workstation with 32 GB RAM, outperforming an out-of-core renderer on a NVIDIA 285GTX GPU by 80x.

ABSTRACT
We present an efficient method for volume rendering by raycast-
ing on the CPU. We employ coherent packet traversal of an im-
plicit bounding volume hierarchy, heuristically pruned using prein-
tegrated transfer functions, to exploit empty or homogeneous space.
We also detail SIMD optimizations for volumetric integration, tri-
linear interpolation, and gradient lighting. The resulting system
performs well on low-end and laptop hardware, and can outperform
out-of-core GPU methods by orders of magnitude when rendering
large volumes without level-of-detail (LOD) on a workstation. We
show that, while slower than GPU methods for low-resolution vol-
umes, an optimized CPU renderer does not require LOD to achieve
interactive performance on large data sets.

1 INTRODUCTION

Direct volume rendering (DVR) is now a mature algorithm in com-
puter graphics, employed in scientific and medical visualization of
scalar field data, and increasingly in animated effects in games and
production rendering. Because of its high computational cost, vol-
ume rendering has almost exclusively been implemented on graph-
ics hardware. With dedicated memory and efficient built-in inter-
polation, GPU’s have proven efficient at rendering moderate-size
volume data interactively. Conversely, relatively few works have
optimized volume rendering on the CPU, due to its comparatively
low computational throughput.

Nonetheless, the CPU is potentially a desirable platform for vol-
ume rendering. In laptops and netbooks, GPU resources are fre-
quently absent or are much less powerful than their desktop coun-
terparts. In high performance computing, it is desirable to visualize

∗e-mail: knoll@mcs.anl.gov
†e-mail:s_thelen@informatik.uni-kl.de
‡e-mail:ingo.wald@intel.com
§e-mail:hansen@cs.utah.edu
¶e-mail:hagen@informatik.uni-kl.de
‖e-mail:papka@anl.gov

large data directly on a CPU cluster, as opposed to downsampling
or employing multiresolution rendering algorithms. To render large
data, out-of-core GPU systems rely on level-of-detail (LOD) and
progressive rendering to achieve interactive performance. While
this approach is well suited for exploration, a GPU renderer can in
fact underperform an optimized CPU system when rendering large
data at full resolution, due to the CPU’s direct access to main mem-
ory, multilevel cache, and efficiency in branch-intensive spatial data
structure traversal.

This paper decribes a CPU volume rendering implementation
that outperforms GPU approaches at both low and high ends of
the hardware spectrum. This is accomplished partly by efficient
instruction-level optimization and, more significantly, by heuris-
tic traversal of a bounding volume hierarchy (BVH) acceleration
structure. The main contributions of our system are a technique
for traversing a min-max implicit BVH [20] using a preintegrated
transfer function for heuristical pruning; a method for quickly in-
tegrating low-variance regions of the volume using ray packets and
Streaming SIMD Extension (SSE) vector instructions; and faster
methods for computing trilinear interpolation, gradient lighting and
DVR integration for single rays in SSE. While technical, these en-
hancements are crucial to achieving interactive performance, and
result in a scalable system that outperforms GPU DVR by over an
order of magnitude when rendering large data.

2 RELATED WORK

Volume rendering was first demonstrated in the software ray caster
of Levoy [16]. With the introduction of fast rasterization hard-
ware, texture slicing became the dominant method [2]. Preinte-
gration [3] improved classification quality by separating integra-
tion of the scalar field and transfer function. Ray casting methods
emerged on loop-capable programmable GPU’s [13] and achieved
performance parity with slicing methods on the NVIDIA G80 ar-
chitecture. GPU DVR methods have also employed acceleration
structures such as an octree [6] or kd-tree [9]. Interactive render-
ing of large data has proven a challenge for single-GPU renderers;
due to GPU memory limits focus has shifted to using multi-GPU
clusters to render data larger than 1 GB [4].

On the CPU, shear warp [14] remains a state-of-the art vol-

ume rendering algorithm, which employs bilinear interpolation and
affine transformations on axis-aligned slices, and delivered inter-
active performance for small volumes on mid-1990’s hardware.
Another efficient CPU DVR system was the Ultravis system [10],
which achieved 10 fps on a dual-Pentium 3 500 MHz machine for
upsampled 2562 images. It used SSE assembly, a 3D distance map
for space skipping, and aggressive cache management. As opposed
to low-level optimization, later CPU volume rendering work has
focused largely on distribution and scalability to multiple proces-
sors and larger data [7]. The work of Parker et al. [17] in interactive
isosurface ray casting prompted numerous extensions including op-
timization with kd-trees and SSE [21], rendering from compressed
octrees [?,12], and out-of-core LOD [5]. We use a coherent packet-
based CPU ray tracing framework to take advantage of efficient
packet BVH traversal [19], similar to the tetrahedral volume isosur-
face ray tracing of Wald et al. [20]. Smelyanskiy et al. [18] show
that for sufficiently large volumes, a multicore CPU implementa-
tion can outperform a GPU implementation. While this compari-
son handicaps the GPU by employing nearest-neighbor filtering, it
nonetheless highlights the potential of optimized CPU approaches
for rendering large data.

Splatting [23] is an alternative algorithm for adaptive direct vol-
ume rendering. Given its different characteristics in preprocess
time, scalability and quality, we do not compare directly to splat-
ting, but note that such approaches could prove competitive.

3 BACKGROUND

Direct volume rendering commonly refers to a process in which
samples from the volume are classified, lit, and blended in image-
space order, irrespective of rendering algorithm and in contrast to
isosurfacing, maximum intensity projection, and other modalities.
For the underlying optical and mathematical models, we refer the
reader to the original paper of Levoy [16] as well as that of Engel et
al. [3] concerning preintegrated transfer functions. DVR integrates
the radiative transport equation (Equation 1) on a ray segment along
[a,b]. Given a transfer function ρ , where ρE is the emissive term
or color, ρα is the opacity, and given a scalar field function f (t) =
f (~O+ t~D) = f (~R(t)), irradiance can be evaluated as:

I(a,b) =
∫ b

a
ρE(f (s))ρα (f (s))e−

∫ s
a ρα (f (t))dtds (1)

Evaluating ρ(f) implies postclassification, where the transfer
function is evaluated after the scalar field function. This integral
is approximated discretely via a Riemann sum,

I ≈
n

∑
i=0

ρ̌E(i)
i−1

∏
j=0

(1−α j). (2)

where ρ̌E is approximated discretely along the ray as:

ρ̌E(i)≈ ρα (f (i δ t))ρE(f (i δ t)) (3)

Preintegration employs a separate integral in transfer function
space to estimate ρ̌E and ρa [3], specifically the Riemann sum of
irradiance between two samples fa = f (a) and fb = f (b), assum-
ing linear spacing of f values between these points. Typically, the
colors ρ̌E(i) are associated (integrated alongside αi).

αi ≈ 1− e−
∫ 1

0 ρα ((1−ω) fa+ω fb)d dω (4)

Preintegration can improve the sampling behavior when the
transfer function is sharp, and it is simple to implement as an op-
tional classification. We also use the preintegrated table to optimize
our implicit BVH traversal (Section 5).

Rather than sample uniformly along the ray, we use differential
sampling [11]. This scheme increments the step between samples
by a first-order differential, resulting in a quadratic pattern that sam-
ples more frequently closer to the eye. It ensures a constant sam-
pling rate in image space and improves performance for equivalent
visual quality.

original 3D volume

page+cache aligned blocks

min-max implicit BVH

offline preprocess

online rendering (per frame)

frame buffer ray packet (8x8 pixels)

ray packlet
(4 pixels)

camera
transfer function

work queue
thread0
thread1
thread2
thread3

thread0 per packet BVH traversal

preintegrated TF

f

f

ρr,g,b,α(f)

per packlet integration
(SOA SSE)

per-ray integration
(AOS SSE)

-or-

Figure 2: Overview of our system and algorithm pipeline.

4 FAST DIRECT VOLUME RAY CASTING ON THE CPU

In general, direct volume rendering can be accelerated by reduc-
ing the total number of samples taken, and by lowering the cost
of computing and integrating each sample. Our system performs
both, employing a coherent BVH traversal method for exploiting
empty and low-variance regions of the volume, and an optimized
low-level SIMD routine for DVR integration with trilinear interpo-
lation. Traversal is called from a multithreaded packet ray tracer
distributed over image space. An overview of our system pipeline
is shown Figure 2.
4.1 Domain Decomposition with the BVH
Minimizing the number of DVR samples entails space-skipping and
adaptive methods. On the GPU, these are typically achieved by ras-
terization of a bounding proxy [8] and block-based multiresolution
LOD. In our CPU system, we employ efficient traversal of a BVH
acceleration structure and forgo LOD entirely. The efficiency of
the acceleration structure depends on the amount of empty space
in the scene. The cost of traversing the structure per-ray often
outweighs gains from computing fewer DVR samples. Coherent
traversal amortizes this cost over the rays in the packet, changing
this dynamic significantly and making acceleration structures prac-
tical for denser volumes with less empty space. To further improve
efficiency, we introduce novel heuristics for pruning the BVH based
on the preintegrated lookup table of the user-chosen transfer func-
tion. To the best of our knowledge, this system represents the first
pairing of coherent packet traversal with structured direct volume
rendering. We describe our coherent BVH traversal approach in
detail in Section 5.
4.2 Optimizing Integration with SSE
Optimizing brute-force DVR integration entails limiting cache and
computational bottlenecks to maximize throughput. GPU hardware
excels at this, with built-in 3D texture fetching and interpolation
and numerous execution units. Ironically, implementing efficient
DVR integration on the CPU is more challenging and less grace-
ful, necessitating low-level SSE vectorization and efficient strate-
gies for addressing the volume data in memory. We contribute a
low-level yet flexible integration routine that can be employed in
either a conventional single-ray tracer or a packet ray tracer such
as our coherent BVH system. While efficient memory manage-
ment is crucial for out-of-core GPU systems, it is less so for CPU
approaches where the entire volume resides in main memory and
a multilevel cache hierarchy is implemented natively in hardware.
We improve performance chiefly by amortizing the cost of address
translation, exploiting SSE swizzling behavior for trilinear interpo-
lation, and performing blending and sampling operations directly

����������	
 �������

��������

��	
��������

Figure 3: Coherent BVH traversal of interior nodes. Left: the first active
ray (or SSE packlet) in a packet is speculatively tested against a child node
bounding box. Center: if this test fails, an interval arithmetic frustum test
tests whether we can discard the entire packet. Right: only then must we
test all rays (packlets) against the node. By incrementing the “first active” ray
for this level of the traversal stack, we can avoid redundant intersection tests.

on SSE vectors using carefully chosen masks. We have deliberately
avoided precomputed gradients used in other CPU approaches [10],
opting instead for more efficient computation of analytical gradi-
ents. In all, we achieve trilinear interpolation and Phong illumina-
tion at modest cost relative to a CPU naive implementation, with no
associated storage overhead. Details are given in Section 6.

5 IMPLICIT BVH FOR STRUCTURED VOLUME RENDERING

The main algorithmic contribution of our system is the use of co-
herent BVH traversal to accelerate volume rendering, reducing the
total number of DVR samples by exploiting empty and homoge-
neous space. Domain decomposition schemes are successful only
when the gains justify the cost of traversing the structure; this limi-
tation often discourages per-ray traversal. Coherent algorithms tra-
verse the acceleration structure in groups, or packets, of rays, sig-
nificantly lowering the per-ray traversal cost. We use the coherent
BVH approach of Wald et al. [19], specifically the implicit BVH
employing a min-max tree [20]. We chose the BVH expressly for
this fast wide-packet traversal algorithm, which scales well to larger
models compared to coherent grid [22] or octree [12] variants. Our
general approach is to build an implicit BVH as an offline prepro-
cess, and then to traverse it per-packet using the preintegrated trans-
fer function for dynamic culling and pruning heuristics.

5.1 Construction

The BVH construction consists of two stages. The first is a bottom-
up enumeration of leaf nodes at some chosen base size L, corre-
sponding to leaf bricks of L3 voxels. Small values (L = 1,2) gener-
ate large trees and are beneficial only for sharp isosurface-like trans-
fer functions. In most instances, particularly for large data, perfor-
mance with L = 4 or L = 8 is equally good. In building the leaf
nodes, we compute the minimum and maximum values not only for
that brick but also for the forward-neighbors (up to L+1), account-
ing for the trilinear interpolation stencil. If the space is empty, we
discard the leaf; otherwise we append it to a list. The min-max val-
ues of both the leaves and the BVH itself are purely data-dependent,
and independent from the user’s choice of transfer function.

The subsequent step is a simple top-down median split BVH
build based on the list of initial nonempty leaf blocks. This con-
sists of computing centroids for each leaf, sorting these centroid
separately along the X,Y and Z axes. Then, we recursively pivot
in the center of each sorted list, splitting at the X, Y or Z posi-
tion yielding the largest spatial diameter, and terminating when a
leaf block has been reached. Requiring only an O(N log N) sort
and an O(N) split process for N primitives, the build is in practice
fast. While structured volumes contain no overlapping primitives,
object-space partitioning generates well-balanced trees compared
to space-partitioning octree or kd-trees.

Having created our tree, we compute min-max values for each
node using a top-down O(log N) routine. Although it is possible to
precompute the pruning metrics within BVH nodes whenever the
transfer function changes, this approach can reduce interactivity for
large data. Computing heuristics dynamically during packet-BVH
traversal is equally fast and incurs little penalty.

5.2 Coherent BVH Traversal

Our traversal is essentially that of the coherent implicit BVH [20]
with heuristics for pruning the tree during descent based on the
preintegrated transfer function. Although packets of 16x16 rays
worked best in previous applications, we find 8x8 packets perform
better in DVR, presumably due to the more costly primitive inter-
section. The algorithm is sketched in Listing 1.

Listing 1: Coherent BVH traversal pseudocode
1 void traverse(Node∗ nodes, RayPacket& packet){
2 int id = 0; //BVH node index
3 int first_active_packlet = 0; //first active SSE packlet in the packet
4 int stack[32]; //BVH stack
5 int fa_stack[32]; //stack for recalling first−active packlet
6 int d=0;
7
8 while(true){
9 Node& node = nodes[id];

10 //speculative min−max tree descent
11 while(true){
12 if (node.child == 0) break; //child is empty, i.e. leaf
13 if (node_is_empty(nodes[node.child + 0]){ id = child + 1; continue; }
14 if (node_is_empty(nodes[node.child + 1]){ id = child + 0; continue; }
15 break;
16 }
17 //speculative first−active traversal
18 int first_active_packlet = first_that_intersects(packet, nodes[id]);
19 if (first_active_packlet < RayPacket::MAX_PACKLETS){ //if any packlet hit
20 bool csv = constant_subvolume(node);
21 if (node.child && !node_is_leaf(node) && !csv){ //interior
22 int front_child = closest_child(node, packet);
23 stack[d] = node.child + 1 − front_child;
24 fa_stack[d] = first_active_packlet;
25 id = node.child + front_child;
26 d++;
27 continue;
28 }
29 else if (node.child){ //leaf
30 if (csv)
31 dvr_constant(node, packet);
32 else
33 dvr(node, packet)
34 }
35 }
36 if (d==0) return;
37 id = stack[−−d];
38 first_active_packlet = fa_stack[d];
39 }
40 }

As depicted in Figure 3, coherent BVH traversal [19] descends
the tree, speculatively testing the first ray in a packet, and employ-
ing an interval arithmetic frustum test when it misses – in effect
finding an interval of rays (when existing) that intersect each BVH
node. For efficiency, intersection tests are performed 4-at-a-time in
SIMD on a group of four rays referred to as a packlet. Redundant
intersections are avoided by maintaining the index of the first-active
packlet on the traversal stack and advancing this index to the next
hit. The algorithm ascends the tree when both children have been
examined. When a leaf is reached, all active packlets starting with
the first-active are intersected against the leaf bounds. The ray-leaf
bounding box test gives us the entry and exit distances for our DVR
intersection algorithm, either the constant subvolume method or our
horizontal (array-of-structs) SSE method in Section 6.

In the implicit BVH [20], we also speculatively descend based on
the min-max values associated with BVH nodes, namely when one
child but not the other has a range of scalar values overlapping the
transfer function domain. We employ metrics based on the preinte-
grated transfer function to interpret the min-max interval, and des-
ignate BVH nodes as empty, interior, or leaves. Similarly, we can
analyze a leaf to optionally employ a fast constant subvolume in-
tegration routine as opposed to the per-voxel SSE DVR integration
routine. We note that all our heuristics are computed on-the-fly per-
packet, with no precomputation necessary other than the statically
built implicit BVH. These optimizations are illustrated in Figure 4,
and detailed in the subsections below.
5.2.1 Empty Space Skipping
The choice of transfer function defines a subtree of the implicit
BVH, which can be used to identify and prune empty regions out-
side the classification. Similarly to how an isosurface lies between

culled and pruned nodes
BVH nodes

constant-subvolume leaves

Figure 4: The implicit BVH can be heuristically pruned using the preinte-
grated transfer function, resulting in a smaller subtree. Similarly, it can detect
constant subvolumes and perform less expensive DVR integration.

minimum and maximum values of each node of the subtree, in DVR
we can check whether the transfer function contains nonzero opac-
ity for any scalar field value in the min-max range. This is already
encoded in the lookup table of the preintegrated transfer function,
which estimates the integral over a min/max interval. To evaluate
node_is_empty() in Listing 1, we check

ρα (f , f)> δc, (5)

where f , f denote the minimum and maximum, respectively; ρα

is the opacity of the preintegrated transfer function (Equation 4)
over f , f ; and δc is a culling threshold (δc < 1e-3 works well).
5.2.2 Pruning Heuristic
Always traversing to the deepest leaf nodes in the static BVH can
be wasteful. A transfer function can convolve low-frequency trans-
parent regions into high-frequency opaque ones, and vice-versa. In
low-frequency and mostly transparent regions, it is desirable to use
larger bounding boxes, as early termination is less likely and ad-
ditional intersections are redundant. Conversely, in high-frequency
regions we wish to fully traverse the BVH, subdividing as far as
possible and exploiting early termination. To measure this fre-
quency, we divide the average opacity ρα of a node by its relative
size. To determine node_is_leaf() in Listing 1, we measure

ρα (f , f)|~Dvolume|/|~Dbox|> δp (6)

where |~Dvolume| is the diagonal diameter of the whole volume,
and |~Dbox| is the diameter of the node. In general, it is best to prune
at one or two levels higher than the original leaf level of the tree.
Aggressive pruning (δp = 1.5) is best for noisy or entropic regions,
while traversing further down (δp = 6) is faster for scenes with
smooth features and surfaces. Choosing multiples of 1.5 roughly
corrects for the diagonal length. While we allow the user to adjust
this value, δp = 1.5 works well as a default.
5.2.3 Constant Subvolume Heuristic
We can also use preintegratation to determine regions of the volume
that are sufficiently low-variance (convolved by the transfer func-
tion) to be treated as constant blocks. This subvolume can then be
integrated by using a far less expensive routine, with neither per-
voxel lookup nor interpolation, and using fast, vertical structure of
array (SOA) SSE operations on 4 rays at a time (per packlet). Since
constant regions have undefined gradient, one can forgo lighting.
When used, this method delivers significant speedup.

Like the pruning metric, the metric for constant subvolume as-
sumption is intrinsic to the transfer function and the min-max val-
ues of the node. We compute the variances in preintegrated opac-
ity as follows, choosing a constant Lb conservatively to prevent
loss of quality. We then evaluate the following heuristic, using the
constant-block integration when it succeeds and the standard DVR
routine when it fails, as shown with constant_subvolume() in Listing 1:

sup{|ρα (f , f)−ρα (f , f)|, |ρα (f , f)−ρα (f , f)|}< δsv (7)

Relatively small δsv < 1e-4 consistently produce good results
without removing visible features. This metric can be precomputed
and queried alongside the preintegrated table, though it is inexpen-
sive to compute on the fly as well.

Constant subvolume detection is efficient at rendering scenes
with homogeneous, non-empty space, such as the uniform red re-
gions in Figure 1. When homogeneous regions are nonexistent or
smaller than BVH leaves, one could still employ adaptive sampling,
either per-node [12] or per-sample [15]. Such approaches are left
outside the scope of this work, but we note that adaptive sampling
with the BVH could be a promising avenue for performance gains.

6 SSE DVR INTEGRATION

Most SIMD-optimized ray tracers, including our coherent BVH
system, store vectors as vertical structures of arrays (SOA), where
direction vectors for a packlet (4 rays) are represented as three
SSE registers, and computations are performed for that packlet in
SIMD. This approach is efficient for most geometric primitives, in-
cluding our constant subvolumes, in which numerous rays inter-
sect the same object. However, DVR frequently projects multiple
voxels to the same pixel, causing SIMD under-utilization with the
SOA paradigm. Fortunately, DVR integration operates primarily
on 4-vector positions ({x,y,z,t}) and colors ({r,g,b,a}). We thus em-
ploy horizontal SSE vector arithmetic operating on one ray at a
time, using the array of structures (AOS) paradigm. From coherent
BVH traversal, we simply convert from vertical SOA to individual
rays using 4 SSE swizzle operations, computing a mask indicating
which rays in the packlet are active. Then we iterate over the pack-
let, performing DVR for each active ray. Explicit C++ code is given
in Listing 2 in the appendix.
6.1 Memory Layout and Interpolation
Reducing the computational and memory access costs of interpola-
tion is the first target for optimization in DVR integration. Trilinear
Lagrangian interpolation takes the form:

f (x,y,z) = ∑
i, j,k={0,1}

xiy jzk vi jk, (8)

where (i, j,k) is the coordinate of the voxel vertex, vi jk is the
value at the vertex, x0 = i+1−x, x1 = x− i, and similarly for y and
z with respect to j,k. Naive implementation requires over 32 muls,
34 adds, 3 casts, and 8 voxel address translations. Many of these
computations are redundant or can be optimized with SIMD.

To mitigate cache thrashing and decouple performance from axis
alignment, we employ a simple bricking scheme described in [17],
which decomposes the volume into blocks aligned to match page
(64 byte) and L1 cache (32K) sizes. This yields chunks of 43 vox-
els, which are convenient for multiples of L = 4. We store pointers
to the X,Y and Z tables of this structure (ls. 53-55) and index into
these tables given the 6 lower and upper voxel indices (ls. 83-89).
We permutatively add these indices to retrieve the 8 voxel vertices,
storing them in two integer SSE registers (ls. 91-92).

Rather than employ successive linear interpolations [10], we
achieve 15% faster performance by exploiting SSE swizzling to
generate the xiy jzk permutations with only 3 mul_ps operations and
one add_ps. We combine common y,z terms to get a single SSE vec-
tor with the summed x0 and x1 components. With an SSE4.1 dot
product instruction we can accomplish both multiplication and hor-
izontal addition in a single instruction, followed by an SSE integer
cast (ls.98-100). On older CPU’s, we use an SSE multiplication, an
SSE integer cast and 3 scalar int additions. Though an approxima-
tion, it is as fast as the dot product and yields no loss in quality.
6.2 Classification and Lighting
Classification (ls. 103-104) is a table lookup returning the (r,g,b,a)

components at that sample. Though it makes little difference in
performance, we use a 2562 preintegrated table.

Per-sample lighting is expensive, requiring accurate gradients
(i.e., derivatives of the trilinear interpolant) and computation of
normalized vectors. Precomputing gradients and then interpolat-
ing them alongside the scalar field value is efficient [10]; however,
it also increases storage requirements by a factor of 4, which is un-
desirable when rendering large volume data. To deliver efficient

Scene BVH CPU – fps GPU – fps Ratio
Dataset Lit Screen Dimensions Size Size L Build Core 2 Core i7 9400M 285GTX best

dims 2 core 8 core 16 cores 240 cores CPU/
time bvh gcc sse bvh best †‡§ glsl † avrc ‡ iv3d § GPU

heptane p 5122 3023 28.5M 78M 2 .4s 4.0 3.7 16.0 17.9 2.6 ‡ 55 118 39 .23x
neghip u 5122 643 256k 12M 1 .011s 7.6 5.5 20.8 33.0 6.0 † 130 184 125 .28x
engine u 5122 256x256x128 8M 8M 4 .67s 3.0 2.6 10.0 13.1 1.5 ‡ 42 62 83 .25x
aneurism p 5122 2563 16M 10M 2 .13s 6.0 3.1 8.3 25.9 1.9 ‡ 50 87 77 .45x
fireset u 5122 512x256x512 65M 70M 4 .39s 7.2 1.2 12.8 30.5 0.9 ‡ 67 89 26 .52x
bonsai p 5122 2563 16M 64M 2 .13s 4.8 4.3 14.3 21.2 2.3 ‡ 75 105 80 .30x
skull d 5122 2563 16M 24M 4 .1s 1.7 1.4 5.7 12.0 1.4 † 79 63 36 .18x
jet p 5122 480x720x120 40M 124M 2 1.6s 9.5 6.0 24.6 62.0 1.9 ‡ 20 80 43 .77x
backpack d 5122 512x512x373 65M 70M 4 .40s 2.0 1.2 4.5 9.4 .40 ‡ 1.8 2.7 4.0 2.2x
zebrafish p 5122 900x500x910 390M 7.8M 8 2.9s 1.0 1.41 4.1 11.1 .18 § .23 1.7 1.3 6.5x
RM p 1k2 2kx2kx1920 7.2G 1.7G 8 240s - .30 .99 7.9 - - - .084 94x
enzo p 1k2 4kx3kx2k 24G 2.8G 16 403s - .11 .46 1.25 - - - .028 45x

Figure 5: Small and moderate-size data benchmarked with various CPU and GPU volume renderers. Results with our CPU method using the BVH are in bold.
Lighting (unlit (u), diffuse (d), or Phong (p)) is indicated next to the dataset name.

shading without major storage or computational requirements, we
exploit the xiy jzk combinations already computed for trilinear in-
terpolation to cheaply compute the analytical gradient of that filter.
Specifically, this gradient reduces to a bilinear interpolant for each
of the three partial derivatives,

∂ f
∂x

= ∑
j,k={0,1}

y jzk (v0 jk− v1 jk), (9)

and similarly for ∂ f
∂y , ∂ f

∂ z . We compute the four components of
each bilinear interpolation in SIMD (ls. 114-124). By swizzling
into four horizontal vectors and summing the result, we can simul-
taneously compute a single SSE register with the gradient and the
dot product of the light vector. We can then efficiently unitize the
n and l vectors, employing a single reciprocal square root for both
(l. 137). Then, diffuse lighting can be computed with one addi-
tional dot product. Phong illumination requires computation of the
normalized half-angle vector h, the dot product n · h, and four mul-
tiplications to compute the exponent (ls. 151-158).

6.3 Blending and Incrementing
Blending (Equation 3) and incrementing the sample along the ray
are relatively inexpensive, but can nonetheless be optimized. By
employing SSE multiplication with _0001f, we can perform alpha-
blending without breaking an SSE register into component scalars.
In incrementing the sample position, we use a single SSE addi-
tion for the x,y,z, t position along the ray. Finally, we employ SSE
masks to check for both ray-box exit and early ray termination with
a single _mm_movemask_ps() condition (ls. 184-190).

7 RESULTS

Figure 5 and its table show benchmark results for a wide variety of
volume data on both CPU and GPU hardware. Large data perfor-
mance is examined more thoroughly in Section 7.1. Our hardware
platforms are a Mac Mini Intel Core 2 Duo (Penryn) 2.0 GHz pro-
cessor with 2 GB RAM and 2 cores, and a dual 2.67 GHz Core i7
(Nehalem X5550) desktop with 32 GB RAM (8 physical, 16 virtual
cores). We list data size, BVH size, and BVH build time on one core
of the i7 desktop. We compare performance with a naive floating-
point implementation compiled with gcc (gcc), our SSE algorithm

without an acceleration structure (sse), and our SSE method with co-
herent BVH traversal (bvh). We gauge performance with three GPU
volume renderers: a brute-force GLSL raycaster (glsl); an optimized
GLSL raycaster similar to [11] using a single-level uniform grid
for acceleration, with both differential sampling and per-macrocell
adaptive sampling (avrc); and ImageVis3D (iv3d), an efficient out-
of-core LOD renderer designed for large data [1, 4]. We list the
best-performing renderer on an integrated 9400M (128 MB RAM)
in the Mac Mini and then benchmark all three GPU renderers on
an NVIDIA 285 GTX GPU (1.5 GB RAM). All approaches except
(iv3d) use differential sampling [11] with an initial differential step
of 2−7 (rda in line 31 of Listing 2), which is comparable to uni-
form sampling at the Nyquist frequency (˜2 samples per voxel). We
employ 1D transfer functions that track the data histogram and are
otherwise smooth. Since (iv3d) is a progressive renderer, we show
the average time to load the finest LOD, approximating our transfer
function as best as possible with their editor. Although (iv3d) sup-
ports raycasting, we used its slicing approach which is marginally
faster. Unless noted, all benchmarks rendered into a 5122 frame
buffer. Lighting modalities are indicated next to the dataset.

In general, our method complements GPU approaches well. On
laptop hardware, we exhibit 4x better performance than the in-
tegrated GPU (NVIDIA 9400M) on the zebrafish data, and even
narrowly outperform it on the 643 neghip. On the desktop, for
small data (less than 5123), the 285 GTX GPU outperforms the
8-core CPU by up to 4x, particularly using (avrc). However, the
CPU method scales better to 5123 and larger volumes, outper-
forming (avrc) on the 285 GTX by 2.2x (backpack) and 6.5x (ze-
brafish) on the 8-core desktop. The backpack and zebrafish are both
noisy, dense volumes that fit comfortably into GPU main memory
and benefit only modestly from BVH traversal. We conclude that
datasets need not be particularly large for our CPU BVH method to
outperform GPU hardware. Larger data is examined below.
7.1 Scalability
Data Resolution. In Figure 6, we consider far and close views of
the Richtmyer-Meshkov (RM) instability at original 2k3 and down-
sampled resolutions. At full data resolution, our method on the
8-core Core i7 desktop is 20x-100x faster than the out-of-core GPU

20483

10243

5123

2563

LOD BVH Scene CPU – fps GPU – fps Ratio
Dimensions Size Size L Build Core 2 Core i7 9400M 285GTX best

time 2 core 8 core 16 cores 240 cores CPU/
(i7) bvh gcc sse bvh best †‡§ glsl † avrc ‡ iv3d § GPU

20483 8G 1.3G 8 240s far - .124 .59 6.6 - - - .083 79x
medium - .091 .37 3.5 - - - .071 51x

close - .104 .29 2.4 - - - .063 38x
10243 1G 171M 8 3.1s far 1.5 .20 .92 10.8 .08 § .21 .40 .98 11x

medium .71 .11 .62 4.6 .13 § .18 .19 1.3 3.5x
close .38 .088 2.2 2.4 .13 § .094 .34 1.4 1.7x

5123 128M 171M 4 .87s far 1.9 .64 2.2 12.9 1.5 ‡ 1.2 12.6 2.0 1.0x
medium 1.0 .18 1.0 5.1 .13 ‡ .71 6.3 1.2 .80x

close .86 .19 .82 3.7 .13 ‡ .28 3.2 1.0 1.2x
2563 16M 171M 2 .36s far 2.0 1.2 5.3 14.0 .82 ‡ 5.5 18.0 6.6 .77x

medium .98 .44 1.8 5.6 .13 ‡ 7.5 11.8 3.3 .47x
close .90 .36 1.5 4.0 .13 † 7.2 6.5 5.1 .55x

Figure 6: Benchmarks for the Richtmyer-Meshkov data at various resolutions, at 10242 screen resolution with Phong lighting, rda= 2−7 (˜2 samples/voxel).

renderer on the NVIDIA 285 GTX GPU, and performs on par with
2k3 volumes on a 256-GPU cluster system [4]. This disparity can
largely be attributed to the PCI bus. While GPU performance im-
proves at lower LOD’s, outperforming the CPU by over 3x at 2563,
CPU performance decreases only modestly when rendering roughly
the same number of samples in a 2563 or 2k3 volume. Not only is
progressive rendering unnecessary with our renderer, but it would
not be significantly faster than full-resolution rendering.

Though large and entropic, the RM data is clean simulation data
that benefits greatly from BVH space optimizations. In contrast,
in Figure 5 we consider a 4096x3072x2048 (24 GB) subset of an
Enzo computational astrophysics dataset, which is both denser and
noisier. We are still able to achieve a 45x performance increase (16x
without the BVH) over the GPU, indicating there are advantages to
in-core CPU rendering even for data such as this.

Sampling Rate. With either uniform or differential sam-
pling, performance scales superlinearly with decreased sampling
rate. This is due somewhat to better memory coherence, but in
greater part to the BVH. Doubling the sampling rate typically in-
curs only 1.2x–1.8x decrease in performance. Figure 7 illustrates
this trade-off. The ideal sampling rate is often less than the Nyquist
rate. As seen in the Figure 6 (right), full-resolution data can in fact
exhibit lower frequency than does downsampled data.

Screen Resolution. In scaling to image size, coherent ray trac-
ers behave similarly to GPU renderers because of the cost amortiza-
tion of multiple rays in packets. Scalability is superlinear; rendering
at 10242 typically costs only 3x–3.5x more than at 5122. This effect
is stronger when the BVH incurs greater speedup.

Number of Cores. Thread scalability depends on the mem-
ory access behavior of a given scene. Rendering the 1k3 down-

Figure 7: Sampling rate. Left to right, with differential sampling steps of
rda=2−8,2−7, 2−6, and 2−5, rendering at 6.2, 10.0, 11.1, and 15.8 fps, re-
spectively (2k3 Richtmyer-Meshkov at 5122 on the 8-Core i7). 2−7 is quali-
tatively comparable to the Nyquist rate (>2 samples per voxel).

sampled Richtmyer-Meshkov data (Figure 6, upper left) at 10242,
we achieve 100% scalability to 4 threads and 97% scalability to 8
threads on our dual 4-core i7 workstation. On a 4-CPU 2.93 GHz
Core 2 (E7350) quad-core SMP workstation with 64 GB RAM, we
see 100% scalability to 4 cores (3.15 fps), 98% scalability to 8 cores
(6.3 fps), and 96% scalability to 16 cores (12 fps). These results are
consistent with NUMA bottlenecks in similar systems [12].
7.2 Performance Analysis
In Table 1 we profile the percentage of CPU time spent in stages
of the DVR algorithm. We compare the compiler-optimized naive
implementation (gcc) and our SSE method (sse) with and without
interpolation. For (sse), we compare the costs with BVH traversal,
diffuse, and Phong lighting. While these costs vary, the heptane
scene (Figure 5, upper left) is a representative average case.

With and without interpolation, voxel fetching dominates the
compiler-vectorized routine (gcc). Amortizing address translation,
our SSE code exhibits 3x better fetching performance. Trilinear
interpolation (tril) is over 5x faster than the naive equivalent; inte-
gration with interpolation is only ~40% more costly than without
(NN). Classification and blending cost relatively more in our SSE
routine, but are difficult to optimize further. Overall, we remain
bound by computation, not memory access.

The cost of lighting depends on the number of samples lit.
Scenes with predominantely empty space are inexpensive to illu-
minate; denser scenes such as the heptane and backpack in Figure 5
can be up to 60% more costly to shade (30% for diffuse, 30% for
Phong). By thresholding to omit shading of low-variance regions,
one can reduce visual clutter and lower the lighting cost.

Stage gcc sse
NN tril NN tril tril tril tril

BVH BVH BVH
diff. diff.

phong
vox fetch 51.7 24.8 39.6 22.3 10.7 9.7 8.9
interp 61.2 33.7 36.6 29.0 27.7
classif 4.5 4.0 18.1 8.5 10.2 9.4 8.6
blend 39.9 8.2 28.3 28.3 21.0 18.1 17.0
BVH trav 18.0 15.8 14.8
diffuse 15.2 13.9
phong 6.5
other 3.9 1.8 14.0 7.2 3.5 2.7 2.6
FPS 1.4 0.7 3.9 3.0 5.5 4.4 4.0

Table 1: CPU time profile for individual algorithmic stages of the naive (gcc)
and hand-tuned (sse) methods, rendering the heptane scene from Figure 5.

7.3 BVH Performance, Size and Build Time
As seen in Figures 5 and 6, the BVH delivers from 1.5x to over 10x
speedup. BVH traversal occupies 10%–35% of CPU time. This
percentage and the BVH’s impact on total performance depend on
the static depth of the implicit BVH (L), the dynamic pruning met-
ric δp, and the amount of homogenous space in the classified vol-
ume. Scenes with opaque features and transfer functions yielding
surfaces induce early termination, further contributing to speedup.
Choosing L = 1 or L = 2 can yield small (5%) improvements in
frame rate for discrete isosurface classifications, but incurs a large
memory footprint (48x and 4x for L= 1 and L= 2 on the neghip and
bonsai, respectively), and thus is best avoided for larger data. L = 4
creates a BVH with roughly equal footprint as the original volume,
and L = 8 is one eighth that size. For noisy and large data such as
the zebrafish and full Richtmyer-Meshkov, we found no advantage
to using L = 4 as opposed to L = 8. The time required to com-
pute the BVH correlates strongly to the memory footprint. Small
data compute in milliseconds, while medium-size data such as the
heptane or zebrafish require several seconds. The 8 GB Richtmyer-
Meshkov requires roughly 4 minutes on one core of the i7 work-
station. This compares favorably to the time required to build mul-
tiresolution formats for large data. A sparse octree build [12] of the
same data took 30 minutes, and a full LOD octree (iv3d UVF file)
took roughly 55 minutes on our workstation. Moreover, the BVH
can be computed once offline and stored.
8 CONCLUSIONS

We have presented a fast, scalable volume ray caster for multicore
CPU’s. Performance is achieved by heuristic traversal of a BVH ac-
celeration structure and by SIMD optimization of the volume ren-
dering integration. Although not as fast as desktop GPU approaches
for smaller data, it is significantly faster at rendering large volumes
and is strongly competitive with GPU’s on laptop hardware.

Some limitations should be noted. Using preintegratation for
BVH pruning would not extend to multifield data, though other
metrics could be employed. Although superior at the low and high
end of the hardware spectrum, our approach is clearly outperformed
by GPU methods for small data on desktop machines. With GPU’s
continually improving, we do not claim the CPU will become the
dominant platform for large-scale volume rendering. However, di-
rect access to memory and multilevel cache clearly benefit CPU
DVR performance, and coherent BVH traversal proves a powerful
domain decomposition algorithm. Subjectively, we find interacting
with large data without intermediate LOD to be a significant im-
provement over progressive rendering. However, LOD is an effec-
tive solution for antialiasing, and many users will prefer rendering
at real-time rates with LOD to slower full-resolution rates without.
Certainly, a full-resolution CPU renderer could be paired with a
GPU LOD renderer for faster performance.

Future work could extend our system to clusters and tile dis-
plays for large-scale visualization. We would also like to explore
compressed data and advanced illumination models.
9 ACKNOWLEDGMENTS

This work was supported by the Office of Advanced Scientific
Computing Research, Office of Science, U.S. Department of En-
ergy, under Contract DE-AC02-06CH11357; the Computational
Postdoctoral Fellowship at Argonne National Laboratory under
the American Reinvestment and Recovery Act, and the German
Science Foundation (DFG) International Research Training Group
(IRTG 1131). The authors thank Younis Hijazi, Carson Brownlee,
Thiago Ize, and Jens Krueger for their help and insights.
REFERENCES

[1] ImageVis3D: A Real-time Volume Rendering Tool for Large Data.
Scientific Computing and Imaging Institute (SCI), 2009.

[2] T. J. Cullip and U. Neumann. Accelerating Volume Reconstruction
With 3D Texture Hardware. Technical report, University of North
Carolina at Chapel Hill, 1994.

[3] K. Engel, M. Kraus, and T. Ertl. High-Quality Pre-integrated Volume
Rendering using Hardware-accelerated Pixel Shading. In Proceed-
ings of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graph-
ics hardware, pages 9–16. ACM New York, NY, USA, 2001.

[4] T. Fogal, H. Childs, S. Shankar, J. Krueger, R. Bergeron, and
P. Hatcher. Large Data Visualization on Distributed Memory Multi-
GPU Clusters. Proceedings of High Performance Computer Graphics
(HPG10), 2010.

[5] H. Friedrich, I. Wald, and P. Slusallek. Interactive Iso-Surface Ray
Tracing of Massive Volumetric Data Sets. In Proceedings of the 2007
Eurographics Symposium on Parallel Graphics and Visualization. Eu-
rographics, 2007.

[6] E. Gobbetti, F. Marton, and J. Iglesias Guitián. A single-pass GPU
ray casting framework for interactive out-of-core rendering of massive
volumetric datasets. The Visual Computer, 24(7):797–806, 2008.

[7] S. Grimm, S. Bruckner, A. Kanitsar, and E. Groller. Memory efficient
acceleration structures and techniques for CPU-based volume raycast-
ing of large data. In 2004 IEEE Symposium on Volume Visualization
and Graphics, pages 1–8, 2004.

[8] M. Hadwiger, C. Sigg, H. Scharsach, K. Bühler, and M. Gross. Real-
Time Ray-Casting and Advanced Shading of Discrete Isosurfaces.
Computer Graphics Forum, 24(3):303–312, 2005.

[9] D. Hughes and I. Lim. Kd-Jump: a Path-Preserving Stackless Traver-
sal for Faster Isosurface Raytracing on GPUs. IEEE Transactions on
Visualization and Computer Graphics, 15(6), 2009.

[10] G. Knittel. The ULTRAVIS System. In Proceedings of the 2000 IEEE
symposium on Volume visualization, pages 71–79. ACM Press, 2000.

[11] A. Knoll, Y. Hijazi, R. Westerteiger, M. Schott, C. Hansen, and H. Ha-
gen. Volume Ray Casting with Peak Finding and Differential Sam-
pling. IEEE Transactions on Visualization and Computer Graphics,
15(6):1571–1578, Nov-Dec 2009.

[12] A. Knoll, I. Wald, and C. Hansen. Coherent Multiresolution Isosurface
Ray Tracing. The Visual Computer, 25(3):209–225, 2009.

[13] J. Krüger and R. Westermann. Acceleration Techniques for GPU-
based Volume Rendering. In Proceedings IEEE Visualization, pages
287–292, 2003.

[14] P. Lacroute and M. Levoy. Fast Volume Rendering using a Shear-Warp
Factorization of the Viewing Transformation. In Proceedings of ACM
SIGGRAPH, pages 451–458. ACM Press, 1994.

[15] C. Ledergerber, G. Guennebaud, M. Meyer, M. Bächer, and H. Pfister.
Volume MLS Ray Casting. IEEE Transactions on Visualization and
Computer Graphics, 14(6):1372–1379, 2008.

[16] M. Levoy. Display of Surfaces from Volume Data. IEEE Comput.
Graph. Appl., 8(3):29–37, 1988.

[17] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P.-P. Sloan. Interac-
tive Ray Tracing for Isosurface Rendering. In IEEE Visualization ’98,
pages 233–238, October 1998.

[18] M. Smelyanskiy, D. Holmes, J. Chhugani, A. Larson, D. Carmean,
D. Hanson, P. Dubey, K. Augustine, D. Kim, A. Kyker, et al. Mapping
High-Fidelity Volume Rendering for Medical Imaging to CPU, GPU
and Many-Core Architectures. IEEE Transactions on Visualization
and Computer Graphics, pages 1563–1570, 2009.

[19] I. Wald, S. Boulos, and P. Shirley. Ray Tracing Deformable Scenes
Using Dynamic Bounding Volume Hierarchies. ACM Transactions on
Graphics, 26(1):6, 2007.

[20] I. Wald, H. Friedrich, A. Knoll, and C. Hansen. Interactive Isosurface
Ray Tracing of Time-Varying Tetrahedral Volumes. IEEE Transations
on Visualization and Computer Graphics, pages 1727–1734, 2007.

[21] I. Wald, H. Friedrich, G. Marmitt, P. Slusallek, and H.-P. Seidel. Faster
Isosurface Ray Tracing Using Implicit KD-Trees. IEEE Transactions
on Computer Graphics and Visualization, 11(5):562–672, September
2005.

[22] I. Wald, T. Ize, A. Kensler, A. Knoll, and S. G. Parker. Ray Trac-
ing Animated Scenes Using Coherent Grid Traversal. ACM Trans-
actions on Graphics, 25(3):485–493, 2006. (Proceedings of ACM
SIGGRAPH).

[23] L. Westover. Interactive Volume Rendering. In Proceedings of the
Chapel Hill Workshop on Volume visualization, pages 9–16. ACM,
1989.

Listing 2: SSE Volume Ray Casting
1 #include <xmmintrin.h>
2 #include <mmintrin.h>
3 #include <emmintrin.h>
4 #include <smmintrin.h>
5
6 #define abs4(x) _mm_and_ps(x, _signbit)
7 #define cset44(x,y,z,w) _mm_set44_ps(w,z,y,x)
8 #define swizzle4(ssea, sseb, x,y,z,w) \
9 _mm_shuffle_ps(sse, sseb, _MM_SHUFFLE(w,z,y,x)) \

10 #define swizzle4_vtoh(a, b, c, d, dim) \
11 swizzle4(swizzle4(a,b,0,0,0,0), swizzle4(c,d,0,0,0,0),0,2,0,2) \
12 #define dot3(a,b) _mm_dp_ps(a,b, 0x7f)
13 #define dot4(a,b) _mm_dp_ps(a,b, 0xff)
14
15 typedef __m128 sse;
16 typedef __m128i ssei;
17 struct sse_u{ sse s; float f[4]; };
18 struct ssei_u{ ssei s; int i[4]; };
19
20 //constants and magic numbers
21 const sse _1f = _mm_set_ps1(1.f);
22 const sse _0f = _mm_set_ps1(0.f);
23 const ssei _1i = _mm_set1_epi32(1);
24 const sse _0001f = cset44(0.f, 0.f, 0.f, 1.f);
25 const sse _halff = _mm_set_ps1(.5f);
26 const sse _1110f = cset44(1.f, 1.f, 1.f, 0.f);
27 const int absmask = 0x7fffffff;
28 const sse _signbit = _mm_set_ps1((float&)absmask);
29 const sse _alpha_term = cset44(1e9999f, 1e9999f, 1e9999f, 0.95f);
30
31 template<bool DIFF_SAMPLE, int LIGHTING>
32 sse dvr(sse org, //{org.x, org.y, org.z, 0}
33 sse dir, //{dir.x, dir.y, dir.z, 1}, normalized
34 float tenter, float texit, //from AABB intersection
35 float dt //step size, normalized on [0,1]
36 float rda //for differential sampling (optional)
37)
38 {
39 const sse _ray_texit = cset44(FLT_MAX, FLT_MAX, FLT_MAX, texit);
40 sse rgba = _0f;
41 sse_u p;
42 ssei_u pi;
43 p.s = _mm_add_ps(org, _mm_mul_ps(_mm_set_ps1(tenter), dir));
44 pi.s = _mm_cvttps_epi32(p.s);
45
46 sse sdt = _mm_mul_ps(dir, _mm_set_ps1(dt));
47 if (DIFF_SAMPLE)
48 srda = _mm_mul_ps(dir, _mm_set_ps1(rda));
49
50 //the volume data is in a bricked 3D array, accessed via
51 // volume(x,y,z) = volume−>data[off_x + off_y + off_z]
52 const unsigned char∗ const restrict vdata = volume−>data;
53 const int∗ const restrict voff_x = volume−>off_x;
54 const int∗ const restrict voff_y = volume−>off_y;
55 const int∗ const restrict voff_z = volume−>off_z;
56
57 for(;;)
58 {
59 const int vx0 = voff_x[pi.i[0]];
60 const int vy0 = voff_y[pi.i[1]];
61 const int vz0 = voff_z[pi.i[2]];
62 const int val = vdata[vx0 + vy0 + vz0];
63
64 if (val)
65 {
66 //trilinear interpolation
67 ssei_u pi1;
68 pi1.s = _mm_add_epi32(pi.s, _1i);
69
70 const sse pc = _mm_sub_ps(p.s, _mm_cvtepi32_ps(p.s));
71 const sse _1mpc = _mm_sub_ps(_1f, pc);
72 const sse ztmp = swizzle4(_1mpc, pc, 2,2,2,2);
73 const sse z0101 = swizzle4(ztmp, z0tmp, 0,2,0,2);
74 const sse y0011 = swizzle4(_1mpc, pc, 1,1,1,1);
75
76 const int vx1 = voff_x[pi1.i[0]];
77 const int vy1 = voff_y[pi1.i[1]];
78 const int vz1 = voff_z[pi1.i[2]];
79
80 //8 voxel vertices
81 ssei_u icx0, icx1;
82 icx0.i[0] = val;
83 icx0.i[1] = vdata[vx0 + vy0 + vz1];
84 icx0.i[2] = vdata[vx0 + vy1 + vz0];
85 icx0.i[3] = vdata[vx0 + vy1 + vz1];
86 icx1.i[0] = vdata[vx1 + vy0 + vz0];
87 icx1.i[1] = vdata[vx1 + vy0 + vz1];
88 icx1.i[2] = vdata[vx1 + vy1 + vz0];
89 icx1.i[3] = vdata[vx1 + vy1 + vz1];
90
91 const sse cx0 = cast4_if(icx0.s);
92 const sse cx1 = cast4_if(icx1.s);
93
94 const sse x0000 = swizzle4(_1mpc, _1mpc, 0,0,0,0);
95 const sse x1111 = swizzle4(pc, pc, 0,0,0,0);
96 const sse sw_yz = _mm_mul_ps(z0101, y0011);
97
98 const ssei dpfv = _mm_cvtepi32_ps(dot4(sw_yz,
99 _mm_add_ps(_mm_mul_ps(x0000, cx0),

100 _mm_mul_ps(x1111, cx1))));
101 const int fval = ∗((int∗)(&dpfv));
102
103 //classification
104 sse sample_rgba = transfunc−>preIntegrated[flast][fval];
105
106 //put the alpha value only in the alpha channel
107 const sse sample_alpha = _mm_max_ps(
108 swizzle4(sample_rgba, sample_rgba, 3,3,3,3), _0001f);
109
110 if (LIGHTING)
111 {
112 if (_mm_movemask_ps(cmp4_gt(sample_rgba, lightThreshold)))
113 {
114 sse_t dx, dy, dz; //analytical gradient
115 dx = _mm_sub_ps(cx0, cx1);
116 dy = _mm_sub_ps(swizzle4(cx0,cx1,0,1,0,1), swizzle4(cx0,cx1,2,3,2,3));
117 dz = _mm_sub_ps(swizzle4(cx0,cx1,0,2,0,2), swizzle4(cx0,cx1,1,3,1,3));
118
119 //compute 3 bilinear interpolants
120 dx = _mm_mul_ps(_mm_mul_ps(y0011, z0101), dx);
121 const sse_t x0011 = swizzle4(_1mpc, pc, 0,0,0,0);
122 dy = _mm_mul_ps(_mm_mul_ps(x0011, z0101), dy);
123 const sse_t y0101 = swizzle4(y0011, y0011, 0,2,0,2);
124 dz = _mm_mul_ps(_mm_mul_ps(x0011, y0101), dz);
125
126 sse_t l = _mm_mul_ps(_mm_sub_ps(lightPosition, p.s), _1110f);
127 const sse_t ml = _mm_mul_ps(l,l);
128
129 //sum the dx,dy,dz and ml at the same time
130 sse_t dp = _mm_add_ps(_mm_add_ps(_mm_add_ps(_mm_add_ps(
131 swizzle4_vtoh(dx, dy, dz, ml, 0),
132 swizzle4_vtoh(dx, dy, dz, ml, 1)),
133 swizzle4_vtoh(dx, dy, dz, ml, 2))),
134 swizzle4_vtoh(dx, dy, dz, ml, 3))));
135
136 sse_t n = _mm_mul_ps(dp, _1110f);
137 const sse_t nl_rcp = _mm_rsqrt_ps(swizzle4(dot3(n, n), dp, 0,0,3,3));
138 n = _mm_mul_ps(n, swizzle4(nl_rcp, nl_rcp, 0,0,0,0));
139 l = _mm_mul_ps(l, swizzle4(nl_rcp, nl_rcp, 3,3,3,3));
140
141 const sse_t n_dot_l = abs4(dot3(n, l));
142 sse_t diffuse = _mm_add_ps(_mm_set_ps(.15f), n_dot_l);
143
144 if (LIGHTING == DIFFUSE)
145 {
146 sample_rgba = _mm_max_ps(_mm_mul_ps(sample_rgba, diffuse),
147 _mm_mul_ps(sample_rgba, _0001f));
148 }
149 if (LIGHTING == PHONG)
150 {
151 sse_t h = _mm_mul_ps(_mm_sub_ps(l, dir), _1110f);
152 h = _mm_mul_ps(h, _mm_rsqrt_ps(dot3(h, h)));
153 const sse_t n_dot_h = dot3(n, h);
154
155 sse_t phong = _mm_mul_ps(n_dot_h, n_dot_h);
156 phong = _mm_mul_ps(phong, phong);
157 phong = _mm_mul_ps(phong, phong);
158 phong = _mm_mul_ps(phong, phong); //n.h^16
159
160 sample_rgba = _mm_max_ps(
161 _mm_add_ps(phong, _mm_mul_ps(sample_rgba, diffuse)),
162 _mm_mul_ps(sample_rgba, _mm_0001));
163 }
164 }
165 }
166 //blending
167 const sse alpha_1msa = _mm_mul_ps(sample_alpha,
168 _mm_sub_ps(_1f, swizzle4(rgba, rgba, 3,3,3,3)));
169
170 rgba = _mm_add_ps(rgba, _mm_add_ps(sample_rgba, alpha_1msa));
171
172 if (CLASSIFICATION == PREINTEGRATED)
173 flast = fval;
174
175 } //end if (val)
176
177 //increment along the ray
178 p.s = _mm_add_ps(p.s, sdt);
179 pi.s = _mm_cvttps_epi32(p.s);
180
181 if (DIFF_SAMPLE)
182 sdt = _mm_add_ps(sdt, srda);
183
184 //check for termination
185 const sse alpha_term_mask = _mm_cmpgt_ps(rgba, _alpha_term);
186 const sse sse_term_mask = _mm_or_ps(alpha_term_mask,
187 _mm_cmpgt_ps(p.s, _ray_texit));
188
189 if (_mm_movemask_ps(sse_term_mask))
190 break;
191 }
192
193 return rgba;
194 }

