
Volume Ray Casting with Peak Finding and Differential Sampling

Aaron Knoll (Member, IEEE), Younis Hijazi, Rolf Westerteiger, Mathias Schott
Charles Hansen (Senior Member, IEEE) and Hans Hagen (Senior Member, IEEE)

Abstract— Direct volume rendering and isosurfacing are ubiquitous rendering techniques in scientific visualization, commonly employed in imaging
3D data from simulation and scan sources. Conventionally, these methods have been treated as separate modalities, necessitating different sampling
strategies and rendering algorithms. In reality, an isosurface is a special case of a transfer function, namely a Dirac impulse at a given isovalue.
However, artifact-free rendering of discrete isosurfaces in a volume rendering framework is an elusive goal, requiring either infinite sampling or
smoothing of the transfer function. While preintegration approaches solve the most obvious deficiencies in handling sharp transfer functions, artifacts
can still result, limiting classification. In this paper, we introduce a method for rendering such features by explicitly solving for isovalues within the
volume rendering integral. In addition, we present a sampling strategy inspired by ray differentials that automatically matches the frequency of the
image plane, resulting in fewer artifacts near the eye and better overall performance. These techniques exhibit clear advantages over standard
uniform ray casting with and without preintegration, and allow for high-quality interactive volume rendering with sharp C0 transfer functions.

Index Terms—direct volume rendering, isosurface, ray casting, ray differentials, sampling, transfer function, preintegration, view dependent

1 INTRODUCTION

Volume rendering is an indispensable tool in visualization, with ap-
plications ranging from simulation data analysis to imaging medical
and biological scan data. The principal means of visualizing a volume
consist of choosing an isosurface or interpreting the volume in its en-
tirety via direct volume rendering (DVR). Traditionally, these modal-
ities have been implemented using separate algorithms, and were em-
ployed with different visualization and application goals. Isosurfaces
are commonly generated by extracting a triangle mesh, and are useful
in understanding topological and geometric behavior of a scalar field
at implicitly defined boundaries. Direct volume rendering is a more
expressive method of visualizing volume data, in which the user sup-
plies a transfer function mapping scalar values to colors. As opposed
to a single isovalue corresponding to a 2-manifold surface, a transfer
function allows for rendering 3-manifold segments of the volume.

In principle, an isosurface can be defined by a transfer function with a
Dirac impulse at the chosen isovalue. However, rendering such a trans-
fer function poses problems for most conventional volume rendering
algorithms. Methods involving uniform sampling and postclassifica-
tion will invariably miss an infinitely fine impulse, entirely omitting
the desired surface features. Preintegrated transfer functions remedy
this, but introduce new artifacts due to their discretization of scalar val-
ues into a 2D lookup table, and weighting assumptions on the volume
rendering integral. Most commonly, the solution to rendering isosur-
faces within a volume rendering framework has been to increase the
sampling rate and to smooth the transfer function. Nonetheless, doing
so can be computationally wasteful and limits classification.

Spatial traversal strategies for GPU isosurface ray casting closely mir-
ror those for DVR sampling. We pair these processes by identifying
isovalues of interest at peaks of a 1D transfer function, using the uni-
form volume ray casting process to isolate these roots, and sampling
directly at the desired isovalues. While numerous applications allow

• Aaron Knoll is with the University of Kaiserslautern, E-mail:
knolla@rhrk.uni-kl.de

• Younis Hijazi is with LSIIT at the University of Strasbourg. E-mail:
hijazi@lsiit.u-strasbg.fr

• Rolf Westerteiger is with the University of Kaiserslautern. E-mail:
rolf.westerteiger@googlemail.com

• Mathias Schott is with the SCI Institute, University of Utah. E-mail:
mschott@cs.utah.edu

• Charles Hansen is with the SCI Institute, University of Utah. E-mail:
hansen@cs.utah.edu

• Hans Hagen is with the University of Kaiserslautern. E-mail:
hangen@informatik.uni-kl.de

Manuscript received 31 March 2009; accepted 27 July 2009; posted online
11 October 2009; mailed on 5 October 2009.
For information on obtaining reprints of this article, please send
email to: tvcg@computer.org .

for multi-modal DVR and isosurface visualization, to the best of our
knowledge our approach of sampling isosurfaces directly within the
volume rendering integral has not previously been employed. Perhaps
this is because standard techniques employing smooth transfer func-
tions were considered sufficient. Nonetheless, definition and accurate
rendering of sharp transfer functions is desirable, not only in terms
of overall image quality but in the ability to classify features flexibly
and render accurately with a fixed sampling budget. To further ensure
samples are spent wisely, we devise a novel approach to volumetric
sampling using a quadratic function for incrementing samples based
on ray differential propagation. This helps in sufficiently sampling
features close to the viewpoint, and is particularly useful when em-
ploying higher-order filters for which samples are expensive. While
orthogonal, these techniques work well together, particlarly in ren-
dering nearby high-frequency features with high fidelity. We com-
pare both methods with standard techniques, and show how they offer
higher quality imaging and better classification for various data sets.

2 RELATED WORK

Levoy [16] employed ray casting in the first implementation of direct
volume rendering. The advent of z-buffer hardware and built-in tex-
ture interpolation units allowed for interactive performance with slice-
based rasterization approaches [2, 4]. Similarly, rasterization methods
employing splatting [32] proved to be efficient, particularly for ap-
plications involving unstructured data and higher-order reconstruction
filters [34, 35]. While optimized CPU algorithms are capable of inter-
active volume rendering [11, 15], GPU approaches gained popularity,
due to improved computational throughput and built-in texture fetch-
ing and interpolation. With programmable shader support for branch-
ing and looping, volume ray casting methods experienced resurgence
on the GPU [14, 26].

The conventional means of rendering discrete isosurfaces from vol-
ume data has been to extract a mesh using marching cubes [20]. Mesh
extraction methods can be combined with min-max spatial subdivision
structures [33], as well as view dependent [18] approaches for further
efficiency. Marching cubes only approximates the implicit surface on
a coarse scale, and more sophisticated methods [28] are generally not
suited for dynamic extraction. However, it is possible to combine ex-
traction with splatting [19] for efficient rendering, or to employ splat-
ting directly on isosurfaces [3].

Ray casting methods were first applied towards volumetric isosurfac-
ing by Sramek [31]. Parker et al. [24,25] implemented a tile-based par-
allel ray tracer and achieved interactive rendering of isosurfaces from
large structured volumes, employing a hierarchical grid as a min-max
acceleration structure and an analytical cubic root solving technique
for trilinear patches. Hadwiger et al. [7] combined rasterization of
min-max blocks with adaptive sampling and a secant method solver
to ray cast discrete isosurfaces on the GPU. Our peak finding method
is close in spirit to this approach; however we employ our solving

method not only in rendering isosurfaces but in handling potentially
sharp unidimensional transfer functions. Ray differentials were intro-
duced by Igehy [8] as a way of calculating image-space derivatives of
pixels as rays are transmitted, reflected and refracted in world-space,
and using these values for filtering. While similar concepts have been
used in multiresolution isosurface ray casting [13], to our knowledge
no approach has used ray differentials for volumetric sampling.

A large body of volume rendering literature deals with transfer func-
tions, both in how to construct them and employ them in classification.
To limit artifacts when sampling high-frequency features of a transfer
function, the best existing approaches are preintegration [5,21,27] and
analytical integration of specially constructed transfer functions [10].
Hadwiger et al. [6] analyze the transfer function for discontinuities to
generate a pre-compressed visibility function employed in volumetric
shadow mapping. Our approach is similar except that we search for
local maxima, and use these directly in enhancing classification.

3 BACKGROUND AND OVERVIEW

Direct volume rendering is the process of modeling a volume as a par-
ticipating optical medium, and estimating the emission and absorption
of these media according to a discrete approximation of the radiative
transport equation. On a segment of a ray, irradiance is formulated as

I(a,b) =
∫ b

a
ρE(f (s))ρα(f (s))e−

∫ s
a ρα(f (t))dtds (1)

where ρE is the emissive (color) term and ρα is the opacity term
of the transfer function; a,b are the segment endpoints, and f (t) =
f (~O+ t~D) = f (~R(t)) is the scalar field function evaluated at a distance
t along the ray. To compute this integral, we must approximate it dis-
cretely. The conventional approach of Levoy [16] is to break up the
ray into equally spaced segments, approximating the opacity integral
as a Riemann Sum,

e−
∫ s

a ρα(f (t))dt =
n

∏
i=0

e−∆t ρα(f (i ∆t)) =
n

∏
i=0

(1−αi) (2)

where ∆t is the uniform sampling step, n = (s−a)/∆t, and

αi ≈ 1− e−∆t ρα(f (i ∆t)) (3)

Discretizing the integral on [a,b] in Equation 1 as a summation, we
have the following discrete approximation for I,

I ≈
n

∑
i=0

ρE(i)
i−1

∏
j=0

(1−α j) (4)

where ρE(i) = ρE(f (i ∆t)) is given by the transfer function. Evalu-
ating the transfer function after reconstruction is known as postclas-
sification. Typical sampling behavior of postclassification with uni-
form sampling along the ray is illustrated in Figure 1(a). When high-
frequency features are present in ρα(f (t)), many samples are required
to accurately integrate along the ray.

To eliminate artifacts and achieve high-quality volume rendering, we
must adequately sample with respect to the Nyquist limits of all com-
ponent functions contributing to the signal. The principal signal
sources consist of the scalar field function f (~R(t)) and the transfer
function ρα(f (~R(t))). Engel et al. [5] note that this frequency can be
either the maximum Nyquist frequency of all separate sources, or the
product of the Nyquist frequencies of these sources. By discretizing
the transfer function and scalar field integrals separately, preintegra-
tion can achieve greater fidelity for high-frequency transfer functions
with fewer samples, as illustrated in Figure 1(b).

Separately integrating the transfer and field functions via preintegra-
tion presents separate issues, however. Problems occur when the scalar
field or transfer function are undersampled by their respective discrete
integrations. Like postclassification, preintegration is susceptible to

ρα(f)

ρα(f)

ρα(f)

!R(t)

!R(t)

!R(t)

ρ(f("R(t)))

ρ(f("R(t)))

ρ(f("R(t)))

a) postclassification

b) preintegration

c) peak finding

fi fo

fi fo

Fig. 1. Integration methods for direct volume rendering.

undersampling, though artifacts are manifested differently. Preinte-
gration assumes the scalar field function varies piecewise-smoothly
between entry and exit samples, fi = f (t) and fo = f (t). Depending
on the frequency of the field function, this is often not the case. Specif-
ically, computing the opacity integral on a segment uses the trapezoid
rule (or similar numerical integration), which scales the opacity sum-
mation by ∆ f = | fi− fo| to approximate ρα. When ρα(f) is smooth
(specifically, Lipschitz) this approximation behaves nicely. However,
sharp features in the transfer function break this assumption, leading to
bias and improperly scaled opacity. Though blending the integrals of
front and back samples smoothens results [21], it does not accurately
capture sharp peaks. In addition, preintegration relies on a fixed quan-
tization of entry and exit opacities into a table. Permitting dynamic
changes in the transfer function limits the size of this table, hence the
minimum width ∆ f between two field values used to query the transfer
function integral. Nonetheless, visualizing features with higher preci-
sion can be desirable for more accurate classification.

This paper describes two techniques that overcome deficiencies of ex-
isting methods. The main contribution is peak finding, which over-
comes many limitations of postclassification and preintegration by
sampling directly at sharp features of a transfer function. This consists
of analyzing a transfer function for local maxima, and explicitly solv-
ing for roots of the filter function to render isosurfaces at these peaks.
As with preintegration, peak finding employs a 2D lookup table; how-
ever rather than querying an approximation of the integral itself, we
query which peaks possibly lie within that range of field values. The
general concept is illustrated in Figure 1(c), and its implementation is
described in detail in Section 4.

In section 5 we present differential sampling. We note that transforma-
tions on the ray from world-space to image-space convolve the volume
rendering integral, and provide a new sampling method respecting the
Nyquist frequency of the image plane. Our method borrows from the
ray differentials formulations of Igehy [8] in developing its sampling
strategy. This is discussed in Section 5.

Our system consists of a straightforward volumetric ray caster, em-
ploying a grid acceleration structure traversed per-ray in a GLSL frag-
ment shader, and classifying via a 1D transfer function specified as
a piecewise-linear set of points. Section 6 discusses how to integrate
differential sampling and peak finding into this framework. The end
goal of this work is to enable interactive high-fidelity volume render-
ing with sharp transfer function features using fewer samples than con-
ventional methods. We show how these algorithms help to accomplish
that in Section 7.

4 PEAK FINDING

Peak finding is motivated by the shortcomings of both standard post-
classified (Figure 1(a)) and preintegrated (Figure 1(b)) volume ren-
dering with transfer functions containing sharp features approaching
Dirac impulses. The general approach is similar to isosurface ray cast-
ing in that we solve directly for roots. Ray-isosurface intersection
consists of solving the continuous reconstruction filter function as a
1D implicit function of t at an isovalue: f (~R(t))−υ = 0.

Numerous numerical methods exist for solving roots of this equation;
interactive ray tracing algorithms commonly employ a combination
of Descartes’s rule of signs and an iterative solver [7, 22, 30], or more
robust recursive methods such as interval arithmetic [12]. The substan-
tial difference is that in these systems, the isovalue is given explicitly
by the user; whereas in ours the isovalue must be inferred from the
transfer function. By employing these root-finding methods in search-
ing for peaks of the transfer function, we have far lesser chance of
missing them, allowing for smoother reconstruction and better shading
of isosurface features within our volume rendering framework. The
general concept is illustrated in Figure 1(c).

4.1 Determining peaks and building the lookup table

Peak finding is similar to preintegration in that we query a 2D lookup
table for each segment along the ray. However, rather than storing a
preintegrated radiance approximation, our table stores an isovalue υ or
set of isovalues υi that possibly exist within this segment, sorted from
the first to last peak value encountered on a given segment defined by
the entry and exit values of the scalar field function, [fi, fo].

Before building the lookup table, we analyze our transfer function ρα

and search for peaks. Specifically, we consider whether a given point
is a local maximum (i.e. greater than both its immediate neighbors)
with respect to the opacity component. The set of peaks consists of
at most half the number of actual data points in our piecewise-linear
transfer function, but typically it is far less. Smooth 1D functions such
as splines would have relatively fewer peaks, existing at the critical
points of these functions. As we are interested in sharp features, we
consider piecewise-linear functions. It is equally possible to use this
technique to search for local minima; however due to their low radi-
ance contribution the impact of doing so is not generally noticeable.

Having computed the array of peaks, we construct the lookup table.
For a range of values [i, j] corresponding to lookup entries from our
volume f (t), f (t). If i < j, we search our transfer function for the next
peak point (or in the case of multiple peaks, next 4 points) such that
the opacity ρα(υ) > i and ρα(υ) ≤ j. If i > j, we search in descend-
ing order for peaks with ρα(υ) ≤ i and ρα(υ) > j. When necessary,
a segment spanning multiple peaks will reverse the sorting order to
register all possible peaks within that segment. This process is again
similar to preintegration, except that separate discrete peak values are
stored instead of a single integral approximation. In each table entry,
we store the domain isovalue(s) υ corresponding to each peak. When
no peak exists, we use a flag outside of the range of scalar values in
the volume. Building the lookup table is relatively undemanding, and
proceeds in O(N2) time, similarly to the algorithm of [21] for prein-
tegration. In practice, building a peak-finding table is roughly twice
as fast as building a preintegrated table at the same resolution. More-
over, in many cases a coarser discretization (128 bins) is sufficient for
peak finding, whereas preintegration would require a larger table for
comparable quality when rendering near-discrete isosurfaces.

4.2 Root solving and classification

Peak finding occurs between samples in the main ray casting loop.
Before sampling at the next step t, we fetch the nearest peak value from
a 2D texture using the same f (t), f (t). If the peak exists, we subtract
that isovalue from the entry and exit values, and employ Descartes’
rule of signs. If this test succeeds, we assume the segment contains a
root. Bracketed by t, t, we use three iterations of a secant method (also
employed by [7, 22]) to solve the root:

t1 = t0− f (t0)
t1− t0

f (t1)− f (t0)
(5)

When the secant method completes, we have an estimate for the root
t along the ray segment. We now sample at this position and perform
postclassification. However, sampling at the peak requires two subtle
choices. First, we do not evaluate our field f (~R(t)), but rather assume
that the value at this point is our desired isovalue. This works because
we are solving for the root position, not its value; moreover for sharp
transfer functions it is crucial in avoiding Moire patterns. Second, we
do not not scale ρα by the segment distance ∆t (in Equation 3) but
instead use a constant ∆t = 1. Although this may seem counterintu-
itive, the scaled extinction coefficient is itself a correction mechanism
for the inherently discrete approximation of the volume rendering in-
tegral. Moreover, an unscaled opacity assumes that we always sample
at this isovalue regardless of the sampling rate or local behavior of
ρα(f) along the ray segment. This is precisely our goal with peak
finding. While the resulting approach arguably biases the volume ren-
dering integration towards these peaks, it is critical in detecting them
without excessively increasing the sampling rate. In practice this strat-
egy does not greatly bias our integral, as the relative contribution of
values outside the peak is small.

Finding multiple peaks can be useful when the step size ∆t is large, or
when peaks are spaced closely together. Our implementation handles
up to four multiple peaks within a single segment with a straightfor-
ward extension, which can be enabled at runtime as necessary. As
described in Section 4.1 we construct the peak finding table with four
sequential peaks contained within the given segment [fi, fo]. Since
isosurfaces are encountered in precomputed order between the mini-
mum and maximum field values, we can simply perform peak finding
sequentially on all four values in that order.

4.3 Algorithm integration and usage

Peak finding is equivalent to volume rendering with a discrete
isosurface-finding step in between. One can trivially modify the al-
gorithm to support different rendering modalities. We allow for:

• Sampling from both uniformly/differentially sampled DVR and
peak finding (default).

• Sampling from either uniformly/differentially sampled DVR or
peak finding (PEAK_XOR_DVR).

• Transparent isosurfacing of peaks only (PEAK_ONLY).

• DVR only, disabling peak finding (DVR_ONLY).

These options can be invoked with small switches to the shader code
and incur no performance penalty or code overhead. The uppercase
flags above correspond to macros in the GLSL pseudocode provided
in the Appendix.

Peak finding is attractive in that its algorithm is not significantly dif-
ferent from either volume rendering or isosurface ray casting. Both
algorithms employ regular sampling, in the case of DVR to compute
the volume rendering integral and in the case of isosurfacing to iso-
late roots. Peak finding takes advantage of this and does both. As a
result, this technique can be implemented quickly by extending exist-
ing renderers. Although we propose peak finding in conjunction with
differential sampling, the two techniques are orthogonal. It is equally
possible to employ peak finding in a uniform sampling ray caster, a
slice-based volume renderer, or a shear-warp system.

Overall, peak finding and preintegration are similar, but make different
assumptions about the integral over a given segment. Preintegration
assumes this integral can be accurately approximated by piecewise
summation. This works well when the transfer function and convolved
field are smooth, but encounters difficulties when they are not. Peak
finding assumes this integral can be approximated by one or several
discrete impulses. This introduces bias, but is better suited for noisy
data and sharp C0 transfer functions for which standard techniques fail.

5 DIFFERENTIAL SAMPLING FOR VOLUME RENDERING

Uniform sampling ignores an important component of the convolved
volume rendering integral and its resulting Nyquist limit. With a pin-
hole camera, the projective transformation on the image plane is itself
a signal convolution. Thus, regular sampling in world-space under-
samples features close to the viewpoint relative to those further away.
To remedy this, we can employ a sampling strategy that uses the ray
distance itself as a sampling metric. This can be accomplished with a
new function T whose derivative varies linearly with distance, i.e.

∆T =
∂T
∂t

= at +b T (t) =
a
2

t2 +bt + c (6)

Then we sample along the ray at ~R(T (t)). The question remains how
to choose a,b and c so that the sampling step is proportional to pixel
width. We turn to the concept of ray differentials [8], which quantifies
world-space transformations in image-space derivatives. Specifically,
we use the ray differential transfer equation to formulate T as a func-
tion of image-space.

5.1 Ray differentials

With ray differentials [8], the general goal is to compute the image-
space derivatives of a series of functions convolving the image plane,
beginning with generation of rays in a pinhole camera,

~d(x,y) = ~w+ x~u+ y~v (7)

where ~w is the central view direction, ~u,~v are the right and up vectors.
Unitizing a ray~r(t) =~o+ t~d comprises another transformation:

~O(x,y) =~o ~D(x,y) = (~d)(~d · ~d)−1/2 (8)

Then the unit-parameterized ray ~R(t) = ~O + ~Dt has the image-space
partial with respect to x (and similarly for y):

∂~R
∂x

(t) =
∂~O
∂x

+ t
∂~D
∂x

+
∂t
∂x

~D (9)

As ∂~O
∂x = 0, this holds for any discrete difference ∆t as well. For our

purposes of choosing a constant image-space measure, it suffices to
consider only x differentials. Lastly, the differential of the unitized ~D
with respect to the x image-space coordinate is:

∂~D
∂x

=
(~d · ~d)~u− (~d ·~u)~d

(~d · ~d)3/2
(10)

Derivations are given in more detail in the original paper [8].

5.2 Differential sampling construction

Our general strategy is to define a base sampling rate proportional to
an image-space quantity, and use the ray differential transfer equa-
tion (Equation 9) to derive our sampling function T . To accomplish
this, we use the image-space x as our discretization, and construct a
sampling scheme where ∂T

∂x is proportional to the differential quantity
∂~R
∂x (∆t). As world-space ∆t is proportional to x, for some scalar k,

∆t = kx
∂∆t
∂x

= k (11)

Since ~D is normalized and our discrete step ∆t is arbitrary, the user can
choose any k and preserve a correlation between the distance-based
sampling step ∆t and x. Similarly, to use x as unit of measure along
the ray, we project ∂~D

∂x so that it is collinear with ~D, i.e. ∂~D
∂x = | ∂~D

∂x |~D.
Then from Equation 9, we have:

∂~R
∂x

(∆t) = ∆t
∂~D
∂x

+
∂∆t
∂x

~D = kx|∂
~D

∂x
|~D+ k~D (12)

= ~D(k|∂
~D

∂x
|x+ k)

a !D

image plane

eye

∂ "D

∂x

a = k′|∂
"D

∂x
|

θ

!R(t)!D

b

a + b 2a + b 3a + b 4a + b 5a + b

∂T

∂x
= ∆t

t t + ∆t

!R(t) +
∂ !R

∂x
(t)

∂ "R

∂x
(∆t)

b

a

Fig. 2. Geometric construction of our differential sampling approach.

Since |~D|= 1, this gives us

|∂
~R

∂x
(∆t)|= k|∂

~D
∂x
|x+ k (13)

From Figure 2, notice that | ∂~R
∂x (∆t)| = tan(θ)∆t. Since θ between any

two rays is constant, tan(θ) is also constant (its computation is left
as an exercise). This can be incorporated into a new constant k′ =
k tan(θ); or if k is arbitrarily chosen we can omit this step and use
k′ = k. We then employ the differential construction of T in Equation 6
but in terms of image-space x,

∂T
∂x

= ∆t = k′|∂
~D

∂x
|x+ k′ (14)

For convenience let a = k′| ∂~D
∂x | and b = k′. The antiderivative yields

our differential sampling function T :

∂2T
∂x2 = a

∂T
∂x

= ax+b T (x) =
a
2

x2 +bx+ c (15)

When we begin sampling at t = T (x) = 0, we can assume c = 0.

5.3 Computing and incrementing samples

Differential sampling is simple to implement in a volume ray casting
framework. We first compute | ∂~D

∂x | from Equation 10. While the user
can choose any k, we ensure it is some multiple of world-space pixel
footprint at the image plane, e.g. k = sk|~u∆x +~v∆y|. From this we
compute k′ (if necessary), a and b. Theoretically, sk < 1/2 is required
to satisfy the Nyquist limit of the image plane. In practice this rate is
excessive, and sk = 4 is a good conservative default.

From the ray origin, the sampling process begins at x = 0, where
∂T
∂x

= b T (x) = 0 (16)

Then at each ray casting iteration, we sample at ~P = ~P(T (x)), and
perform the following increments, where ∆t is our discretization of
∂T
∂x ,

~P1 = ~P0 +∆t0 ~D ∆t1 = ∆t0 +a (17)

Thus, incrementing the position from one sample to the next consists
only of an extra vector multiplication and addition, on top of the vector
addition for uniform sampling. This is also outlined in the pseudocode
in the Appendix.

6 IMPLEMENTATION

We implemented our ray casting framework in OpenGL and GLSL.
The pinhole camera vectors ~w, ~u and~v are computed on the CPU and
then sent to the fragment shader, where a ray is generated from the
pixel x and y values according to Equation 7. The 1D transfer function
is given as a set of points {v,{r,g,b,a}}, then processed into a fairly
wide (8K elements) 1D texture, allowing for rapid access on the GPU
and generally sufficient transfer function precision ∆ f > 1e− 4. We
implemented a tricubic B-spline filter using the method of [29], with
the BC smoothing (B = 2,C = 1) kernel of [23]. We optionally employ
this for both DVR sampling and root solving.

a) peak finding b) postclassification c) preintegration

c)a) b)
ρα(f)

f

Fig. 3. Simulated temperature of a heptane fire, with a transfer function consisting of a near-Dirac peak (width ∆ f < 1e− 4) in red, and a smoother feature for
contrast in blue. Peak finding, postclassification and preintegration render at 7.1, 11.6 and 8.8 fps, respectively, at 1024x900.

6.1 Space skipping

Even with fairly dense transfer functions, most data sets are sparse
enough to warrant an empty space skipping mechanism. We choose
a simple uniform grid with a 3DDDA algorithm [1] where each grid
cell stores min-max values of enclosed voxels. Fairly coarse grids (643

cells) work best on the GPU, and this structure can be updated interac-
tively when the transfer function changes. The fragment shader then
traverses the macrocell grid using the 3DDDA algorithm in an outer
loop. When a macrocell is nonempty, we enter the volume rendering
loop, with peak finding tests taken between samples. To begin sam-
pling, we find the first t at which to sample when entering a macrocell.
With differential sampling, we solve for the maximum x after Tenter,

ax2/2+bx = Tenter xtenter = (−b+
√

b2 +2aTenter)/a (18)

We then compute the floor values bxtenterc, T (bxtenterc) and
∂T
∂x (bxtenterc), which can be simplified significantly from Equation 15;
and subsequently sample and increment as in Equation 17. To avoid
duplicate samples, we store the greatest t at which we already sampled,
and use the maximum of that and Tenter.

6.2 Adaptive sampling

As discussed in [7], purely adaptive methods (for example based on
local gradient) perform poorly on GPUs due to poor thread coherence.
However, we do achieve better performance by varying the sampling
rate on a per-macrocell basis. In this scheme, each macrocell computes
a metric based on the ratio of the maximum standard deviation of its
voxels to that of the entire volume, m =

√
dVar(fcell)e/dVar(fvol)e.

As this represents a multiplier for the frequency, its inverse can be
used to vary the sampling step size ∆t. In practice we wish this to
be a positive integer, and a multiplier M = 2m−1 + 1 delivers good
results. With uniform sampling one simply employs M∆t as the new
sampling rate. With differential sampling, M modifies our increments
as follows:

∂2TM

∂x2 =
M

∑
i=1

a =
M (M +1)

2
a

∂TM

∂x
= Max+

∂2TM

∂x2 +b (19)

No modifications to T (x) are required, since the initial x for that
macrocell can be any integer.

7 RESULTS

Unless otherwise stated, all results were collected on a 2.5 GHz Intel
Xeon and an NVIDIA 285 GTX GPU, with trilinear filtering, differen-
tial sampling (sk = 4) and the exclusive-or peak finding modality. For
each scene we plot the (f ,ρα(f)), scaled to the maximum opacity of
the transfer function. To evaluate complexity, we count the total num-
ber of filter evaluations (including peak finding) or DVR-only samples
(without peak finding), and divide these by the number of pixels. As
with any DVR system, performance varies widely with the number of
samples taken. Opaque isosurfaces and low-frequency scenes are sim-
plest and render at real-time rates. The focus of our work is in handling

sharp features, which requires higher sampling rates. Overall, image
quality is excellent and our system is generally interactive (Table 1).
While analysis of macrocells falls outside the scope of this paper, they
usually deliver 1.2x to 5x performance improvement depending on the
scene. Although other approaches have greater total sample through-
put, our system is competitive in how it spends samples and resulting
quality.

dataset dimensions samp/r dvrs/r fps – pf / pc / pi
heptane (f. 3) 302x302x302 190 120 7.1 / 11.6 / 8.8

(f. 5b) 302x302x302 117 58 8.2 / 17.0 / 12.3
(f. 5c) 302x302x302 230 54 10.6 / 18.0 / 12.7

zebrafish (f. 4) 900x500x930 1030 165 2.1 / 2.0 / 1.7
aneurism (f. 6) 256x256x256 561 342 5.3 / 8.6 / 7.0
+BS filter (f. 7) 256x256x256 157 82 1.8 / 2.7 / 2.5
fireset (f. 6) 512x256x512 336 193 6.6 / 9.5 / 7.3
backpack (f. 7) 512x512x373 1078 633 2.1 / 2.9 / 2.1

Table 1. Overall performance in frames per second and average samples per ray
for selected scenes with differential sampling sk = 4. The right three columns
show average samples (filter function evaluations) per ray, average DVR-only
samples per ray, and fps with peak finding, postclassification, and preintegration.

7.1 Peak finding

Peak finding is useful when the combined frequency of the volume and
transfer function is too high for effective regular sampling. In such
cases, postclassification would require near-infinite sampling to accu-
rately reproduce features. Preintegration succeeds in detecting high-
frequencies of the transfer function, but integrates and shades them
incorrectly when undersampling the scalar field.

An obvious scenario in which conventional sampling methods fail is a
transfer function containing one or more Dirac-like features, as shown
in Figure 3. Peak finding succeeds in reproducing these features as
semi-transparent isosurfaces, and rendering smoother volumetric fea-
tures in the correct order. While postclassification misses peak fea-
tures outright, preintegration detects and reproduces a surface. How-
ever, with preintegration the range ∆ f along a given segment can sig-
nificantly skew the opacity integral; two segments with different ∆ f
may sample the same impulse but have different irradiances. With
peak finding, this is not the case. In addition, preintegration shades
at the segment endpoint, as opposed to locally at the hit position of
the isosurface, resulting in Moire patterns. Finally, when an impulse
is defined with a discretization smaller than that of the preintegrated
table, peak finding with a smaller table can reproduce features that
preintegration misses. In practice, this is less a concern than the afore-
mentioned integration and shading issues with preintegration.

Peak finding is an intriguing method for rendering noisy or entropic
data, for example from scanned sources in medicine or biology. Here,
even when the transfer function is sampled adequately, the filtered field
function of the volume (hence the convolved signal) is not. While arti-
facts are not as noticeable due to the noisy nature of renderings, high-
frequency features are again omitted. Due to convolution of the high

ρα(f)

f

Fig. 4. Zebrafish optic tract acquired through electron microscopy [9] rendered with differential sampling and peak finding at 1600x512 resolution. Peak finding
(top, 2.1 fps) enables better classification of narrow-band segments in entropic data. Preintegration (bottom left, 2.0 fps) has difficulty accurately reproducing such
features, and semi-transparent isosurfacing (bottom right, 4.3 fps) lacks the depth cues provided by volume rendering.

data frequency, features can be lost even with moderate-frequency
transfer functions. Simply increasing opacity at peaks does not cor-
rect the problem, and widening the transfer function broadens the
classification. Choosing a higher sampling rate can remedy this, but
at high performance cost. Meanwhile, at sampling rates well below
the Nyquist limit, peak finding successfully reproduces sharp features
with the desired opacity and color, as shown in Figure 4. The fireset in
Figure 6 also illustrates this phenomenon.

Finding multiple peaks is typically not necessary unless several sharp
features are close together in the transfer function. This option bet-
ter ensures peaks are rendered in the correct order, and costs roughly
20% performance (Figure 5 (left)). More significantly, we find that
bias from always sampling at peaks is manageable. Figure 5 (right)
considers a smooth transfer function that looks nearly identical with
peak finding and postclassification (Figure 5c,e). Peaks with opacity
magnified by 16 (Figure 5d) and peak isosurfaces only (Figure 5f) are
shown for contrast. The only disadvantage of peak finding in such
cases is that it is not necessary and more costly. While it is possible
to construct transfer functions for which peak regions have relatively
higher contribution to the radiance and show greater bias, for the most
part peak finding accentuates isosurface-like features as desired.

ρα(f)

f

a) single peak b) multiple peaks

ρα(f)

f

c) peak finding (xor) d) PF iso x16

e) postclassification f) peak iso only

Fig. 5. Peak finding behavior (800x1024 resolution). Left: finding single and
multiple peaks, at 10.7 and 8.2 fps, respectively. Right: bias from always sam-
pling at peaks is generally subtle. At full frame resolution, (c-f) render at 11.7,
13.6, 20.5 and 15.6 fps, respectively.

7.2 Differential sampling

Differential sampling delivers better results close to the viewpoint, and
not noticeably worse quality in the distance. A major appeal of this
method is that the sampling rate is view-dependent; it automatically
and locally matches sampling to the frequency of the image plane,
thus requiring less work on the part of the user. In evaluating differen-
tial sampling, it is difficult to enforce a constant average sampling rate,
so we use frame rate as the control variable and compare the results in
Figure 6. Exact performance figures are given in Table 2. At similar
frame rate, uniform sampling undersamples nearby features, and dif-
ferential sampling remedies this, yielding consistently better quality
and surpsingly little quality loss further away. Peak finding amplifies
undersampling artifacts at silhouettes; as a result differential sampling
in conjunction with peak finding is particularly desirable up close.

More subjectively, we can choose a single converged image as the
control, and compare frame rates required for each scheme to achieve
comparable quality. We use Figure 7 and the differential sampling
halves of Figure 6 as reference; results are given in Table 2 (bottom).
Adequately sampled, these scenes look generally similar with uniform
and differential schemes. However, differential sampling can deliver
up to 3x better frame rate, particularly when overall frequency is low.
In Figure 7(a,b), converged images of the aneurism with postclassifica-
tion and B-spline filtering look nearly identical, but run at 1.0 and 2.7
fps with uniform and differential sampling, respectively (0.86 and 1.8
fps with peak finding). Conversely, in cases where data is entropic and
classified with multiple peaks, differential sampling is less effective,
requiring a smaller sk to adequately sample faraway regions, while
oversampling nearby features. This is more noticeable with peak find-
ing, where adequate sampling is necessary for robust root isolation
of isosurfaces. Overall, differential sampling seldom delivers worse
quality than uniform at the same frame rate. The backpack in Fig-
ure 7(c,d), a noisy scanned volume classified with peak finding and
multiple peaks, still renders at 1.6 fps with both sampling methods
and similar quality.

As evident in Table 2, differential sampling often requires half or less
as many uniform samples for equivalent visual quality. Ideally, half
as many samples would correspond to exactly double the frame rate.
In practice this is not the case, due to the parallel nature of GPUs
and worse memory coherence at far-away samples when using differ-

f

ρα(f)

f

ρα(f)

Fig. 6. Close-up scenes with uniform (left) and differential sampling (right) at similar frame rates, rendered at 1280x800. Columns show postclassification, peak
finding, and peak finding with higher-order B-spline filtering. Aneurism and fireset scenes are shown in the top and bottom rows, respectively.

ential sampling. With tricubic B-spline filtering, the higher cost of
computing samples outweighs this penalty, yielding relatively better
performance with differential sampling than with uniform (1.5-3x as
opposed to 1-2x). Nonetheless, differential sampling remains clearly
worthwhile with trilinear filtering.

f

ρα(f)

a)

b)

ρα(f)

f

c)

d)

Fig. 7. Far views with differential sampling (b,d) render 1-3x faster than uniform
sampling (a,c) at similar quality. Left: aneurism (postclassified with B-spline
filtering). Right: noisy backpack data. (a,b,c,d) render at 1.0, 2.7, 1.6 and 1.6
fps, respectively at 10242.

dataset postclassification peak finding pf+B-spline
Frame rate held constant – Fig. 6

aneurism–close (Fig. 6) uni./diff. uni./diff. uni./diff.
fps 7.4 / 8.7 5.6 / 5.3 1.0 / 1.1
samples/ray 361 / 342 580 / 561 770 / 827

fireset–close (Fig. 6) uni./diff. uni./diff. uni./diff.
fps 4.8 / 5.1 3.6 / 4.1 0.96 / 0.96
samples/ray 396 / 380 509 / 528 408 / 494

Converged sampling quality – Figs. 6(right halves) and 7
aneurism–close (Fig. 6) uni./diff. uni./diff. uni./diff.

fps 2.0 / 6.4 2.4 / 4.2 0.42 / 0.80
samples/ray 1433 / 483 1419 / 700 1854 / 964

fireset–close (Fig. 6) uni./diff. uni./diff. uni./diff.
fps 1.1 / 3.1 2.2 / 4.6 0.42 / 0.77
samples/ray 2123 / 772 1441 / 527 1568/ 576

aneurism–far (Fig. 7) uni./diff. uni./diff. uni./diff.
fps 5.8 / 13 4.3 / 7.1 0.86 / 1.8
samples/ray 343 / 113 471 / 174 372 / 157

backpack–far (Fig. 7) uni./diff. uni./diff. uni./diff.
fps 2.7 / 2.4 1.6 / 1.6 0.36 / 0.43
samples/ray 640 / 748 1794 / 1865 822 / 720

Table 2. Differential sampling performance for images in Figs. 6 and 7.

8 DISCUSSION

Our proposed techniques advance the state-of-the-art in high-quality
volume ray casting. Peak finding allows for near-discrete isosurfaces
to be specified within a volume rendering transfer function, and pro-
vides a new tool in the classification arsenal. It yields viable clas-
sification of entropic and noisy data, handles pathological cases that
are unadressed by postclassification and preintegration, and is not sig-
nificantly slower than those techniques. Differential sampling allows
for better quality rendering of features closer to the camera, with less
overall sampling and correspondingly higher frame rate.

The main drawback of peak finding is that it is more costly than prein-
tegration, and unnecessary when the transfer function and data are
smooth. Again, an argument can be made that introducing discrete
isosurfaces into the volume rendering integral is inherently biased. In
addition, the rule of signs is not a robust root isolation method, and sur-
faces can be missed near sharp silhouettes. The main limitation of dif-
ferential sampling is that it would be difficult to implement outside of
a ray casting framework. When sk is very small, differential sampling
encounters numerical problems resulting in worse artifacts at greater
sampling rates, shown in the close-up in Figure 7(c,d). This is rarely an
issue in practice, and could be remedied with double-precision GPU
arithmetic. The chief drawback of our implementation is that it tra-
verses an acceleration structure in the fragment shader, which is likely
slower than rasterized bricking or slicing. Most of our chosen scenes
are costly to sample regardless of space skipping, but we could employ
a proxy rasterization technique such as [17] for better performance.

Several extensions to this work are worth pursuing. Differential sam-
pling could be used in more traditional applications of ray differentials
such as multiscale filtering and level of detail, which could improve
quality and allow efficient rendering of large data. Peak finding could
be extended to handle multidimensional and multifield transfer func-
tions, which could use topological methods to find peaks in higher
dimensions. We are also interested in combining preintegration and
peak finding for better classification.

ACKNOWLEDGEMENTS

This work was supported by the German Research Foundation (DFG)
through the University of Kaiserslautern International Research Train-
ing Group (IRTG 1131); as well as the National Science Founda-
tion under grants CNS-0615194, CNS-0551724, CCF-0541113, IIS-
0513212, and DOE VACET SciDAC, KAUST GRP KUS-C1-016-04.
Additional thanks to Liz Jurrus and Tolga Tasdizen for the zebrafish
data, and to the anonymous reviewers for their comments.

REFERENCES

[1] J. Amanatides and A. Woo. A Fast Voxel Traversal Algorithm for Ray
Tracing. In Proc. EG 87, pages 3–10. Eurographics Association, 1987.

[2] B. Cabral, N. Cam, and J. Foran. Accelerated volume rendering and
tomographic reconstruction using texture mapping hardware. In VVS ’94:
Proceedings of the 1994 symposium on Volume visualization, pages 91–
98, New York, NY, USA, 1994. ACM Press.

[3] C. S. Co, B. Hamann, and K. I. Joy. Iso-splatting: A Point-based Alter-
native to Isosurface Visualization. In J. Rokne, W. Wang, and R. Klein,
editors, Proceedings of Pacific Graphics 2003, pages 325–334, Oct. 8–10
2003.

[4] T. J. Cullip and U. Neumann. Accelerating Volume Reconstruction With
3D Texture Hardware. Technical report, 1994.

[5] K. Engel, M. Kraus, and T. Ertl. High-quality pre-integrated volume ren-
dering using hardware-accelerated pixel shading. In Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware,
pages 9–16. ACM New York, NY, USA, 2001.

[6] M. Hadwiger, A. Kratz, C. Sigg, and K. Bühler. GPU-accelerated Deep
Shadow Maps for Direct Volume Rendering. Graphics Hardware, 6:49–
52, 2006.

[7] M. Hadwiger, C. Sigg, H. Scharsach, K. Bühler, and M. Gross. Real-
time ray-casting and advanced shading of discrete isosurfaces. Computer
Graphics Forum, 24(3):303–312, 2005.

[8] H. Igehy. Tracing Ray Differentials. In Computer Graphics (Proceedings
of ACM SIGGRAPH), pages 179–186, 1999.

[9] E. Jurrus, M. Hardy, T. Tasdizen, P. Fletcher, P. Koshevoy, C. Chien,
W. Denk, and R. Whitaker. Axon tracking in serial block-face scanning
electron microscopy. Medical Image Analysis, 13(1):180–188, 2009.

[10] J. Kniss, S. Premoze, M. Ikits, A. Lefohn, C. Hansen, and E. Praun. Gaus-
sian transfer functions for multi-field volume visualization. In Proceed-
ings of IEEE Visualization, pages 497–504, Oct. 2003.

[11] G. Knittel. The ULTRAVIS System. In Proceedings of the 2000 IEEE
symposium on Volume visualization, pages 71–79. ACM Press, 2000.

[12] A. Knoll, Y. Hijazi, A. Kensler, M. Schott, C. Hansen, and H. Hagen.
Fast Ray Tracing of Arbitrary Implicit Surfaces with Interval and Affine
Arithmetic. Computer Graphics Forum, 28(1):26–40, 2009.

[13] A. Knoll, I. Wald, and C. Hansen. Coherent multiresolution isosurface
ray tracing. The Visual Computer, 25(3):209–225, 2009.

[14] J. Krüger and R. Westermann. Acceleration Techniques for GPU-based
Volume Rendering. In Proceedings of IEEE Visualization 2003, pages
287–292, 2003.

[15] P. Lacroute and M. Levoy. Fast volume rendering using a shear-warp fac-
torization of the viewing transformation. In SIGGRAPH ’94: Proceed-
ings of the 21st annual conference on Computer graphics and interactive
techniques, pages 451–458, New York, NY, USA, 1994. ACM Press.

[16] M. Levoy. Display of surfaces from volume data. IEEE Comput. Graph.
Appl., 8(3):29–37, 1988.

[17] B. Liu, G. Clapworthy, and F. Dong. Accelerating volume raycasting
using proxy spheres. Computer Graphics Forum (Proceedings of Eurovis
2009), 28(3):839–846, 2009.

[18] Y. Livnat and C. D. Hansen. View Dependent Isosurface Extraction. In
Proceedings of IEEE Visualization ’98, pages 175–180. IEEE Computer
Society, Oct. 1998.

[19] Y. Livnat and X. Tricoche. Interactive point based isosurface extraction.
In Proceedings of IEEE Visualization 2004, pages 457–464, 2004.

[20] W. E. Lorensen and H. E. Cline. Marching Cubes: A High Resolution
3D Surface Construction Algorithm. Computer Graphics (Proceedings
of ACM SIGGRAPH), 21(4):163–169, 1987.

[21] E. Lum, B. Wilson, and K. Ma. High-quality lighting and efficient pre-
integration for volume rendering. In Proceedings Joint Eurographics-
IEEE TVCG Symposium on Visualization 2004 (VisSym 04), pages 25–34.
Citeseer, 2004.

[22] G. Marmitt, H. Friedrich, A. Kleer, I. Wald, and P. Slusallek. Fast and
Accurate Ray-Voxel Intersection Techniques for Iso-Surface Ray Trac-
ing. In Proceedings of Vision, Modeling, and Visualization (VMV), pages
429–435, 2004.

[23] D. Mitchell and A. Netravali. Reconstruction filters in computer-graphics.
ACM Siggraph Computer Graphics, 22(4):221–228, 1988.

[24] S. Parker, M. Parker, Y. Livnat, P.-P. Sloan, C. Hansen, and P. Shirley. In-
teractive ray tracing for volume visualization. IEEE Computer Graphics
and Applications, 5(3):238–250, 1999.

[25] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P.-P. Sloan. Interactive

Ray Tracing for Isosurface Rendering. In IEEE Visualization ’98, pages
233–238, October 1998.

[26] S. Röttger, S. Guthe, D. Weiskopf, T. Ertl, and W. Strasser. Smart
hardware-accelerated volume rendering. In VISSYM ’03: Proceedings of
the symposium on Data visualisation 2003, pages 231–238, Aire-la-Ville,
Switzerland, Switzerland, 2003. Eurographics Association.

[27] S. Röttger, M. Kraus, and T. Ertl. Hardware-accelerated volume and iso-
surface rendering based on cell-projection. In Proceedings of IEEE Visu-
alization, pages 109–116. IEEE Computer Society Press Los Alamitos,
CA, USA, 2000.

[28] J. Schreiner, C. Scheidegger, and C. Silva. High-quality extraction of
isosurfaces from regular and irregular grids. IEEE Transactions on Visu-
alization and Computer Graphics, 12(5):1205–1212, 2006.

[29] C. Sigg and M. Hadwiger. Fast third-order texture filtering. GPU Gems,
2:313–329, 2005.

[30] J. M. Singh and P. Narayanan. Real-Time Ray Tracing of Implicit Sur-
faces on the GPU. Technical report, International Institute of Information
Technology, Hyderabad, India, 2007.

[31] M. Sramek. Fast surface rendering from raster data by voxel traversal us-
ingchessboard distance. Proceedings of IEEE Visualization 1994, pages
188–195, 1994.

[32] L. Westover. Footprint evaluation for volume rendering. In SIGGRAPH
’90: Proceedings of the 17th annual conference on Computer graphics
and interactive techniques, pages 367–376, New York, NY, USA, 1990.
ACM Press.

[33] J. Wilhelms and A. Van Gelder. Octrees for faster isosurface generation.
ACM Transactions on Graphics, 11(3):201–227, July 1992.

[34] Y. Zhou and M. Garland. Interactive point-based rendering of higher-
order tetrahedral data. IEEE Transactions on Visualization and Computer
Graphics, 12(5):1229–1236, 2006.

[35] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. EWA volume splatting.
In Proceedings of IEEE Visualization, pages 29–36, 2001.

Algorithm 1 Differential sampling and peak finding pseudocode.
vec4 ps0, ps1; float fs0, fs1, dt, iso; //globals

void peak_find(){
float f0 = fs0 - iso;
float f1 = fs1 - iso;
if (f0 * f1 < 0){

vec4 p0 = ps0; //(x,y,z,t) at segment entry
vec4 p1 = ps1; //(x,y,z,t) at segment exit
for(int k=0; k<2; k++){

vec4 prt = p0 - (p1 - p0) * f0 / (f1 - f0);
float frt = volume_filter(pnew.xyz) - iso;
if (fnew * f0 < 0){
p1 = prt; f1 = frt; }

else{
p0 = prt; f0 = frt; }

}
prt = p0 - (p1 - p0) * f0 / (f1 - f0);
frt = iso;
dt = 1.0; //scale the opacity
dvr_sample(prt, frt, dt);

}
}
void raycast(){
dt = b;
ps1.w = 0; //t
ps1.xyz = ray.origin;
fs1 = volume_filter(ps1.xyz);
for(;;){
ps0 = ps1; fs0 = fs1;
ps1 += dt * ray.direction;

#if DIFFERENTIAL_SAMPLNG
dt += a;

#endif
fs1 = volume_filter(ps1.xyz);

#if !DVR_ONLY
iso = texture2D(peakTable, float2(fs0, fs1));
if (iso != invalid_flag)

peak_find();
#endif
#if !PEAK_ONLY
#if PEAK_XOR_DVR

else
#endif

dvr_sample(ps1, fs1, dt);
#endif
#endif

if (color.a > termination_alpha) break;
}

}

