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ABSTRACT 

To make the most of current advanced computing technologies, experts in particular areas of science and engineering 
should be supported by sophisticated tools for carrying out computational experiments. The complexity of individual 
components of such tools should be hidden from them so they may concentrate on solving the specific problem within 
their field of expertise. One class of such tools are Problem Solving Environments (PSEs). The contribution of this paper 
refers to the idea of integration of an interactive computing framework applicable to different engineering applications 
into the SCIRun PSE in order to enable interactive real-time response of the computational model to user interaction even 
for large-scale problems. While the SCIRun PSE allows for real-time computational steering, we propose extending this 
functionality to a wider range of applications and larger scale problems. With only minor code modifications the 
proposed system allows each module scheduled for execution in a dataflow-based simulation to be automatically 
interrupted and re-scheduled. This rescheduling allows one to keep the relation between the user interaction and its 
immediate effect transparent independent of the problem size, thus, allowing for the intuitive and interactive exploration 
of simulation results. 
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1. INTRODUCTION 

With new hardware technologies, efficient algorithms, and parallelization strategies, the simulation of very 
complex physical phenomena, which used to be inconceivable, has become a realistic endeavor. It assumes 
the ability to model a particular physical problem domain, appropriate boundary conditions, and numerical 
approximations of the governing system of equations to be solved. The result is then validated and visualized 
for more intuitive interpretations.  

Constructing a model refers to the geometrical definition of a physical domain, in which a continuous 
structure has been discretized. Typically, a new model must be generated for each new configuration, making 
this phase one of the most time-consuming. For numerical approximations of the governing partial 
differential equations and corresponding boundary conditions, one can use either common discretization 
methods (e. g. the finite element (FE) and finite difference (FD) method), hierarchical methods (e. g. 
multigrid and relatives), or a combination of the two. This yields a linear system, A ⋅ x = b, where the time 
needed for calculating the vector x is correlated with the number of its elements. The final step—efficient 
graphical representation of the resulting, often large, data sets—is itself a considerable task. 

Aforementioned cycles are traditionally carried out as a sequence of steps. However, the ever-increasing 
range of specialists in developing fields has necessitated a collaborative, interactive approach with the 
computational model. This requires real-time feedback from the running simulation, while experimenting 
with different simulation setups. Problem Solving Environments (PSEs) are popular tools that facilitate 
interactions with complex models, without requiring specialists to know their algorithmic, data, or 



 

 

visualization structures. In short, these are user-friendly tools for guiding the numerically approximated 
problem solution.  

One of the most prominent and widely used PSEs is SCIRun (SCI Institute, 2012). Compared to other 
state-of-the-art approaches such as Cactus (Allen et al. 2000), which enables runtime steering of parallel 
simulations, or G-HLAM (Rycerz et al. 2008), which addresses migration and monitoring mechanisms, 
SCIRun is a modular software package that follows the dataflow model and allows for GUI-based designs of 
the simulation flow, similar to the one in dataflow environments such as AVS1, IBM Open Visualization Data 
Explorer, OpenDX2, and IrisExplorer3.  

Due to its modularity, ease of extension, portability to different platforms, and convenience for interactive 
computational steering, it is used for many biomedical and other applications, within the SCI Institute and 
beyond. Immediate responses to the running simulation are achievable in real-time, up to the certain problem 
sizes. With the increase of the size of the problem—mesh resolution in the FE approximation, for example—
the observable, causal relationship becomes less intuitive. Therefore, additional strategies need to be applied 
– in particular, saving cycles by skipping redundant work as early as possible. 

To sum up, for building a PSE with real-time computational steering enabled for large-scale problems, 
one has to consider many aspects: from efficient (and parallelized) simulation consisting of the 
aforementioned phases, which can all be interrupted by the user at any point (to be re-executed with the 
updated settings), and fast transfer of the update, as well as the simulation results (Summa et al. 2011), to 
real-time visualization. 

 The contribution of this work is to allow for interactive feedback of the computational model, even for 
more time- and memory-consuming problems. This is achieved by interrupting the running simulation via 
software equivalents of hardware interrupts, i. e. signals, in order to skip the redundant computational cycles 
as soon as any changes are performed by the user. Due to the dataflow software architecture of the SCIRun, 
only necessary simulation modules are re-executed afterward. 

2. SCIRUN 

SCIRun is a PSE intended for interactive construction, debugging, and steering of large-scale, typically 
parallel, scientific computations (Shepherd, Johnson 2009). It is a modular, easily extendable software 
package based on dataflow programming, and it provides efficient and comfortable environments for 
interactive computational steering.  

Every SCIRun simulation is designed as a network of computational components, i. e. modules, connected 
via input/output ports. It allows for new modules and easy modification of individual modules without 
affecting others. As a design pattern, object-oriented SCIRun code uses the Model-View-Controller 
paradigm. The Controller entity, i. e. an instance of the Scheduler class, is in charge of all the modules and 
their order of execution. After one module is triggered and stored in the queue for execution, dependent 
modules are in the same manner stored for execution.  

A user interface is provided for every module in order to enable the modification of corresponding 
parameters. Regarding discretization parameters, one can choose a mesh resolution for all spatial directions. 
For solving the resulting linear system of equations, the selection is made among iterative solution methods 
(Conjugate Gradient (CG), Biconjugate Gradient (BCG), Jacobi, and Minimal Residual (MINRES)), as well 
as among different pre-conditioners; in addition, one may change tolerances, the maximal number of 
iterations, levels of accuracy, and other numerical parameters. Within the solution of a linear system of 
equations, users may also receive visual feedback on residual error or current iteration, after which they can 
interact with and re-direct the solution process. One may also decide to change other simulation-specific 
parameters, such as electrical conductivity in defibrillation-like simulations.  

Upon initiating the simulation, the scientist views initial results, error per element of the finite element 
analysis, etc., then (s)he may decide whether to continue the computation using different discretization 
parameters or to restart the computation with different input conditions. Traditionally, results are  exported to 
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disk, and/or piped into a separate visualization software package once all computations are completed 
(Johnson and Parker 1995). Within SCIRun, visualization modules are integral part of the dataflow. It is 
possible to visualize and explore intermediate results after a pre-defined number of iterations, while the 
calculations continue to progress. Since some of those phases can be very time-consuming, it is very 
important to be able to interrupt them instantly with setting changes, and thus, to automatically start anew 
with modified parameters. This is where the interactive computing framework comes into play. 

3. INTERACTIVE COMPUTING FRAMEWORK 

In order to achieve an immediate response to changes made by the user, the regular course of the simulation 
is interrupted via signals in small, user-defined cyclic intervals, followed by a check for updates (Knezevic 
and Mundani 2010). If there has been any change on the user side, simulation-state variables are manipulated 
in order to skip the redundant computation and automatically calculate anew, starting from a particular point 
in the algorithm according to the updated settings (new geometry, boundary conditions, mesh resolution, 
etc.). It is then the responsibility of a user to instruct the simulation program how the received data should be 
assigned to the simulation.  

With some intermediate (e. g. one iteration in case of an iterative solver) or the complete computation 
(e. g. in case of a direct solver) being finished without an interrupt, new results are handed on to the user 
process for visualization. The framework is intended to be integrated in various application scenarios; hence, 
it cannot predict how the results should be interpreted in each of them. It is, therefore, the user’s 
responsibility to prescribe, on the front-end process, how to interpret the received data so that it can be 
appropriately visualized. 

As elaborated in (Knezevic et al. 2011), to guarantee the correct execution of a program, one should use 
certain types of qualifiers for variables that are subject to sudden changes or interrupts. Deterministic 
behavior of the program has to be guaranteed by ensuring atomicity of certain arithmetic operations, e. g., on 
different architectures and accessing the correct values of variables in the main memory, instead of 
potentially outdated values in the cache.  

An even more challenging task lies in applications that are amenable to concurrent executions; thus, they 
are programmed using either shared memory, message passing, or a combination in hybrid parallel 
algorithms. The design of the framework takes into consideration and supports all of these scenarios 
(Knezevic, Mundani and Rank 2011), although this results in an extra effort to ensure correct program 
execution and avoid synchronization problems when using threads, as is the case with SCIRun simulations.  

4. INTEGRATION INTO SCIRUN 

SCIRun provides an optimal software environment for integrating the aforementioned interactive computing 
framework. The dataflow model allows for triggering only the re-execution of the necessary modules during 
user updates. First, the updated module is stored in the processing queue. Then, it is supposed to trigger the 
scheduling of the modules whose input ports are connected with output ports of this module directly or 
indirectly. The modules that come earlier than the updated module in the execution pipeline are not being 
triggered.  

In this already mature and sophisticated environment for computational steering, our goal is to have real-
time feedback for even more time- and memory-consuming simulations, i. e. when a module execution 
requires more time than desirable within the computational steering loop. Hence, our intention is to interrupt 
the module currently being executed and skip its redundant cycles, as well as remove any module previously 
stored for execution from the actual schedule. 

The concept is tested on several different simulations to evaluate the user response for different overall 
execution times, different orders of module execution, choice of parameter changes, etc. These scenarios are: 
(1) a simulation that facilitates early detection of acute heart ischemia, and (2) two defibrillation-like 
simulations, one on a homogeneous cube domain, and the other on an inhomogeneous human torso. 

 
 



 

 

4.1 Tool for early detection of heart ischemia 

Myocardial ischemia is a disease characterized by reduced blood supply of the heart muscle, usually due to 
coronary artery disease. Symptoms may include characteristic chest pain on exertion and decreased exercise 
tolerance (Wikipedia 2012a). It is the most frequent cause of death in most Western countries, and a major 
cause of hospital admissions (Podrid and Myerburg 2005). Since early detection may lead to the prevention 
of further complications, by measuring many anatomic details and electrical measurements, scientists hope to 
detail what occurs in the border zones between the healthy and ischemic tissue layers. 

The aim of this application is the generation of a quasi-static volume conductor model of an ischemic 
heart, based on data from actual experiments (Stinstra and Swenson, 2012). Modeling pipeline requires the 
generation of experiment-specific models of the myocardium, based on the MR images/scans of a dog heart. 
The known values are extracellular cardiac potentials as measured by electrodes on an isolated heart or with 
needles inserted into the heart. The transmembrane potential (the potential difference between the 
intracellular and extracellular space) is not the same for ischemic and healthy cells. The latter effect causes 
so-called injury currents to flow within the intracellular and extracellular spaces. These can be observed at 
the surface of the heart as potential differences that translate to so-called ST shifts in the ECG (Stinstra and 
Swenson, 2012). A network of modules is constructed within SCIRun to simulate and then render a model of 
the transmembrane potential of a dog’s myocardium in experiments (Figure 1, left).  

In the network of modules created in this simulation, typically the most computationally expensive step is 
the SolveLinearSystem module. Thus, the first challenge is how to interrupt it as soon as any change is made 
by the user—in particular, the changes done via UI to this module. So far, it is provided by SCIRun that only 
necessary modules will be re-executed due to the change, however, the current module computation has to 
run till the end. Thus, to achieve immediate skipping of the outdated computation in the iterative-solver 
algorithm of the system of linear equations, the maximal number of iterations (which is normally user 
interface variable) is newly replaced by the globally visible variable registered in the framework. This value 
is then manipulated in the signal handler, i. e. set to some value outside of the domain of the iterator index. 
Hence, the iterative solver algorithm, which is the major part of execute function of the module, instantly 
recognizes that is should terminate. More precisely, this happens as soon as this value can be compared with 
the current iteration number. The execute function of this module also has to be re-scheduled afterward with 
the new user-applied settings. However, one has to take care that the previous interrupted execution of the 
same module is finished in a clean way.  

Our contribution, thus, also assumes doing all the steps that would have been taken within the execute 
function without any interrupt. Moreover, the execute function has to be called anew (in order to trigger re-
computation instantly). For this, we have to take care of several things, the most relevant of which is the 
Scheduler being explicitly informed about this new execution. The Scheduler also has to confirm storing the 
matching task for the execution, in terms of its identification number. All the input and output ports, which 
were opened by the previous execution call, now have to be both closed and re-opened in order for the 
SolveLinearSystem variables to re-initialize properly. It consists of re-initializing the maximum number of 
iterations, as well as some other user-interface variables, which would have been automatically re-initialized 
without the enforced interruption of the module execution. 

One of those variables is, for instance, determining whether the partial solutions should be emitted. We 
choose for testing of the framework the most computationally demanding scenario—emitting the 
intermediate solution after each iteration. This involves scheduled executions of several visualization 
modules, each of which takes a few seconds, after each iteration. After an interrupted iteration, the preview 
of old results is cancelled. The execution of all the modules, which would happen after SolveLinearSystem, 
has to be aborted. This is achieved within this work by throwing an exception in the class GetFieldBoundary, 
since this exception gets automatically caught in all modules, such as ExtractIsosurfaceByFunction, 
ApplyMappingMatrix, ShowField, ShowFieldGlyphs, and ViewScene.  

4.2 Defibrillation 

Defibrillation is a common therapy for life-threatening cardiac and ventricular disorders. It consists of 
delivering a dose of electrical energy to the affected heart with a device that terminates the arrhythmia and 
allows normal sinus rhythm to be reestablished by the body's natural pacemaker. Implantable Cardioverter 



 

 

Defibrillators (ICDs) are relatively common—implantable—devices that provide an electric shock to treat 
fatal arrhythmias in cardiac patients (Wikipedia 2012b). Children, due to their smaller size and often 
abnormal anatomy, require more specialized ICD configuration than adult patients (Burton et.al. 2011). 
Given a pattern of source activation, one of the bioelectric field problems cardiologists are interested in is 
determining the electric activity that would result through the rest of the domain. Such studies are used when 
investigating internal implantable defibrillator designs. Again, the goal is to simulate those governing 
equations using discrete numeric approximations. By building a computational model of a patient’s body and 
mapping conductivity values over the entire domain, we can accurately compute how activity generated in 
one region would be remotely measured in another region (Weinstein, 2005). 
 

4.2.1 Simplified defibrillation simulation on a homogeneous cube 
First, we consider a simpler defibrillation-like example—a simulation of the electrical conduction on a 
homogeneous cube domain with two interactively placed electrodes— in conjunction with our interactive 
computing framework. Each of the electrodes is assigned its own conductivity value. It is then explored with 
different values for both of the electrodes. 

In this case, we want to place two electrodes with two input fields, so we use the CalculateFieldData2 
module. The CalculateFieldData2 defines a whole range of mathematical operators that can be applied to 
various fields and a range of possible input streams—from the location of nodes to the data values located in 
the field. It operates by taking data from the two input fields as two input streams and applying the operation 
specified inside the UI of the module to each pair of data from the two fields. Hence, this module defines an 
operator that works on a stream of input data. In this case, the input function is specified as RESULT = 
DATA1 * DATA2. DATA1 refers to the data from the first field and DATA2 to the data from the second field, as 
represented in the Figure 1 (right).  

As soon as the input field in any of these two modules has been modified, the Scheduler gets implicitly 
informed; thus, it is newly provided that it cancels the execution of all the scheduled modules that have not 
begun yet by making sure an exception is employed. In the case of the modules that are currently in the 
execution phase, the iterator indexes are manipulated within our framework functionality, as described 
before, in order to stop their execution instantly. Changing the input field of CalculateFieldData2 
automatically triggers the re-execution of all the modules following it in the pipeline.  

Figure 1: left: Heart ischemia with graphical user interface; right: defibrillation on a Cube with graphical user interface 

              
4.2.2 Defibrillation on a human torso 
The following case study illustrates how to determine optimal energy discharge and placement of the ICD in 
the human torso (Figure 2). Segmentation of patient MRI or CT data provides the torso geometry into which 
ICD geometry is interactively placed. Local mesh refinement around the ICD reduces the overall number of 
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elements while maintaining crucial details. (Burton et.al. 2011) All tissues are modeled as passive with ICD 
geometry locations acting as sources and sinks. This allows the solution to be approximated via FE by 
simulating Poisson’s equation.  

In addition to manipulating solver-related parameters for the resulting system of the linear equations, and 
conductivity values, we can this time experiment with different mesh resolutions in FE approximation (to test 
our framework). This allows for previewing the solution on a coarser grid and switching to the finer one, 
once the user is satisfied with the current setting. In order that our framework has a desired effect, similar to 
the simulation on the homogeneous cube with different conductivities of the electrodes, it has to be ensured 
that the Scheduler now reacts on the change of the mesh resolution by allowing an exception for some of the 
modules following the updated CreateLatVol module within the network. Additionally, due to the 
framework,  the iterator index used in other modules, such as SolveLinearSystem, is manipulated to skip any 
redundant computation. 

Figure 2: Changing mesh base parameters in the CreateLatVol module of a simplified defibrillation simulation on a torso 

 

4.3 Interrupting the data flow 

To summarize, in SCIRun, the challenges of getting an immediate feedback/response of the simulation 
depends on many factors. The difficulty depends not only on the size of the problem, but also on the choice 
of the modified parameters within the simulation, since this determines which parts of the dataflow have to 
be re-executed. The earlier in the execution pipeline the parameter appears, the more challenging it is to 
provide the real-time response to the user changes. Figure 3 represents the structure of each aforementioned 
simulation realized within the SCIRun environment, where it becomes clearer which modules need to be 
interrupted or cancelled in order to keep an intuitive connection between the user’s change and its effect. 

Figure 3: Sketches of the modules for: left - torso defibrillation-like simulation, middle - homogeneous cube 
defibrillation-like simulation, right – detection of heart ischemia; dashed-line boxes: most time-consuming module 

typically interrupted in the middle of execution by a user.   
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5. CONCLUSION 

We have tested all three simulation scenarios in order to estimate the overhead of the framework. The tests 
have been made for different update intervals, namely, 5, 2, or 1 millisecond for different solvers of linear 
systems of equations (Figure 4).   

In the case of the electrical conduction simulation on a human torso with inserted defibrillators, with the 
mesh resolution (50 × 50 × 75), we can see that in the case of the shortest interval (i. e. 1 millisecond), the 
overhead caused by the framework is around 15%. However, by making the interval longer (e. g. 2 or 5 
milliseconds), the overhead is reduced to around 5%, and 2-3%, respectively. While increasing this interval, 
however, an end-user does not observe the difference in terms of the simulation response. Therefore, one 
may conclude that it is recommendable to experiment with different intervals for a specific simulation.  

For the simulation based on the heart-ischemia model, one observes even less overhead—namely not 
more than 5% in all the cases (taking into consideration also that for such small overall execution times, 1- 
2% overhead can also be assigned to the cache coherence and measurement precision issues).  

In the case of electrical conduction simulations on the homogeneous cube domain (with two inserted 
electrodes), the tests have been done for two problem sizes—first, mesh (32 × 32 × 32), second (64 × 32 × 
32), and again not more than 5% overhead is observed, except for one of the solvers (CG ) on the mesh 64 × 
32 × 32, where it is close to 10% for alarm intervals of 5 milliseconds. This result shows once again that it is 
worth experimenting with different alarm intervals for a specific simulation, if one observes that the 
execution time has been significantly extended. 

The steering process itself runs now intuitively and smoothly. For all the tested data sizes the immediate 
visual response to user changes is made possible, i. e. within a second. However, additional re-use of 
previous computation results for new computations when changing certain parameters should be considered 
(if applicable for some of the applications). It is also possible to test the integrated framework for any other 
simulation cases without additional code changes.  

From the user effort point of view, the integration of the interactive computing framework turned out to 
be quick and straightforward, as was also the case for the other application scenarios (Knezevic et al. 2011, 
Knezevic, Mundani and Rank 2011, etc.). Significant advantages of the SCIRun software package over other 
test applications were its modularity and being based on a dataflow model. Due to its modularity, the best 
interfaces to the framework could be easily recognized. The dataflow model has contributed to an automatic 
re-execution of only necessary modules. The underlying Model-View-Controller design pattern, however, 
has introduced a few difficulties related to enforcing the Controller entity to cancel scheduled, but outdated, 
jobs.  

Figure 4: top: left – torso, right – heart ischemia; bottom: cube: left – mesh 32 x 32 x 32, right 64 x 32 x 32; x-axis: 
options for the solver: 1- CG, 2- BCG, 3- Jacobi,4- MINRES; y-axis: new execution time in % of the execution time 

without the framework being integrated. 
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