
J Sci Comput
DOI 10.1007/s10915-011-9501-7

To CG or to HDG: A Comparative Study

Robert M. Kirby · Spencer J. Sherwin ·
Bernardo Cockburn

Received: 27 January 2011 / Revised: 26 May 2011 / Accepted: 27 May 2011
© Springer Science+Business Media, LLC 2011

Abstract Hybridization through the border of the elements (hybrid unknowns) combined
with a Schur complement procedure (often called static condensation in the context of con-
tinuous Galerkin linear elasticity computations) has in various forms been advocated in the
mathematical and engineering literature as a means of accomplishing domain decomposi-
tion, of obtaining increased accuracy and convergence results, and of algorithm optimiza-
tion. Recent work on the hybridization of mixed methods, and in particular of the discontin-
uous Galerkin (DG) method, holds the promise of capitalizing on the three aforementioned
properties; in particular, of generating a numerical scheme that is discontinuous in both
the primary and flux variables, is locally conservative, and is computationally competitive
with traditional continuous Galerkin (CG) approaches. In this paper we present both imple-
mentation and optimization strategies for the Hybridizable Discontinuous Galerkin (HDG)
method applied to two dimensional elliptic operators. We implement our HDG approach
within a spectral/hp element framework so that comparisons can be done between HDG and
the traditional CG approach.

We demonstrate that the HDG approach generates a global trace space system for the
unknown that although larger in rank than the traditional static condensation system in CG,
has significantly smaller bandwidth at moderate polynomial orders. We show that if one
ignores set-up costs, above approximately fourth-degree polynomial expansions on triangles

Work of R.M. Kirby accomplished while on sabbatical at Imperial College London.
Work of B. Cockburn accomplished in part while visiting the Research Institute of Mathematical
Sciences, Kyoto University, Kyoto, Japan, as part of a Single Semester Leave from the University
of Minnesota.

R.M. Kirby (�)
School of Computing, Univ. of Utah, Salt Lake City, UT, USA
e-mail: kirby@cs.utah.edu

S.J. Sherwin
Department of Aeronautics, Imperial College London, London, UK
e-mail: s.sherwin@imperial.ac.uk

B. Cockburn
School of Mathematics, Univ. of Minnesota, Minneapolis, MN, USA
e-mail: cockburn@math.umn.edu

mailto:kirby@cs.utah.edu
mailto:s.sherwin@imperial.ac.uk
mailto:cockburn@math.umn.edu


J Sci Comput

and quadrilaterals the HDG method can be made to be as efficient as the CG approach,
making it competitive for time-dependent problems even before taking into consideration
other properties of DG schemes such as their superconvergence properties and their ability
to handle hp-adaptivity.

Keywords High-order finite elements · Spectral/hp elements · Discontinuous Galerkin
method · Hybridization · Domain decomposition

1 Introduction

Given a particular scientific or engineering problem of interest, the current computational
science and engineering practitioner has at his or her disposal a large array of numerical
methodologies from which to choose to tackle the problem. The choice of which method to
employ is normally not made solely by one selection criterion such as asymptotic conver-
gence rate, but rather upon a host of different competing criteria including numerical proper-
ties, geometric flexibility, robustness, time-to-implement, and computational cost. The pur-
pose of this paper is to examine in the context of (symmetric second-order) elliptic partial
differential equations (PDEs) two commonly used numerical techniques—the continuous
Galerkin (CG) method and the discontinuous Galerkin (DG) method—and to provide guid-
ance as to why one might select to use one versus the other when run-time versus a fixed
error tolerance is the major discriminating criterion.

The literature concerning the continuous Galerkin (CG) methods, and in particular the
finite element method (FEM), is vast. We refer the interested reader to [35, 50–52] for com-
prehensive discussions of the formulation and implementation of the method, and to [30,
37, 42, 48] for extensions to high-order (polynomial-enriched) finite elements. The salient
feature of the finite element method for elliptic problems with respect to this work is that
the FEM method provides a continuous, piecewise polynomial approximation of the solu-
tion which minimizes the residual of the solution in the integral sense. It is considered the
mainstay numerical technique against which to make both accuracy and computational cost
evaluations. On the other hand, the discontinuous Galerkin (DG) methods [20] provide what
some consider to be a compact high-order extension of the finite volume method in a way
similar to how high-order or spectral/hp elements [37, 48] extend standard finite elements.
Like the finite element method, the DG methodology allows for a dual path to convergence
through both elemental ‘h’ and polynomial ‘p’ refinement by providing a discontinuous,
piecewise polynomial approximation of the solution that similarly minimizes the residual in
the integral sense. In the overview of the development of the discontinuous Galerkin method
[27] there is a succinct discussion of the merits of this compact extension of finite volumes;
see also [15, 16]. In the context of diffusion problems, there are many different DG choices
as presented in [3, 4] within a unified framework.

Since the inception of DG methods for elliptic problems, there have been speculations
made as to whether DG methods can be made more computationally efficient than CG meth-
ods. That is, for a given error tolerance, can the run-time necessary to compute a DG solu-
tion be made more efficient than what is required to find a corresponding CG solution. This
speculation has been fueled by the claim that although a DG solution has more degrees of
freedom than a corresponding CG solution on the same mesh and at the same polynomial
degree (due to not enforcing inter-element continuity and therefore not removing global
degrees of freedom), the corresponding linear system that one generates is more weakly
coupled and hence more amenable to various optimization techniques. DG advocates of-
ten highlight the fact that as one increases the polynomial degree per (geometric) element,
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the number of degrees of freedom in the volumetric interior of an element increases more
rapidly than the degrees of freedom on element boundaries, and hence, in spite of the extra
degrees of freedom the DG methodology becomes more efficient for high-degree polyno-
mial approximations. Advocates of the CG method have always pointed to the fact that, in
addition to the lower degree of freedom count due to constraining the solution at the el-
ement boundaries, years of employing CG methods have led to a tremendous number of
optimization techniques—not least among them static condensation—that, combined with
the approximation properties of CG methods for elliptic problems, make finite elements a
very tenable choice.

Until recently, domain decomposition and optimization techniques that exploit the de-
coupling of local and global degrees of freedom have only been available to the CG
method and hence made any comparison between CG and DG methods unrealistic. How-
ever, the recent introduction of a static-condensation-amenable DG method—the hybridiz-
able discontinuous Galerkin (HDG) method [22]—now makes a realistic comparison pos-
sible. The HDG method is a DG method that can be rendered hybrid since its numer-
ical trace of the scalar variable, λ, can be expressed as the only globally coupled un-
known; see the definition of a hybrid method in [14, p. 421]. It is the ability to hybridize
the formulation that makes it possible to implement CG and HDG solvers in very similar
ways.

In this paper, we present both implementation and optimization strategies for the HDG
method applied to a two-dimensional model elliptic problem. We implement our HDG ap-
proach within a spectral/hp element framework so that comparisons can be done between
HDG and the traditional CG approach. We demonstrate that the HDG approach generates a
global system for the approximation on the boundaries of the elements that although larger
in rank than the traditional static condensation system in CG, has significantly smaller band-
width at moderate polynomial degrees. We show that, if one ignores set-up costs above ap-
proximately fourth-degree polynomial expansions on triangles and quadrilaterals the HDG
method can be made as efficient as the CG approach, making it attractive for time-dependent
problems.

1.1 Background

Let us provide a brief a review of the relevant literature related to the HDG method, with a
particular emphasis on its connection with the traditional concept of static condensation as
used in finite elements.

Hybridization was first introduced back in 1965 as a technique to efficiently implement
and solve finite element approximations for linear elasticity [32]. Roughly speaking, the idea
consists in expressing the unknowns in terms of the hybrid unknown λ in an element-by-
element fashion; the function λ is called hybrid because it is defined only on the boundaries
of the elements. The original variables are subsequently eliminated, giving rise to a global
system of equations involving only λ.

In 1985, it was noted [2] that the hybrid unknown λ super-converged to a projection
of the solution for the hybridized version of the mixed method of Raviart-Thomas (RT)
for symmetric second-order elliptic problems [41]. This observation was then used to con-
struct a means of enhancing the accuracy of the finite element approximation by using a
local post-processing [2]. Similar post-processing results were obtained for the so-called
Brezzi-Douglas-Marini (BDM) mixed method in [9]. Variations on post-processing have
been proposed in [8, 33, 46, 47] and an extension to the Hellan-Herrmann-Johnson method
in [28].
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In 2004, hybridized RT and BDM methods of arbitrary order were revisited and a weak
formulation for the hybrid unknown λ was found [17]; see [13] for the lowest order RT
method. This weak formulation allowed for a new, effective assembly of the matrix equa-
tion for the degrees of freedom of λ. It also allowed for establishing unsuspected relations
between the RT and BDM methods and opened the way for the devising and analysis of
new, variable-degree versions of those methods [18].

Soon after, the above approach was extended to produce a unifying framework for the hy-
bridization of mixed, discontinuous and continuous Galerkin methods [22]. All the methods
in this framework were such that the only globally coupled unknown was an approximation
to the scalar variable on the boundaries of the elements, λ. In fact, when dealing with the RT
and BDM methods, the characterization of λ is exactly the one previously obtained in [17],
and, when dealing with the CG method, the way of obtaining λ coincides with the traditional
static condensation procedure.

In this paper, we take advantage of this unifying framework to compare the CG and a
particular HDG method, the so-called LDG-H method; see [22]. In carrying out the com-
parison, we will attempt to balance the effects of the different advantages of these methods.
The first issue to take into account in this balance is that for a given polynomial degree and
a given mesh, the unknown λ for the CG method has less degrees of freedom than the un-
known λ for the HDG method. The competing second issue is that the corresponding global
stiffness matrix of the CG method contains a higher degree of information coupling due to
interactions between the vertex degrees of freedom not present in the HDG method, making
it possibly less amenable to optimization than its HDG counterpart. The third competing
issue is that both the approximations to the scalar variable and its gradient given by the CG
method converge with one order less than the locally post-processed approximation to the
scalar variable and the approximate gradient provided by the HDG method for simplices;
see [19, 23, 26]. (This is unlike all the DG methods considered in the unified analysis of DG
methods [4], which provide approximations converging with the same orders than the CG
method.) A typically cited disadvantage of the CG method, namely, that it does not provide
an approximation of the gradient whose normal component is single valued on the bound-
aries of the elements, can now be overcome [24] by using an L2-like global projection. It is
hence not considered here as a competing issue.

To the best knowledge of the authors, the only comparison of the CG and HDG methods
was carried out in [21], for a convection-diffusion-reaction model problem in a diffusion-
dominated regime. This paper however only considers up to third-order polynomial expan-
sions and considers counting non-zero matrix entries as a reflection of computation time
rather than any direct timing comparisons.

To end, let us point out that if the stabilization function of the h-version of the HDG
method are taken to be of order one, the method converges with optimal convergence orders
when using simplicial elements. However, if the stabilization function is taken to be of order
1/h, the method looses one order of convergence in both the locally post-processed approx-
imation to the scalar variable and the approximate gradient; see [23, 26]. A similar effect is
produced when instead of taking λ in the space of discontinuous functions, it is taken in a
subspace of continuous functions; see [25]. The resulting methods, introduced in [45], were
called the embedded discontinuous Galerkin (EDG) methods, and have a stiffness matrix for
λ with a sparsity structure identical to that of the statically condensed CG method. A similar
idea prompted the introduction of the so-called multi-scale discontinuous Galerkin (MDG)
method [10, 36]. The EDH and MDG methods coincide in many cases.
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1.2 Outline

The paper is organized as follows. In Sect. 2 we present the CG method and outline the pro-
cess of static condensation. We then use this as the model to mimic for the presentation of
the DG methods and their hybridization. In Sect. 3, the discretization provided by the result-
ing HDG method is expressed in terms of a matrix representation which is more amenable
to numerical implementation. Once the elemental building blocks are in place, we present
in Sect. 4 the approach which is used to assemble the linear system which one solves for
the trace-space degrees of freedom. In Sect. 5 we then proceed to discuss the patterns and
algorithms that one might employ when trying to optimize the construction and assembly of
the HDG system. In Sect. 6 we present a comparison of our HDG implementation against a
CG implementation within the same code base, Nektar++. We then conclude in Sect. 7 by
discussing the pros and cons of the HDG approach as revealed through this implementation
and comparison study.

2 Formulation of the Building Blocks

In this section we introduce the CG and HDG methods for the following elliptic diffusion
problems with mixed Dirichlet and Neumann boundary conditions:

−∇2u(x) = f (x) x ∈ �, (1a)

u(x) = gD(x) x ∈ ∂�D, (1b)

n · ∇u(x) = gN(x) x ∈ ∂�N, (1c)

where ∂�D ∪∂�N = ∂� and ∂�D ∩∂�N = ∅. The formulation above can be generalized in
many ways which can be treated in a similar manner. For example, by considering a diffusion
tensor which is given by a symmetric positive definite matrix and by adding convection and
reaction terms.

In order to stress the similarities between the HDG methods and the well-known CG
method, we proceed as follows. In Sect. 2.3 we first highlight how to restructure the standard
weak global formulation of the CG method to a weak formulation that captures the static
condensation procedure. In doing so we introduce a set of local problems needed to express
the degrees of freedom inside the element in terms of the degrees of freedom on the border
of the element, and then, we provide the global formulation used to determine the degrees
of freedom on the border of the elements.

In Sect. 2.4 we then mimic this procedure to define the HDG methods. In other words,
starting from the original global weak formulation of the HDG methods, we show how to
define a static condensation procedure. Thus, we consider a set of local problems to express
the approximation inside each element in terms of the approximation at its border, and then
we provide a global formulation with which we determine the approximation on the border
of the elements.

From this perspective, both the CG and HDG methods can be viewed as following the
same pipeline: construction of a collection of elemental (local) operators which are then ju-
diciously assembled through a static-condensation-aware procedure to yield a global system
whose solution determines the degrees of freedom on the boundary of the elements. This
boundary system is significantly smaller than the full system one would solve without em-
ploying the Schur-complement (the linear algebra underpinning of the static-condensation
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procedure) of the corresponding assembled global system. Once the solution has been ob-
tained on the boundaries of the elements, the primary solution over each element can be
determined independently through a forward-application of the elemental operators. How-
ever before proceeding we first define the partitioning of the domain in Sect. 2.1 and the
finite element spaces in Sect. 2.2.

2.1 Partitioning of the Domain

We begin by discretizing our domain. We assume T (�) is a two-dimensional tessellation
of �. (Note that although we will describe things in terms of two-dimensions for the pur-
poses of this paper, all mathematical formulations trivially extend to three dimensions.) Let
�e ∈ T (�) be a non-overlapping element within the tessellation such that if e1 �= e2 then
�e1 ∩�e2 = ∅. By Nel , we denote the number of elements (or cardinality) of T (�). Let ∂�e

denote the boundary of the element �e (i.e. �̄e \ �e) and ∂�e
i denote an individual edge

of ∂�e such that 1 ≤ i ≤ Ne
b where Ne

b denotes the number of edges of element e. We then
denote by � the set of boundaries ∂�e of all the elements �e of T (�). Finally, we denote
by N� the number of edges (or cardinality) of �.

For simplicity, we assume that the tessellation T (�) consists of conforming elements.
We say that �l is an interior edge of the tessellation T (�) if there are two elements of the
tessellation, �e and �f , such that �l = �e ∩ �f and the length of �l is not zero. We say
that �l is a boundary edge of the tessellation T (�) if there is an element of the tessellation,
�e , such that �l = �e ∩ ∂� and the length of �l is not zero. In Fig. 1, we present a diagram
of the domain and elemental tessellation demonstrating the use of our notation.

As it will be useful later, let us define a collection of index mapping functions, graphi-
cally depicted in Fig. 2, that allow us to relate the local edges of an element �e , namely,
∂�e

1, . . . , ∂�e
Ne

b
, with the global edges of �, that is, with �1, . . . ,�N� . Thus, since the j -th

edge of the element �e , ∂�e
j , is the l-th edge �l of the set of edges �, we set σ(e, j) = l so

that we can write ∂�e
j = �σ(e,j). Similarly, since the interior edge �l is the intersection of

the boundaries of the two elements �e and �f , we set η(l,+) = e and η(l,−) = f so that
we can write �l = ∂�η(l,+) ∩ ∂�η(l,−). Here the ± convention is arbitrary.

Note that everything we are going to do can be extended to non-conforming discretiza-
tions; the definition of the set of edges � and index mapping functions will have to be
modified accordingly. Also note that the definitions above do not preclude the use of more
non-traditional element types (e.g. diamond or hexagonal elements).

Fig. 1 Diagram of the domain
(left) and corresponding
tessellation (center and right)
demonstrating the use of our
notation. Note that the
tessellation is a polygonal
approximation consisting of
straight-sided elements of the
original domain
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Fig. 2 Diagram demonstrating
the use of the index mappings
described in the text

2.2 The Finite Element Spaces

Next, we define the finite element spaces associated with the partition T (�). To begin, for
a two-dimensional problem we set

Vh := {v ∈ L2(�) : v|�e ∈ P (�e) ∀�e ∈ T (�)}, (2a)

�h := {τ ∈ [L2(�)]2 : τ |�e ∈ �(�e) ∀�e ∈ T (�)}, (2b)

Mh := {μ ∈ L2(�) : μ|�l ∈ P (�l) ∀�l ∈ �}, (2c)

where P (�l) = SP (�l) is the polynomial space over the standard segment, P (�e) = TP (�e)

is the space of polynomials of total degree P defined on a standard triangular region and
P (�e) = QP (�e) is the space of tensor-product polynomials of degree P on a standard
quadrilateral region, defined as

SP (�l) = {sp; 0 ≤ p ≤ P ; (x1(s), x2(s)) ∈ �l;−1 ≤ s ≤ 1},
TP (�e) = {ξp

1 ξ
q

2 ; 0 ≤ p + q ≤ P ; (x1(ξ1, ξ2), x2(ξ1, ξ2)) ∈ �e;−1 ≤ ξ1 + ξ2 ≤ 0},
QP (�e) = {ξp

1 ξ
q

2 ; 0 ≤ p,q ≤ P ; (x1(ξ1, ξ2), x2(ξ1, ξ2)) ∈ �e;−1 ≤ ξ1, ξ2 ≤ 1}.
Similarly �(�e) = [TP (�e)]2 or �(�e) = [QP (�e)]2. For curvilinear regions the expan-
sions are only polynomials when mapped to a straight-sided standard region [37, 44].

2.3 The CG Method and Its Static Condensation

It is well known that the approximation uCG given by the CG method is the element of the
space V 0

h of continuous functions in Vh satisfying

uCG = Ih(gD) on ∂�D,∫
�

∇v · ∇uCG =
∫

∂�N

vgN +
∫

�

vf,
(3)

for all v ∈ V 0
h such that v = 0 on ∂�D . Here Ih is a suitably defined interpolation operator

whose image is the space of traces on ∂�D of functions in V 0
h . We next show how to transi-

tion from this standard formulation to the formulation that defines the values of uCG on the
boundaries of all elements, λ. This is nothing more than the well-known static condensation
procedure. Although this procedure is traditionally presented in terms of matrices, here we
also present it in terms of weak formulations since in this manner its similarities with the
corresponding procedure used in the HDG method will became more clear.
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To do this, we begin by noting that, if we assume that the function λ, which belongs to the
space M0

h of continuous functions in Mh, is known, the equation satisfied by the restriction
of uCG to an arbitrary element �e ∈ Th is the solution of the following local problem:

uCG = λ on ∂�e,
(4)∫

�e

∇v · ∇uCG =
∫

�e

vf for all v ∈ P (�e) such that v = 0 on ∂�e.

This formulation follows from the standard global formulation of the CG method by taking
the test functions v different from zero only on the element �e . This implies that, if we
define by Uλ and by Uf the local solutions to (4) when f = 0 and when λ = 0, respectively
(i.e. the homogeneous and heterogeneous solutions), we can write

uCG = Uλ + Uf . (5)

The discrete problem represented by (4) can also be recast into an elemental matrix problem.
To do so, we first define

uCG =
∑

n

φe
n(x)û

CG[n] =
∑

n

φb
n(x)û

b[n] +
∑

n

φi
n(x)û

i[n] (6)

where the φi
n are functions which are defined to be zero on the element boundary ∂�e and

φb
n are functions that have support on the element boundaries. The array û

CG[n] holds the
degrees of freedom (modes) of the solution; û

b[n] and û
i[n] holds the degrees of freedom

(modes) on the boundaries and in the interior, respectively. We next introduce

L[n,m] =
∫

�e

∇φn · ∇φm, L =
[

L
b,b

L
b,i

L
i,b

L
i,i

]
, f [n] =

∫
�e

φnf (7)

where the superscripts on the matrix L correspond to the decomposition of the functions φn

into the sets φb
n and φi

n. We can now restate (4) as

v̂
t
Lû = v̂

t
f (8)

where v = ∑
n φe

n(x)v̂[n]. Considering (5), we can express Uλ and Uf in terms of

their approximating expansions as follows: Uλ = ∑
n φn(x)Û λ[n] = ∑

n φb
n(x)Û

b

λ[n] +∑
n φi

n(x)Û
i

λ[n] and Uf =∑n φn(x)Û f [n] =∑n φb
n(x)Û

b

f [n] +∑n φi
n(x)Û

i

f [n]. Let λ =∑
n φb

n(∂�e)λ̂[n]. By substituting these expressions into (8) and solving for Û λ assuming
f = 0 with known boundaries based upon λ, and solving for Û f assuming λ = 0 with known
right-hand-side f , we arrive at (respectively):

Û λ =
[

I

−(Li,i )−1
L

i,b

]
λ̂, Û f =

[
0 0
0 (Li,i )−1

]
f . (9)

If we know f and λ (or equivalently f and λ̂) we would be able to construct the solution
uCG, and so it therefore remains to find a way to characterize λ. It is reasonably straightfor-
ward to see that λ is the element of the space M0

h such that

λ = Ih(gD) on ∂�D,∫
�

∇Uμ · ∇Uλ =
∫

�

Uμf +
∫

∂�N

UμgN for all μ ∈ M0
h such that Uμ = μ on ∂�e,

(10)
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where we note that Uλ is related to λ through problem (4) when f = 0 and Uμ is similarly
related to μ. Indeed, to see that the weak formulation (10) holds, insert the expression of
the approximate solution uCG given by (5) into the standard formulation of the CG method
given by (3), take the test function v to be Uμ, and note that we have

∫
�

∇Uf · ∇Uμ = 0,

by definition of the local solutions Uf and Uμ. This last result can also be demonstrated by
evaluating

∫
�

∇Uf · ∇Uμ = Û f LÛμ using the definitions (7) and (9).
We can further highlight the connection between (10) and the statically condensed CG

problem by considering the elemental contribution to (10) using the matrix form we intro-
duced above. We can express the component of problem (10) restricted to element �e as

μ̂
t
[
I, −L

b,i (Li,i )−1
][L

b,b
L

b,i

L
i,b

L
i,i

][
I

−(Li,i )−1
L

i,b

]
λ̂ = μ̂

t
[
f b − L

b,i (Li,i )−1f i
]

where μ =∑n φb
n(∂�e)μ̂. Multiplying out this equation then leads us to the standard ele-

mental Schur complement formulation of the statically condensed problem for λ̂:

μ̂
t
{[

L
b,b − L

b,i (Li,i )−1
L

i,b
]
λ̂ = f b − L

b,i (Li,i )−1f i
}

. (11)

In summary, we have seen that the static condensation procedure for the CG method has
three main steps: The introduction of the local problems (4) (or equivalently (8)), the defi-
nition of the global approximation in terms of its local solutions (6) (see also (9)), and the
global formulation for the approximate trace λ as given by (10) and (11). Next, we show
that a similar procedure can be used to define the HDG methods.

2.4 The Global Formulation of the DG Methods

Following [4], we use the so-called flux formulation to define the DG methods. Thus, we
rewrite (1a) in auxiliary or mixed form as two first-order differential equations by introduc-
ing an auxiliary flux variable q = ∇u. We readily obtain

−∇ · q = f (x) x ∈ �, (12a)

q = ∇u(x) x ∈ �, (12b)

u(x) = gD(x) x ∈ ∂�D, (12c)

q · n = gN(x) x ∈ ∂�N. (12d)

Note that the solution of this first-order system is amenable to approximation by a mixed
method, that is, by a method using approximations for both the scalar variable u and its gra-
dient q . This point is explicitly made in [22] when referring to DG methods as discontinuous
Galerkin mixed methods. In the unified analysis of DG methods [4], the mixed form of the
DG method is called the flux formulation.

Note that in most HDG presentations, e.g., [22, 23, 26], the flux q is defined as the
negative gradient of the primitive solution and not as its gradient, as we do here. This was
done to stay close to some examples of physical relevance, like heat flow or Darcy’s flow,
but here we prefer to follow [4] and take q to be the gradient of u.

The DG method seeks an approximation to (u,q), (uDG,qDG), in the space Vh ×�h, and
determines it by requiring that

∑
�e∈T (�)

∫
�e

(∇v · qDG)dx −
∑

�e∈T (�)

∫
∂�e

v(ne · q̃DG)ds =
∑

�e∈T (�)

∫
�e

vf dx, (13a)
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∑
�e∈T (�)

∫
�e

(w · qDG)dx = −
∑

�e∈T (�)

∫
�e

(∇ · w)uDGdx +
∑

�e∈T (�)

∫
∂�e

(w · ne)̃uDGds,

(13b)

for all (v,w) ∈ Vh(�) × �h(�), where the numerical traces ũDG and q̃DG have to be suit-
ably defined in terms of the approximate solution (uDG,qDG). As discussed in [4], many of
the specific DG schemes found in the literature can be characterised by appreciating what
choices are made for defining ũDG and q̃DG.

Let us briefly discuss the choice with which we are concerned in this paper. First, let us
assume that we are at an interface between two elements. Then if we require the numerical
traces to be (i) linearly dependent on the available left and right values of the primitive uDG

and flux values qDG on either side of the interface, (ii) consistent and (iii) singled valued,
we find that the numerical traces must be of the form

ũ =
(

1

2
− C21 · n+

)
u+ +

(
1

2
− C21 · n−

)
u− − C22(q

+ · n+ + q− · n−), (14a)

q̃ =
(

1

2
− C12 · n+

)
q+ +

(
1

2
− C12 · n−

)
q− − C11(u

+n+ + u−n−), (14b)

where C11,C22 and C12,C21 are some scalar and vector parameters to be chosen as to ensure
the stability of the method as well as its best possible convergence properties. Note that we
have dropped the super-index DG to simplify the notation. On the Dirichlet border ∂�D , we
would then have

ũ =
(

1

2
+ C21 · n

)
u +

(
1

2
− C21 · n

)
gD, (15a)

q̃ = q − C11(u − gD)n, (15b)

and on the Neumann border ∂�N ,

ũ = u − C22(q · n+ − gN), (16a)

q̃ =
(

1

2
− C12 · n

)
q +

(
1

2
+ C12 · n

)
gNn. (16b)

Next, we apply a procedure similar to the static condensation procedure for the CG
method discussed in Sect. 2.3.

2.5 The HDG Methods and Their Local Problems

We begin by introducing the local problems. Assuming that the function

λ := ũDG ∈ Mh, (17a)

is known, for any element �e , from the global formulation of the DG method, that the
restriction of the DG solution to the element �e , (ue,qe) to be the function in P (�e) ×
�(�e) satisfies the following equations:

∫
�e

(∇v · qe)dx −
∫

∂�e

v(ne · q̃e)ds =
∫

�e

vf dx, (17b)
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∫
�e

(w · qe)dx = −
∫

�e

(∇ · w)uedx +
∫

∂�e

(w · ne)λds, (17c)

for all (v,w) ∈ P (�e) × �(�e). Note that if we want to be able to solve these equations
locally, the numerical trace of the flux must depend only on λ and on (ue,qe). This property
is the distinctive feature of the HDG methods. For the example discussed above, this implies
that we must have

q̃e(x) = qe(x) − τ(ue(x) − λ(x))ne on ∂�e (17d)

for some positive function τ . Because we define the flux as the gradient of the primitive
variable (and not as the negative of the gradient of u), we flip the definition of the flux from
that given in [22] so that the penalty function τ is still always assumed to be positive so that
the existence and uniqueness of the approximate solution is guaranteed. This is so because
this local problem is obtained by applying the so-called local discontinuous Galerkin (LDG)
method to the single element �e with Dirichlet boundary data λ, as we can see from the
formula for the numerical trace given by (15b).

Let us point out that we have tacitly assumed that the DG methods with which we are
dealing are those for which their numerical trace ũDG is single valued. This follows as a
trivial consequence of (17a). Also, note that, as it is well known for the LDG method, we
can penalise differences between the elemental primitive variable approximation ue and the
trace-space approximation λ by increasing a (possibly spatially changing) parameter τ . For
the hybridizable discontinuous Galerkin method taking τ to be positive ensures that the
method is well defined. The results in [19, 23, 26] indicate that the best choice is to take
τ to be of order one. Note that τ is a function of the set of borders of the elements of the
discretization, and so, it is allowed to be different per element and per edge. Thus, if we are
dealing with the element whose global number is e, we denote the value of τ on the edge
whose local number is i by τ e,i .

2.6 The Global Formulation for λ

Similar to the CG formulation in Sect. 2.3 we denote by (Uλ,Qλ) and (Uf ,Qf ) the solution
of the (17b) and (17c ) local problem when f = 0 and when λ = 0, respectively, and define
our approximation to be

(uHDG,qHDG) = (Uλ,Qλ) + (Uf ,Qf ).

We note that for the HDG decomposition, unlike the CG case, the local problem involve an
approximation over ∂�e . However similar to the CG problem solution to (17b) and (17c)
when f = 0 allows us to express Uλ,Qλ in terms of λ.

It remains to determine λ. To do so, we require that the boundary conditions be weakly
satisfied and that the normal component of the numerical trace of the flux q̃ given by (17d)
be single valued. This renders this numerical trace conservative, a highly valued property
for this type of methods; see [4].

So, we say that λ is the element of Mh such that

λ = Ph(gD) on ∂�D, (18a)

∑
�e∈Th

∫
∂�e

μq̃ · n =
∫

∂�N

μgN, (18b)
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for all μ ∈ M0
h such that μ = 0 on ∂�D . Here Ph denotes the L2-projection into the space

of restrictions to ∂�D of functions of Mh.
To appreciate what this statement implies with respect to (17a) and (17d), we can examine

(18b) on a given interior interface �l . Taking μ equal to zero outside �l , the above equations
becomes
∫

�l

μl(q+ · n+ + q− · n−)ds + (τ+ + τ−)

∫
�l

μlλds −
∫

�l

μl(τ+u+ + τ−u−)ds = 0

of the interior interface �l . This implies that on �l we must have

ũ =
(

τ+

τ− + τ+

)
u+

h +
(

τ−

τ− + τ+

)
u−

h −
(

1

τ+ + τ−

)
(q+ · n+ + q− · n−),

q̃ =
(

τ−

τ− + τ+

)
q+ +

(
τ+

τ− + τ+

)
q− −

(
τ+τ−

τ− + τ+

)
(u+n+ + u−n−).

If �l lies on the Neumann boundary, (18b) states that q̃ · n is nothing but the L2-projection
of the data gN into SP (�l).

Finally, note that the weak formulation of (18b) can be rewritten as:

∑
�e∈Th

∫
∂�e

μq̃λ · n = −
∑

�e∈Th

∫
∂�e

μq̃f · n +
∫

∂�N

μgN, (19)

for all μ ∈ M0
h such that μ = 0 on ∂�D . The fact that the matrix associated to this formula-

tion is symmetric and positive definite was shown in [22].

2.7 Postprocessing

To end the presentation of the HDG methods, we highlight how one can postprocess the
approximate solution to obtain a new approximation of the scalar variable converging with
an additional order when the elements are simplexes and the polynomial degree P is larger
than zero; see [33, 46, 47] for the introduction of this procedure in the context of mixed
methods and [19, 23, 26] for its application to HDG methods.

The postprocessing u∗
h on the element �e is the function in TP+1(�

e) defined by

(∇u∗
h,∇w)�e = (qh,∇w)�e ∀TP+1(�

e), (20a)

(u∗
h,1)�e = (uh,1)�e . (20b)

We note that, if qh converges with order P + 1 and the average of uh on each element
superconverges with order P + 2, then the postprocessing u∗

h converges with order P + 2.
It has been shown that, when we use triangles or tetrahedra, qh converges with order P + 1
and the average of uh on each element also superconverges with order P + 2 when P ≥ 1.

3 HDG Discrete Matrix Formulation

In this section, to get a better appreciation of the implementation of the HDG approach, we
consider the matrix representation of the HDG equations.
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Fig. 3 Diagram showing the
relationship between the local
solutions and the trace-space
variables

3.1 Representation of the Approximation

Consistent with our CG formulation in Sect. 2.3 we start by taking ue(x), qe(x) = [q1, q2]T ,
and λl(x) to be finite expansions in terms of the basis φe

j (x) for the expansions over elements
and the basis ψl

j (x) over the traces of the form:

ue(x) =
Ne

u∑
j=1

φe
j (x)û

e[j ], qe
k (x) =

Ne
q∑

j=1

φe
j (x)q̂

e

k
[j ], λl(x) =

Nl
λ∑

j=1

ψl
j (x)λ̂

l[j ].

In this notation, it is understood that ue(x) : �e → R, qe(x) : �e → R
2 and λl(x) : �l →

R and in Fig. 3 we present a diagram of the elemental tessellation demonstrating the use of
our notation.

3.2 Elemental Polynomial Expansion Basis

In our numerical implementation, we have applied a spectral/hp element type discretization
which is described in detail in [37]. Here we briefly describe the C0-continuous quadrilateral
and triangular expansions within the standard regions which we have adopted in this work.
We have chosen this type of basis since, even though we do not wish to enforce C0 continuity
the decomposition of these expansions into an interior and boundary modes [37, 44], their
structure can be useful in the HDG formulation as well.

A commonly used hierarchical C0 polynomial expansion [37, 43] is based on the tensor
product of the integral of Legendre polynomials (or equivalently generalized Jacobi polyno-
mials P 1,1

p (ξ)) such that

φi(pq)(x1(ξ1, ξ2), x2(ξ1, ξ2)) = ψp(ξ1)ψq(ξ2) 0 ≤ p,q ≤ P

where

ψp(ξ) =

⎧⎪⎨
⎪⎩

1−ξ

2 , p = 0,
1−ξ

2
1+ξ

2 P 1,1
p (ξ), 0 < p < P,

1+ξ

2 , p = P,
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where x1(ξ1, ξ2), x2(ξ1, ξ2) represent the mapping from the standard region �st = {−1 ≤
ξ1, ξ2 ≤ 1} to �e .

Within a triangular domain a compatible triangular C0 expansion can also be developed
and is based on an orthogonal expansion described by, amongst others, Priorol [40], Koorn-
winder [39] and Dubiner [31]. This C0 expansion take the form of a generalised tensor
product

φi(pq)(x1(ξ1, ξ2), x2(ξ1, ξ2)) = ψp(η1)ψ̃pq(η2)

where

ψ̃pq(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ψq(z), p = 0,0 ≤ q ≤ P,

( 1−z
2 )p+1, 1 ≤ p ≤ P,q = 0,

( 1−z
2 )p+1( 1+z

2 )P
2p+1,1
q−1 (z), 1 ≤ p < P,1 ≤ q ≤ P − q,

ψq(z), p = P,0 ≤ q ≤ P,

and

η1 = 2
(1 + ξ1)

(1 − ξ2)
− 1, η2 = ξ2,

and again x1(ξ1, ξ2), x2(ξ1, ξ2) represent a mapping from �st = {−1 ≤ ξ1 + ξ2 ≤ 0} to �e

This C0 expansion was originally proposed by Dubiner [31] and is also detailed in [37, 44].

3.3 Matrix Form of the Equations of the HDG Local Solvers

We can now define the matrix form of the local solvers. Following a standard Galerkin for-
mulation, we set the scalar test functions ve to be represented by φe

i (x) where i = 1, . . . ,Ne
u ,

and let our vector test function we be represented by ekφi where e1 = [1,0]T and e2 =
[0,1]T . We next define the following matrices:

D
e
k[i, j ] =

(
φe

i ,
∂φe

j

∂xk

)
�e

, M
e[i, j ] = (φe

i , φ
e
j

)
�e ,

E
e
l [i, j ] = 〈φe

i , φ
e
j

〉
∂�e

l

, Ẽ
e

kl[i, j ] = 〈φe
i , φ

e
jn

e
k

〉
∂�e

l

,

F
e
l [i, j ] = 〈φe

i ,ψ
σ(e,l)
j

〉
∂�e

l

, F̃
e

kl[i, j ] = 〈φe
i ,ψ

σ(e,l)
j ne

k

〉
∂�e

l

.

We note that we choose the trace expansion to match the expansions used along the edge
of the elemental expansion and the local coordinates are aligned, that is ψ

σ(e,l)
i (s) = φk(i)(s)

(which is typical of a C0 expansion basis defined in Sect. 3.2) then E
e
l contains the same

entries as F
e
l and similarly Ẽ

e

kl contains the same entries as F̃
e

kl .
After inserting the finite expansion of the trial functions into (17b) and (17c), and using

the hybridized definition of the flux given in (17d), the equations for the local solvers can be
written in matrix form as:

[
(De

1)
T (De

2)
T
][ q̂

e

1
q̂

e

2

]
−

Ne
b∑

l=1

[
Ẽ

e

1lẼ
e

2l

][ q̂
e

1
q̂

e

2

]
+

Ne
b∑

l=1

τ e,l
[
E

e
l û

e − F
e
l λ̂

σ (e,l)
]

= f e, (21a)

M
eq̂

e

k
= −(De

k)
T û

e +
Ne

b∑
l=1

F̃
e

kl λ̂
σ (e,l)

, k = 0,1 (21b)

where f e[i] = (φi, f )∂�e .
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In the matrix system (21a) the matrix D
e denotes the elemental weak derivative com-

monly used in standard Galerkin implementations. Further, the matrix E
e,f

kl is a type of mass
matrix evaluated on an element edge and projected in the normal component direction nk .
In (21b), M

e is the element mass matrix also used in standard Galerkin formulations.

3.4 Matrix Form of the Global Equation for λ

Using the matrices from the previous section we can formulate the transmission condition
(18b) into a similar matrix description. First we introduced the matrices:

F̄
l,e[i, j ] = 〈ψl

i , φ
e
j

〉
�l ,

˜̄
F

l,e

k [i, j ] = 〈ψl
i , φ

e
jn

e
k

〉
�l , Ḡ

l[i, j ] = 〈ψl
i ,ψ

l
j

〉
�l .

Then defining gN
l[i] = 〈gN,ψl

i 〉�l∩∂�N
, the transmission condition (18b) can be written as:

[˜̄
F

l,e

1
˜̄
F

l,e

2

][
q̂

e

1
q̂

e

2

]
+
[˜̄
F

l,f

1
˜̄
F

l,f

2

][
q̂

f

1
q̂

f

2

]
+ (τ e,i + τ f,j )Ḡ

l
λ̂

l − τ e,i
F̄

l,e
ue − τ f,j

F̄
l,f

uf = gN
l,

where we are assuming that l = σ(e, i) = σ(f, j), that is, that the elements e and f have the
common internal edge �l . Finally, by exploiting the following two identities which relate
previously defined matrices

F
e
l = (F̄

σ(e,l),e
)T , F̃

e

kl = (˜̄Fσ(e,l),e

k )T

we obtain that
{[

(̃F
e

1)
T (̃F

e

2)
T
][ q̂

e

1
q̂

e

2

]
+ τ e,i

Ḡ
σ(e,i)

λ̂
σ (e,i) − τ e,i(Fe

j )
T ue

}

+
{[

(̃F
f

1 )T (̃F
f

2 )T
][ q̂

f

1
q̂

f

2

]
+ τ f,j

Ḡ
σ(f,j)

λ̂
σ (f,j) − τ f,j (F

f

j )T uf

}
= gl

N . (22)

We see that the transmission condition can be constructed from elemental contributions. In
the next section, we show how to use our elemental local solvers given by (21) and (22) to
obtain a matrix equation for λ only.

4 Assembling the Transmission Condition from Elemental Contributions

To highlight the process of obtaining the matrix equation for the degrees of freedom of the
hybrid variable λ, we begin by rewriting the matrix equations of the HDG method as a global
system involving all the variables. The trace space equation we seek will essentially then be
obtained by calculating the corresponding Schur-complement matrix system for the degrees
of freedom for λ.

Let us first re-write (21) and the elemental transmission condition (22) in matrix form.
Given a triangular element e, we define the following elemental matrices:

A
e =

⎛
⎝
∑Ne

b

l=1 τ e,l
E

e
l (De

1)
T −∑Ne

b

l=1 Ẽ
e

1l (De
2)

T −∑Ne
b

l=1 Ẽ
e

2l

(De
1)

T
M

e 0
(De

2)
T 0 M

e

⎞
⎠ , (23)
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B
e =

⎛
⎜⎝

−τ e,1(Fe
1)

T (̃F
e

11)
T (F̃

e

21)
T

−τ e,2(Fe
2)

T (F̃
e

12)
T (F̃

e

22)
T

−τ e,3(Fe
3)

T (F̃
e

13)
T (F̃

e

23)
T

⎞
⎟⎠ ,

C
e =

⎛
⎝

−τ e,1
F

e
1 −τ e,2

F
e
2 −τ e,3

F
e
3

−F̃
e

11 −F̃
e

12 −F̃
e

13

−F̃
e

21 −F̃
e

22 −F̃
e

23

⎞
⎠ , (24)

G
e =

⎛
⎜⎝

τ e,1
Ḡ

σ(e,1)
0 0

0 τ e,2
Ḡ

σ(e,2)
0

0 0 τ e,3
Ḡ

σ(e,3)

⎞
⎟⎠ .

Quadrilateral elemental matrices are similarly defined with B
e containing four block rows

corresponding to the four edges of a quadrilateral, C
e containing four block columns and

G
e being of size four by four.
We can now write the local elemental solver (21) in matrix form as:

A
e

⎡
⎣

û
e

q̂
e

1
q̂

e

2

⎤
⎦+ C

e

⎡
⎢⎣

λ̂
σ (e,1)

λ̂
σ (e,2)

λ̂
σ (e,3)

⎤
⎥⎦=

⎡
⎣f e

0
0

⎤
⎦ . (25)

We note that each block A
e is invertible since every local solver involves the DG discretiza-

tion of an elemental domain with weakly enforced Dirichlet boundary conditions of λ en-
forced. Therefore each local elemental problem is well-posed and invertible.

Similarly, the transmission condition (22) is given as

B
e

⎡
⎣

û
e

q̂
e

1
q̂

e

2

⎤
⎦+ G

e

⎡
⎢⎣

λ̂
σ (e,1)

λ̂
σ (e,2)

λ̂
σ (e,3)

⎤
⎥⎦+ B

f

⎡
⎢⎣

û
f

q̂
f

1
q̂

f

2

⎤
⎥⎦+ G

f

⎡
⎢⎣

λ̂
σ (f,1)

λ̂
σ (f,2)

λ̂
σ (f,3)

⎤
⎥⎦= gl

N
. (26)

The efficiency of the HDG implementation then arises from obtaining an element-wise
matrix systems to construct a global system for the trace space degrees of freedom. Let �l

denote the vector of degrees of freedom on the edge �l and let � be the concatenation of
these vectors for all the edges of the triangulation. The size of � is therefore

Nλ =
∑
l∈�

Nl
λ,

where Nl
λ is the number degrees of freedom of λ on the interior edge �l .

We define the trace space spreading operator AHDG as a matrix of size 2Nλ × Nλ which
“spreads” or scatters the unique trace space values to their local edge vectors. For each

element e, which consists of Ne
b edges, let λ̂

e,l
denote the local copy of the trace-space

information as portrayed in Fig. 4. Notice that for each edge, there will be two elements on
either side of that edge.

We can organize the matrix AHDG by elements such that

AHDG =
⎛
⎜⎝

Ae1
HDG
...

A
eNel

HDG

⎞
⎟⎠
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Fig. 4 Diagram showing the results of the spreading operation AHDG . Unique degrees of freedom of λ on
an edge are copied to their locally-indexed counterparts

where the action of Ae
HDG is to copy global trace space information into local (elemental)

storage. Note that in some cases this is merely a (identical) copy of the information whereas
in other cases the copying might involve a permutation of the ordering to accommodate
local orientation storage issues. This is analogous to the standard CG global assembly pro-
cess [37].

With this notation in place, we can rewrite the equations for the local solvers (25) as
follows:

A
eve + C

e Ae
HDG� = we (27)

where ve = (û
e
, q̂

e

1
, q̂

e

2
)T and we = (f e,0,0)T . We can similarly write the transmission

conditions (26) between interfaces as:

|T (�)|∑
e=1

(Ae
HDG)T

[
B

eve + G
e Ae

HDG�
]= g

N
(28)

where the sum over elements along with the left application of the transpose of the spreading
operator acts to “assemble” (sum up) the elemental contributions corresponding to each
trace space edge and where g

N
denotes the concatenation of the individual edge Neumann

conditions gl

N
.

Manipulating (27) to solve for ve and inserting it into (28) yields:

|T (�)|∑
e=1

(Ae
HDG)T

[
B

e(Ae)−1
(
w − C

e Ae
HDG�

)+ G
e Ae

HDG�
]= g

N

which can be reorganized to arrive at matrix equation for λ:

K� = F, (29)
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where

K =
|T (�)|∑
e=1

(Ae
HDG)T

K
e Ae

HDG =
|T (�)|∑
e=1

(Ae
HDG)T

[
G

e − B
e(Ae)−1

C
e
]

Ae
HDG

and

F = g
N

−
|T (�)|∑
e=1

(Ae
HDG)T

B
e(Ae)−1w. (30)

We observe that K is constructed elementally through the sub-matrices K
e which can also be

considered as the Schur complement of a larger matrix system which consists of combining
(27) and (28).

5 HDG Implementation Considerations

We now summarize which discrete matrix systems are required to implement the HDG
scheme to obtain a solution to the primitive variable û

e . Details of the CG formulation,
which follow a similar construction, can be found in [37].

We recall that the solution is given by first constructing and solving (29) to obtain the
trace space solution, �, which can then be used at an element level to solve (27). We note
that in both these steps we require the inversion of the elemental matrix A

e .
We therefore start our implementation discussion by noting that assuming exact numeri-

cal integration then it can be shown that:

D
e
k = −

[
(De

k)
T −

Ne
b∑

l=1

Ẽ
e

kl

]
(31)

which is discretely equivalent to the identity
∫

�e

φi

∂

∂xk

φjdx = −
∫

�e

∂

∂xk

φiφjdx +
∫

∂�e

φiφjn
e
kds.

Using (31) in the definition of A
e given by (23) we can alternatively define this matrix as

A
e =
⎛
⎝
∑Ne

b

l=1 τ (e,l)
E

e
l −D

e
1 −D

e
2

(De
1)

T
M

e 0
(De

2)
T 0 M

e

⎞
⎠ . (32)

This form of the matrix A
e highlights the near symmetry of the operator, indeed if we define

Ĩ =
⎛
⎝1 0 0

0 −1 0
0 0 −1

⎞
⎠

we then observe that Ã
e = ĨA

e is symmetric.

Remark 1 The discrete relation (31) is only exact if the numerical quadrature is exact. Whilst
this is often the case for straight-sided elements it is typically not the cases for curvilinear
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elements or even straight-sided quadrilateral element that are non parallelograms. In these
cases the reformulation of A

e given by (32) ensure the final discrete problem remains sym-
metric.

It can be shown that the elemental matrix (Ae)−1 can be expressed as:

⎛
⎝ Z

e
Z

e
D

e
1(M

e)−1
Z

e
D

e
2(M

e)−1

−(Me)−1(De
1)

T
Z

e (Me)−1[I − (De
1)

T
Z

e
D

e
1(M

e)−1] −(Me)−1(De
1)

T
Z

e
D

e
2(M

e)−1

−(Me)−1(De
2)

T
Z

e −(Me)−1(De
2)

T
Z

e
D

e
1(M

e)−1 (Me)−1[I − (De
2)

T
Z

e
D

e
2(M

e)−1]

⎞
⎠

(33)

where

Z
e =
⎛
⎝

Ne
b∑

l=1

τ (e,l)
E

e
l + D

e
1(M

e)−1(De
1)

T + D
e
2(M

e)−1(De
2)

T

⎞
⎠

−1

(34)

and we have explicitly used the fact that M
e = (Me)T and Z

e = (Ze)T . Interestingly at first
glance the matrix (Ze)−1 with τ = 0 appears to be similar to the elemental weak Laplacian,
L

e (see (7)), however in the current notation the elemental weak Laplacian is expressed by:

L
e = (De

1)
T (Me)−1

D
e
1 + (De

2)
T (Me)−1

D
e
2

where we note that Dk and (Me)−1 are in a reverse permutation when considering L
e as

opposed to (Ze)−1.
The implementation and solution of the HDG scheme can now be summarised as:

1. Construct Z
e given by (34) which requires the elemental matrices (Me)−1 and Dk . The

action of Dk and El can be implemented in a matrix-free manner.
2. Construct

U
e = −[I 0 0](Ae)−1

C
e = −Z

e[I D
e
1(M

e)−1
D

e
2(M

e)−1]Ce

which requires the additional matrix operation C
e which can also be implemented in a

matrix-free manner if desired. Also note that the action of (Ae)−1 can be evaluated using
(33) and so does not need to be directly constructed.

3. Construct K
e = [Ge − B

e(Ae)−1
C

e]. We note that constructing K
e requires the action of

(Ae)−1
C

e which is essentially the action of U
e combined with

Q
e
0 = −[0 I 0](Ae)−1

C
e, Q

e
1 = −[0 0 I](Ae)−1

C
e

such that

K
e = G

e − B
e

⎡
⎣U

e

Q
e
0

Q
e
1

⎤
⎦ .

The matrices Q
e
0,Q

e
1 require the explicit evaluation of all terms in the second and third

rows of definition (33) respectively.
4. From the elemental matrices K

e we can construct and invert the global matrix K using
the assembly process discussed in Sect. 4
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5. We next determine the trace space solution � = K−1F where, as we shall demonstrate
below, F can be evaluated using U

e as

F = g
N

+
|T (�)|∑
e=1

(Ae
HDG)T (Ue)T f e.

6. Finally recovering the elemental construction of trace solution λe = Ae
HDG� we obtain

the elemental primitive solution û
e from (25) as

û
e = Z

ef e + U
eλe.

Although a number of elemental matrices, (Me)−1,D
e
k,U

e,Q
e
0,Q

e
1 and K

e , is required
in the construction and solution of the HDG problem, the repeated application of the same
inverse, as is typically required in solution of time dependent parabolic PDE problems, re-
quires the use of only the matrices K−1,U

e,Z
e . These matrices have a direct analog in a CG

discretization when hybridisation/static condensation is applied, although the rank of each
matrix differs to that of the HDG problem.

It remains for us to demonstrate the relationship between [Be(Ae)−1] and [(Ae)−1
C

e]T
that we have used in evaluating F in step (5). First we note from inspection of the matrices
defined in (24) that B

e = (Ce)T
Ĩ we therefore observe that the action of [Be(Ae)−1]w in

(30) can be recast as

[Be(Ae)−1]
⎛
⎝f e

0
0

⎞
⎠ = B

e

⎛
⎝

Z
ef e

−(Me)−1(De
1)Z

ef e

−(Me)−1(De
2)Z

ef e

⎞
⎠

= (Ce)T Ĩ

⎛
⎝

Z
ef e

−(Me)−1(De
1)Z

ef e

−(Me)−1(De
2)Z

ef e

⎞
⎠= (Ce)T

⎛
⎝

Z
ef e

(Me)−1(De
1)Z

ef e

(Me)−1(De
2)Z

ef e

⎞
⎠

= [(Ae)−1
C

e]T
⎛
⎝f e

0
0

⎞
⎠= (Ue)T f e.

Finally we can also demonstrate that K
e = G

e − B
e(Ae)−1

C
e is symmetric. Firstly we

note that G
e is symmetric by definition. We then recall that since Ã

e = ĨA
e is a symmetric

matrix and since C
e = Ĩ(Be)T we observe that

B
e(Ae)−1

C
e = B

e(Ae)−1
Ĩ(Be)T = B

e(Ã
e
)−1(Be)T

where we have used the fact that (Ã
e
)−1 = (Ae)−1

Ĩ.

6 Results

We consider a square region 0 ≤ x, y ≤ 1 discretized using a variety of regular quadrilat-
eral and unstructured triangular elements. We define the level of mesh refinement by the
number of equispaced segments along each side of the domain. In Fig. 5 we show a repre-
sentative quadrilateral mesh using 15 × 15 = 225 elements in the quadrilateral mesh and a
representative unstructured triangular mesh using 431 ≈ 2×15×15 elements. We have also
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Fig. 5 Discretizations of the unit square where each edge is divided into 15 segments using (a) reg-
ular quadrilateral regions and (b) unstructured triangular regions. A representative solution field
u(x, y) = sin(10πx) cos(10πy) is shown in (c)

Fig. 6 Comparison of the element-wise H 1 error from using a HDG (solid lines) and CG (symbols with
dotted lines) projections as a function of polynomial order on a (a) quadrilateral mesh and (b) triangular
meshes

considered a coarse mesh where the sides of the domain are separated into just five segments
and so we have 25 quadrilateral elements and 38 triangular elements, we will refer to this as
the 5 × 5 mesh. In addition we also consider a finer mesh where each side of the domain is
divided into 25 equispaced segments and so we have 625 quadrilateral elements and 1326
triangular elements and we will refer to this as the 25 × 25 mesh.

As the first illustrative problem we will consider the “elliptic” Helmholtz problem

−∇2u + λu = f

where λ = 1 and f (x, y) is selected to give an exact solution of the form

u(x, y) = sin(10πx) cos(10πy) (35)

as shown in Fig. 5(c). In all tests we have imposed Dirichlet boundary conditions.
We recall that the HDG method asymptotically tends to the CG method as τ → ∞ and

in our test we therefore first consider the case where τ = 1000. A comparison of element-
wise H 1 error as a function of polynomial order is shown in Fig. 6 where we observe that
the errors for the CG and HDG implementations on both the quadrilateral and triangular
meshes are very close down to a tolerance of 1 × 10−9.
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We next consider the CPU time of the CG and HDG implementations. In evaluating
the CPU times we consider the solve, rather than the matrix setup CPU time, which is
reasonable for time dependent problems where the matrix does not change every time
step. This is typical for example in a velocity-correction scheme [34, 38] to time integrate
the incompressible Navier-Stokes equations where the Stokes operator is handled implic-
itly. This method has been extensively used in the direct numerical solution of canonical
problems within essentially two-dimensional problems in for example flow past cylinders
[11, 29], backwards facing steps [6] or flow within constricted pipes [5]. These are also ex-
amples of where the direct inverse of a series of two-dimensional operators of a similar size
to the example shown in Fig. 5 can be used to understand three-dimensional flow physics.
It would however not be a suitable comparison for a stationary problem requiring a single
solve, such as commonly arise in structural mechanics problems or if a fully implicit time
stepping scheme were applied to a non-linear problem.

In gathering our data we have ensured that we made a sufficient number of solve calls
so that a minimum of a second of CPU time is used. This is important for low polynomial
orders to ensure the sensitivity of the timing routines do not influence the results. In addition
we average the data over three separate runs. In this initial set of tests we contrast two
solver techniques. The first one using a banded Cholesky factorization using the LAPACK
[1] routine dpbtrs where the bandwidth of the boundary system was minimized using a
reverse Cuthill-McGee algorithm implemented within the Boost library [7]. The second
solver uses a multi-level static condensation/substructuring technique [37] which uses the
compact nature of the spectral/hp element discretisation to identify grouping of degrees of
freedom that can be recursively inverted and in concept is similar to a bisection method for
inverting the matrix.

All tests were performed on a Mac Pro with two dual core 2.66 GHz processor, 4 Gb
RAM and 4 MB L2 Cache per processor. Finally we have implemented both the CG and
HDG solvers to use elemental/local matrix routines where possible. We note however that it
is possible to have an increased performance in the CG discretization at lower orders using
a global matrix operations techniques [49] for further details.

Figure 7 shows the comparison of the HDG over the CG CPU times expressed as a
percentage for both the 15 × 15 and the 25 × 25 quadrilateral and triangular meshes. We
observe that for first-order polynomial expansions based on both the quadrilateral and tri-
angular meshes the HDG solver is significantly (2–2.5 times) more expensive than the CG
implementation independent of the solver strategy. When using the Cholesky solver in the
case of a quadrilateral mesh the HDG solve becomes faster than the CG implementation at
a polynomial order 4 < P < 5 where as the same cross over point arises between 5 < P < 6
in the triangular mesh. For higher polynomial orders the HDG solver asymptotes to be-
tween 90–95% of the CG CPU time on the 15 × 15 mesh and between 85–90% faster on
the 25 × 25 mesh. However when using the multilevel static condensation methods, which
is typically faster than the Cholesky approach, the HDG method is always more expensive
than the CG method but is within 20% of the method by a polynomial order of 4 < P < 5
for quadrilateral elements and 5 < P < 6 for triangular elements.

To gain a better understanding of how the HDG efficiency arises due to the Choleskly
solve using a minimum bandwidth ordering we consider the matrix data shown in Tables 1
and 2. These tables provide data on the rank and upper bandwidth of the boundary/trace
system for the quadrilateral and triangular meshes respectively. We observe from the data
in the second to fourth columns that the HDG problem always leads to a larger rank system
which is to be expected form the construction of the two schemes since the vertex degrees
of freedom are independent in the HDG method. For first-order polynomials the CG sys-
tem contains approximately half the degrees of freedom of the HDG problem for the same
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Fig. 7 Relative CPU time of the HDG versus CG solve times as a function of polynomial order for the
quadrilateral mesh (solid line) and the triangular mesh (dashed line) on a 15 × 15 mesh (left) and 25 × 25
mesh (right). The top figures used a RCM-Cholesky algorithm whereas in the bottom figures a multi-level
static condensation technique was applied. The dotted line indicates equivalent speed

reason. We note that rank of the systems is Nλ × (P + 1) for HDG and NλP for CG. In
the case of a periodic domain with a regular pattern of elements we can approximate Nλ as
Nλ ≈ 2Nel for quadrilaterals and Nλ = 3Nel/2 for triangles. Therefore we can argue that the
rank is approximately 2Nel(P + 1) or 2NelP for the HDG and CG in a quadrilateral domain
and the rank is approximately 3/2Nel(P + 1) or 3/2NelP for HDG or CG in a triangular
domain.

The fifth and sixth columns of Tables 1 and 2 indicated the upper bandwidth of the bound-
ary/trace matrix. In the subsequent two columns we also indicate the ratio of the bandwidth
to rank for both the CG and HDG boundary/trace matrices. From this data it is clear that the
weaker coupling of the HDG matrix leads to a boundary system which has an upper band-
width which is approximately half the size of the CG matrix at the same polynomial order.
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Table 1 Table of boundary matrix system for the 15 × 15 quadrilateral mesh

Poly. Rank Bandwidth Bandwidth/Rank (HDG-CG)/CG

order CG HDG % CG HDG CG HDG matrix entries %

2 616 1260 205 81 92 0.131 0.073 128

4 1456 2100 144 191 154 0.131 0.073 17

6 2296 2940 128 301 216 0.131 0.073 −7

8 3136 3780 121 411 278 0.131 0.074 −17

10 3976 4620 116 521 340 0.131 0.074 −23

12 4816 5460 113 631 402 0.131 0.074 −26

14 5656 6300 111 741 464 0.131 0.074 −29

Table 2 Table of boundary matrix system for the 15 × 15 triangular mesh

Poly. Rank Bandwidth Bandwidth/Rank (HDG-CG)/CG

order CG HDG % CG HDG CG HDG matrix entries %

2 753 1860 247 105 119 0.139 0.064 157

4 1993 3100 156 266 199 0.133 0.064 15

6 3233 4340 134 428 279 0.132 0.064 −12

8 4473 5580 125 590 359 0.132 0.064 −23

10 5713 6820 119 752 439 0.132 0.064 −29

12 6953 8060 116 914 519 0.131 0.064 −33

14 8193 9300 114 1076 599 0.131 0.064 −36

Fig. 8 Schematic of coupling of
an edge in HDG and edge plus a
vertex for CG with adjacent
edges. The coupled degrees of
freedom are identified by a
shaded long oval and the edges
that are connected to this edge
are identified by white ovals

To appreciate how the factor arises we consider the coupling of an edge within the trace for
the HDG scheme as schematically shown in Fig. 8. In the left hand plots of this figure we
observe that an edge is coupled to either six or four other edges in the HDG quadrilateral and
triangular meshes, respectively. This would imply a minimum upper bandwidth of 4(P + 1)

for the HDG discretization quadrilateral domains and 3(P + 1) for triangular domains. The
right hand plots of Fig. 8 show a schematic of the edge coupling of the CG schemes where
we consider the expansions related to an edge to also include a single vertex. We observed
that in the CG case the central data is coupled to 11 other edges in both the quadrilateral and
triangular meshes. This implies that a minimum upper bandwidth is approximately 7(P +1)
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and 7P for HDG and CG methods, respectively. Using these approximation and the scaling
of the rank for periodic meshes we obtain the following factor between the CG and HDG
bandwidth over rank values on quadrilateral and triangular meshes:

[
Bwidth/RankCG

Bwidth/RankHDG

]
quad

= 7P/(2NelP )

4(P + 1)/(2Nel(P + 1))
= 7

4
,

[
Bwidth/RankCG

Bwidth/RankHDG

]
tri

= 7P/(3/2NelP )

3(P + 1)/(3/2Nel(P + 1))
= 7

3
.

These estimates are consistent with the factor of two observed in the numerical results.
In the final column of these Tables 1 and 2 we show a theoretical estimate of the

percentage additional cost of performing an HDG versus a CG solve as represented by
the number of entries in the factored matrices. If we have a Cholesky factored matrix
of rank R and upper bandwidth B the solve routine requires two back-substitutes of
size Slv = R.B − B(B + 1)/2. The data in the last column therefore contains the ratio
(SlvCG − SlvHDG)/SlvCG expressed as a percentage. This ratio highlights that the bound-
ary/trace solve for first-order polynomials is more than twice as costly for the HDG scheme
as compared to the CG scheme. However for polynomial orders P > 12 we observe that
the HDG banded Cholesky solve requires up to 30% less operations than the CG solve. We
also note that for both the quadrilateral and triangular meshes the cross over in efficiency
arises between 4 < P < 6 which is consistent with the earlier CPU tests shown in Fig. 7.
We should recall however that the data in Fig. 7 contains the CPU cost to perform the solve
for all degrees of freedom including the local (interior) elemental degrees of freedom rather
than just the boundary/trace space. In addition there are other operations to perform inner
products and enforce boundary conditions as well as potential influences from the processor
architecture such as caching affects.

Finally we note that the implementation strategy of the multilevel static condensation
[37] is not dependent upon the coupling between elemental domains but rather utilizes the
compactness of the trace space degrees of freedom. The CG approach therefore benefits
from the smaller trace space around a vertex for a fixed polynomial order as compared
to the HDG technique. However in larger problems which are likely to require a parallel
implementation the weaker coupling between the elements is likely to be advantageous from
a communication point-of-view.

6.1 The Influence of τ and Post-Processing

To highlight the role of τ and the post-processing technique discussed in Sect. 2.7 we next
compare the solutions using the quadrilateral and triangular discretizations with two dif-
ferent values of τ . Therefore we consider a value of τ = 1 with the case when τ = 1000
(which is close to the CG solution) for the Poisson equation when λ = 0 with the exact so-
lution given by (35). We recall that a comparison of the τ = 1 HDG with CG method was
also considered in [21] for up to third-order polynomial expansions. In Fig. 9 we plot the
L2 error of the solution u(x, y) as a function of the mesh size h for both the triangular (top)
and quadrilateral (bottom) discretizations. The solid lines in these figures denote the HDG
without any post-processing whilst the dotted lines show the HDG solution when elemental
(P + 1) post-processing is applied.

We see for the triangular domain without the post-processing at τ = 1 and τ = 1000 the
u-field converges at a rate of O(P + 1) however for the τ = 1 case we observe that the error
is typically larger by a constant factor of up to a factor 10 at higher polynomial orders. If we
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Fig. 9 L2 error of the solution to the Poisson problem as a function of mesh size h for different polynomial
expansions on triangular and quadrilateral meshes at τ = 1 and τ = 1000. The solid lines denote the HDG
solution with no post-processing and the dotted lines represent the HDG solution with post-processing as
discussed in Sect. 2.7

consider the (P +1) post-processed results we observe that the τ = 1 case now has a similar
constant factor as the τ = 1000 case but the convergence order is increased to (P + 2). In
Fig. 9 some care must be taken in interpreting the data since the post-processed results for
P = 1 overlap with no post-processing case at P = 3 for τ = 1. The post-processing results
for the τ = 1000 case do not show an improvement as significant as for the τ = 1 case. In
part this is due to the observation that the τ = 1000 HDG problem with no-processing is
achieving a slightly higher convergence rate than (P + 1) at small values of h for the test
case we have considered.

For the u-field convergence of quadrilateral meshes is shown in Figs. 9(c) and (d). We
observe that at τ = 1000 we obtain the expected convergence rate of (P + 1) both with
and without post-processing. However for the τ = 1 case, the error on again tends to have
a higher constant at higher polynomial orders when no post-processing is applied. Also in
this case the solution is not quite achieving the (P + 1) rate of convergence. However when
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Fig. 10 L2 error of the weak discontinuous Galerkin flux q to the solution to the Poisson problem as a
function of mesh size h for different polynomial expansions on (a) quadrilateral and (b) triangular mesh. The
solid lines denote the HDG error for the solution for u = sin(10πx) cos(10πy) and the dotted lines denote
the HDG error for the solution u = sin(5πx) cos(5πy). Both solutions are for τ = 1

we again elementally post-process the data, we observe the constant is significantly reduced
and the expected (P + 1) convergence is recovered.

It is interesting to see that for the relatively under resolved discretization of P = 1 in the
quadrilateral mesh, the HDG solution with τ = 1 does not converge monotonically in the
L2 norm. The solution does however converge more uniformly in the flux q as shown in
Fig. 10. In processing this data we have evaluated the flux qi using the DG solution solving
(17c). This is in full agreement with the theoretical results in [23, 26] which show that for
any constant τ , the asymptotic order of convergence is O(P +1) and that when τ is of order
1/h, the order is only O(P ). In contrast, for quadrilateral meshes, the flux convergences at
a rate of O(P ) for a τ = 1 HDG discretisation.

This sub-optimal behavior, however, can be explained by the fact that our DG approxi-
mation is still rather under-resolved for this particular numerical tests over the polynomial
ranges provided considered. The less oscillatory problem of u(x, y) = sin(5πx) cos(5πy)

demonstrates O(P + 1) convergence, particularly for the better resolved P = 5 problem,
when using τ = 1.

7 Discussion and Conclusions

We have directly compared an HDG and CG implementation of a two-dimensional elliptic
scalar problem using triangular and quadrilateral polynomial expansions ranging in order
from 1 ≤ P ≤ 14. We have discussed how to efficiently formulate the HDG framework
from an implementation point of view and draw direct comparison between the HDG and
CG techniques. In this framework, the only differences between the methods are (i) the
finite dimensional space in which λ is taken (discontinuous piecewise polynomials for the
mixed methods and the HDG methods, and continuous piecewise polynomials for the CG
method), and (ii) the discrete operators, called the local solvers relating λ on the boundary of
the elements to the approximate solution inside them (obtained by discretizing the problem
by a mixed, DG or CG method, on each element).

Moreover, the framework suggested that, roughly speaking, the HDG methods were be-
tween the mixed methods and the CG method, the HDG being closer to the mixed methods
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when their stabilisation function was small and being closer to the CG method when is was
large. In the former case, the normal component of the jump across inter-element boundaries
of the approximation to the gradient is small whereas in the second, the jump of the approx-
imation of the scalar variable is small, as expected. This fact was put in firm mathematical
ground in [26] where it was shown that when the stabilisation function of the HDG method
is of order one, the method has all the optimal convergence and super-convergence of the
mixed methods (see also [23]), and that when the stabilisation function is of order 1/h, h

being the maximum diameter of the elements, the HDG method has the same convergence
properties of the CG method (in full agreement with the results in [12]). In considering the
error of a simple test case we observed that the τ = 1 case leads to faster convergence in the
flux at lower polynomial orders but a higher constant term. This constant offset may well be
offset by the use of the post-processing techniques discussed in Sect. 2.7 [19, 23, 26].

In our numerical tests we have demonstrated that for polynomial expansion of fifth-order
and higher that the HDG solver can be as efficient (within 20%) as the CG technique when
comparing solution time, rather than setup costs, which is typically relevant to time depen-
dent PDE solutions where linear components are treated implicitly. Despite the higher rank
of the HDG approach the weaker elemental coupling of the technique leads to a reduced ma-
trix bandwidth and faster compute time when using banded LU factorisation. Nevertheless
other matrix solution strategies, such as the multi-level static condensation [37], are known
to be more efficient and do not rely on bandwidth structure for their efficiency. In this case
we observe the HDG to be 20% slow than the CG approach at higher polynomial orders
which is still relatively competitive.

There are obviously other advantages of the HDG approach such as local conservation
properties and the greater potential for efficient parallel communication. Adaptivity is also
often considered another advantage of the HDG approach. In this setting we would have
to balance the higher setup cost of the HDG approach when compared to the CG method
against the more flexible manner of handling refinement and derefinement allowed by the
HDG methods, as well as against the fact that coarser meshes might be needed to reach the
same accuracy.

Let us end by pointing out that one could surmise that a combination of the main assets
of the above-mentioned methods would be optimal. We could see the introduction of the
so-called multiscale discontinuous Galerkin (MDG) [10, 36] in this light. In our setting, this
can be done by taking the LDG method to define the discrete local solvers and the hybrid un-
known λ in the space of continuous piecewise continuous functions. However, in [25] it was
proven that the resulting method, which was called the embedded discontinuous Galerkin
method (EDG) [45], loses the convergence properties of the associated HDG method and
behaves closely to that of the CG method.
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