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45.1 Introduction

Art in particular painting, has had clear impacts

on the style, techniques, and processes of scien-

tific visualization. Artists strive to create visual

forms and ideas that are evocative and convey

meaning or tell a story. Over time, painters

and other artists have developed sophisticated

techniques, as well as a finely tuned aesthetic

sense, to help accomplish their goals. As visual-

ization researchers, we can learn from this body

of work to improve our own visual representa-

tions. We can study artistic examples to learn

what art works and what does not, we can study

the visual design process to learn how to design

better visualization artifacts, and we can study

the pedagogy for training new designers and

artists so we can better train visualization

experts and better evaluate visualizations. The

synergy between art and scientific visualization,

whether manifested in collaborative teams, new

painting-inspired visualization techniques, or

new visualization methodologies, holds great

potential for the advancement of scientific visu-

alization and discovery.

Scientific visualization applications can be

loosely divided into two categories: expository

and exploratory. In this chapter, we will focus

on exploratory applications. Exploratory appli-

cations typically represent complicated scientific

data as fully as possible so that a scientific user

can interactively explore it. Per the scientific

method, a scientist gathers data to test a hy-

pothesis, but the binary answer to that test is

usually just a beginning (Fig. 45.1). From the

data come ideas for the next hypothesis, insights

about the scientific area of study, and predictive

models upon which further scientific advances

can be made. Exploration of increasingly com-

plicated and interrelated data become a means

to that end.

One of the most complicated types of data

that scientists wish to explore and understand

comes in the form of multivalued, multidimen-

sional fields. There are a number of visualiza-

tion application areas that work with this type

of data, including fluid dynamics and medicine.

These data are difficult to understand because

so many variables, or values, are of interest

to the scientists. The challenge comes in under-

standing the correlations and dependencies

between all of the values. For example, 2D

fluid-flow simulations produce a 2D vector

field that is sometimes time-varying. From this

field, additional scalar, vector, and tensor fields

are often derived, each relating to the others and

providing a different view of the whole. Dis-

playing such multivalued data all together is

difficult, even in 2D. It requires showing six to

ten different values within a single image. For

3D fluid flow, the data exist within a volume.

Representing a 3D vector field alone is a chal-

lenge; representing such a vector field together

with derived scalar, vector, and tensor fields is

an extremely difficult problem in visual repre-

sentation.

We will begin with a narrative of some of our

work in the area of representing multivalued

data, illustrating more specifically some of the

ways in which art can be brought to bear on

scientific visualization. We will then give a

broader survey of scientific visualization work

that has been influenced by art, followed by a

discussion of some of the open issues in this

area, which will tie back to studying art, design,

and art education.
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45.2 Mimicking Artists: Strokes, Design,
Critiques, and Sketching

Perhaps the most compelling reasons for visual-

ization researchers to look toward oil painting,

and to art in general, are the visual richness and

visual effectiveness of the art that we see in our

everyday lives. Paintings and reproductions are

accessible in museums, in posters, in calendars,

and on the web because there is a demand for

them—they are broadly appealing and often

convey a meaning or narrative to which we

can relate.

Besides their obvious visual appeal, we can

learn from art, artists, and art teachers what is

visually compelling, what works for specific

visual goals, how to tell if something is working,

the process of visual design, and the process of

learning visual design. Over the last several years

we have been exploring each of these areas, and

we will try to illustrate some of what we have

learned with examples from those efforts.

45.2.1 Strokes

Some of our earliest attempts to borrow ideas

from the art world began with trips to museums

to view paintings and loosely emulate the tech-

niques that we saw there. We were expertly

accompanied by artist davidkremers, who

guided us through the collections, showing us

what he felt would be most relevant to our

scientific visualization process. We absorbed

ideas, transformed them to our digital medium,

and generated a series of visual representations

of multivalued data.

This stage was motivated by Meier’s work to

create painterly animations [25]. Her haystack

image (Fig. 45.2) illustrates how brushstrokes

can be layered to build up a compelling visual

image. This same layering process is common in

oil painting, although deconstructing it is more

difficult.

In our early examples we used software that

created data-driven visualization by layering

‘‘strokes’’ onto a 2D ‘‘canvas.’’ Many visual

characteristics of the strokes were set directly

from the data, with the mapping under the con-

trol of the user. The images are data driven but

are not guided by a particular scientific prob-

lem; they are based on experimentation with a

new medium. Some of our experiments involved

varying stroke shape, texture, color, and size;

changing relationships among layers; and modi-

fying the placement of strokes. Fig. 45.3 shows

some examples.

In one example of a technique we worked to

mimic, a painter uses a lightly loaded brush to

paint over a dry, but previously painted, region.

The texture of the underlying dry paint catches

wet paint off the brush, leaving small textured

bits of paint. Our version, shown in Fig. 45.4,

used small strokes in a layer atop much larger

ones, placed in only a small portion of the

image, and in a contrasting color.

From this work we sensed potential. Some of

the images created are visually compelling, and

the sources of inspiration seem only touched

upon. We were also excited by the potential to

incorporate time into visualization design. By

mapping some parts of data to quickly seen

visual cues and others to visual cues that are

seen less quickly, the order in which data is

seen in a visualization may be controlled.
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Figure 45.1 Exploratory scientific visualization is a specific

instance of the scientific method. It begins with a hypothesis

about some physical phenomenon. It continues with the

collection of data that is expected to validate the model.

Visualization of the data then helps in the validation of the

hypothesis and in generating new hypotheses and insights,

often iteratively.
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This early work also reminded us that there

was no evidence that these images would have

scientific value. While they were data driven in

the sense that data values controlled many of

the visual attributes in the images, they were not

targeted at solving a specific scientific problem.

Indeed, measuring the effectiveness of visualiza-

tion methods is a controversial and difficult

problem.

It was also pointed out to us that design

decisions sometimes have unintended conse-

quences. For example, some of the painterly

experiments had a sense of depth from regions

that were lighter or darker. Qualities like this
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Figure 45.2 Meier layered strokes to build up computer paintings, much as painters layer their strokes to build up an oil

painting. The stroke layers are shown here as they accrete. Here, the layers are organized around form and lighting, but other

organizing principles can work in other contexts.
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can be difficult for an untrained eye to notice

but can dramatically affect our perception of a

scene or data.

45.2.2 Designing Scientific Visualizations

As a follow-up to our early experimentation, we

created a set of visualizations addressing three

scientific applications using multivalued 2D im-

aging data: sections of 3D tensor-valued MR

images [19], 2D fluid flow (and derived quan-

tities) [16], and six-valued multi-echo MR images

[22]. We will discuss in this section the painting-

related motivation behind the 2D flow applica-

tion and also try to provide some insight into

the issues with which we grappled.

In [16] we examined the scientific problem of

understanding fluid flowing past a cylinder. The

primary focus of the study was to visualize mul-

tivalued data. Within the study of fluid mechan-

ics, many mathematical constructs are used to

enhance our understanding of physical phenom-
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Figure 45.3 Several early ‘‘painterly’’ visualizations. We experimented with varying the visual representation of underlying

data by changing stroke shapes, texture, color, size, and placement. The top and bottom image in each pair are the same

underlying data.

Figure 45.4 Scumbling, or lightly painting over an already-

painted region, is an example of a painting technique we

mimicked. We used small strokes to emulate the small bits of

paint left behind.
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ena. Visualization techniques are often used as

tools for developing physical intuition of these

quantities. One important question, however, is:

What do we visualize? To maximize their poten-

tial to cross-correlate information, scientists

usually want to maximize the amount of com-

prehensible data presented in one visualization.

For example, scientists often choose to examine

derived quantities, such as vorticity, along with

standard quantities, such as velocity and pres-

sure, in an effort to fully understand the under-

lying process of fluid flow.

We illustrate the complexity of this issue by

displaying velocity and vorticity simultaneously

(Fig. 45.5). Vorticity is a classic example of a

mathematical construct that provides informa-

tion not immediately apparent in the velocity

field. When examining only the velocity field, it

is difficult to see that there is a rotational com-

ponent of the flow in the far wake region of the

cylinder (to the right). But when vorticity is

combined with the velocity field, the underlying

dynamics of vortex generation and advection

are more apparent.

Although vorticity cannot be measured dir-

ectly, its relevance to fluid flow was recognized

as early as 1858 with Helmholtz’s pioneering

work. Vorticity as a physical concept is not

intuitive to all, yet visualizations of experiments

demonstrate its usefulness and hence account

for its popularity. Vorticity is derived from vel-

ocity (and vice versa under certain constraints)

[27]. A function and its derivative are similarly

related. Hence, vorticity does not provide any

new information that is not already available

from the velocity field, but it does emphasize

the rotational component of the flow. The latter

is clearly demonstrated in Fig. 45.5, where the

rotational component is not apparent when one

merely views the velocity.

Other derived quantities, such as the rate of

strain tensor, the turbulent charge, and the tur-

bulent current, can be of value in the same way

as vorticity. Since examination of the rate of

strain tensor, the turbulent charge, and the tur-

bulent current within the fluids community is

relatively new, few people have ever seen visual-

izations of these quantities in well known fluid

mechanics problems. Simultaneous display of

the velocity and the quantities derived from it

is done both to allow the fluids researcher to

examine these new quantities against the canvas

of previously examined and understood quan-

tities and also to allow the fluids researcher to

accelerate her or his understanding of these new

quantities by visually correlating them with well

known fluid phenomena.

In our painting-inspired visualizations of

fluid flow, we sought representations inspired

by the brushstrokes artists apply in layers to

create an oil painting. We copied the idea of

using a primed canvas or underpainting that

shows through the layers of strokes. Rules

borrowed from art guided our choice of colors,
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Figure 45.5 Typical visualization methods for 2D flow past a cylinder at Reynolds number 100. On the left, we show only the

velocity field. On the right, we simultaneously show velocity and vorticity. Vorticity represents the rotational component of the

flow. Clockwise vorticity is blue; counterclockwise is yellow.
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texture, visual elements, composition, and focus

to represent data components. These ideas are

discussed in more depth by Laidlaw et al.

[18,19].

In one of our visual designs, shown in Fig.

45.6 (left), we wanted the viewer to read first

velocity from the visualization, and then vorti-

city and its relationship to velocity. Because of

the complexity of the second-order rate of

strain tensor, we want it to be read last. We

describe the layers here from the bottom up,

beginning with a primed canvas, adding an

underpainting, representing the tensor values

transparently over that and finishing with a

very dark, high-contrast representation of the

velocity vectors.

. Primer: The bottom layer of the visualization

is light gray, selected because it would show

through the transparent layers to be placed

on top.

. Underpainting: The next layer encodes the

scalar vorticity value in semitransparent

color. Since the vorticity is an important

part of fluid behavior, we emphasized it by

mapping it onto three visual cues: color, el-

lipse opacity, and ellipse texture contrast (see

below). Clockwise vorticity is blue and coun-

ter-clockwise vorticity yellow. The layer is

almost transparent where the vorticity is

zero, but it reaches 75% opacity for the larg-

est magnitudes, emphasizing regions where

the vorticity is nonzero.

. Ellipse layer: This layer shows the rate of

strain tensor and also gives additional em-

phasis to the vorticity. The logarithms of the

rates of strain in each direction scale the radii

of a circular brush shape to match the shape

that a small circular region would have after

being deformed. The principal deformation

direction is mapped to the direction of the

stroke to orient the ellipse. The strokes are

placed to cover the image densely, but with

minimal overlap. The color and transpar-

ency of the ellipses are taken from the under-

painting, so they blend well and are visible

primarily where the vorticity magnitude is

large. Finally, a texture whose contrast is

weighted by the vorticity magnitude gives

the ellipses a visual impression of spinning

where the vorticity is larger.

. Arrow layer: The arrow layer represents the

velocity field measurements: the arrows

point in the direction of the velocity, and

the brush area is proportional to the speed.

We chose a dark blue that contrasts with the

light underpainting and ellipses, so that the

velocities would be read first. The arrows are

spaced so that strokes overlap end-to-end

Figure 45.6 Left: Visualization of 2D flow. Velocity, vorticity, and rate of strain (including divergence and shear) are all

encoded in image layers. Right: Additional values for turbulent charge and turbulent current for Reynolds number 100 flow are

added to the visualization. A total of nine values are simultaneously displayed.
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but are well separated side-to-side. This

draws the eye along the flow.

. Mask layer: The final layer is a white mask

covering the image where the cylinder was

located.

In a second visual design, shown in Fig. 45.6

(right), we added two additional derived flow

quantities, turbulent current, a vector, and tur-

bulent charge, a scalar. The layers from the first

design were changed to make the ellipses and

arrows less contrasting and an additional layer

added atop them.

. Turbulent sources layer: In this layer we

encode both the turbulent charge and the

turbulent current. The current is encoded in

the size and orientation of the vector value

just as the velocity in the arrow layer. The

charge is mapped to the color of the strokes.

Green strokes represent negative charge

and red strokes represent positive. The

magnitude of the charge is mapped to

opacity. Where the charge is large, we get

dark, opaque, high-contrast strokes that

strongly assert their presence. Where the

charge is small, the strokes disappear and

do not clutter the image. For these quantities

that tend to lie near surfaces, this representa-

tion makes very efficient use of visual band-

width. The strokes in this layer are much

smaller than the the strokes in the arrow

layer. This allows for finer detail to be repre-

sented for the turbulent sources, which tend

to be more localized. It also helps the turbu-

lent sources layer to be more easily distin-

guished from the arrows layer than in the

previous visualization, where the stroke

sizes were closer and, therefore, harder to

disambiguate visually.

The use of these painting and design concepts

helped us create a visual representation for the

data that encoded all of the data for a more

holistic understanding. The images in this 2D

flow example, and in the other application areas

described elsewhere, simultaneously display six

to nine data values while qualitatively represent-

ing the underlying phenomena, emphasizing

different data values to different degrees, and

displaying different portions of the data from

different viewing distances. These qualities lead

a viewer through the temporal cognitive process

of understanding interrelationships in the data,

much as a painting can lead a viewer through

the visual narrative designed by the painter.

We were left with several observations and

questions from this work. First, the images

became more iconic than our early experiments

as they were targeted at specific scientific appli-

cations. They have a less painterly look, as a

result.

Also, once again, the question arises, how

can we evaluate visualizations? User studies

are a stock visualization answer, but we also

wondered if we could borrow from art and art

education in evaluating visualizations.

45.2.3 Art Education

Perhaps the most important educational tool to

the art instructor is the critique, or crit for short.

Art critiques can take on many different forms,

but in a typical classroom, a group-critique set-

ting, they often involve displaying the work of

all the students and then moving from piece to

piece discussing and dissecting the visual deci-

sions and techniques employed. The instructor

running the critique usually has very specific

goals in mind for the process and leads the

discussion and criticism in a direction that cul-

minates in the transmission of some design con-

cept or theory to the students.

Critiques are a checkpoint along a path to

creating visually refined imagery. They are

almost always a part of a larger, iterative pro-

cess. The lessons learned in a critique should

carry on to future work, either in the form of a

refinement of an initial design based on feed-

back, or as a lesson applied to a completely new

design in the future. A critique that doesn’t lead

to new thought or work by the student is a

failure.

Our initial experience applying the concept

of critiques to visualization problems is
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encouraging. The critique framework, especially

when expert artistic illustrators, designers, and

instructors are involved, may offer an excellent

alternative or complimentary approach to the

traditional user studies used to evaluate visual-

izations.

Some of our experience with this framework

came in the form of a class we taught in con-

junction with Fritz Drury, head of the Illustra-

tion department at the Rhode Island School of

Design (RISD). The class was composed half of

RISD students and half of Brown University

students. Our focus for a semester was to learn

how to visually represent time-varying 3D fluid-

flow data generated computationally. We

started our exploration of visual representation

with 2D fluid-flow problems and eventually

created visualizations of 3D flow that run in a

Cave virtual reality display. Throughout the

process, students worked on weekly design as-

signments, and each week these were expertly

critiqued to teach the class how to create suc-

cessful designs from both visual and scientific

standpoints. The importance of enabling a sci-

entist to perform a specific task, such as locating

areas of high vorticity within a flow, was a new

constraint for RISD design students. The depth

of understanding reached by the class on the

effects of color, texture, form, and iconic repre-

sentation upon human perception, particularly

in virtual reality, was new territory for all the

students.

Some results from a 2D flow visualization

design assignment are shown in Fig. 45.7. Input
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Figure 45.7 Students in a joint computer science/art scientific visualization class generated creative multivalued 2D flow

visualizations.
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from the critique of these works helped shape the

students’ future assignments as well as the final

class projects in virtual reality. Based on feed-

back in weekly critiques, most designs in the class

were eventually refined to the point that they

were perceptually sound, were useful for scien-

tific inquiry, and maintained a pleasing aesthetic.

One conclusion from this class experience is

that, particularly in complicated, multivariate

visualization problems, the design process is

extremely important. When approaching these

difficult visualization problems, it is rare for an

initial visualization design to be visually coherent

enough for scientists to use successfully. Iterating

upon a visualization design takes time. Critiques

can certainly help in this process.

Quickly sketchingoutdesign ideas and refining

them again and again, each time evaluating them

from the standpoint of the target audience’s sci-

entific goals, is one of the best ways to refine a

design. For 2D visualization problems, this is

often easily accomplishedwith traditional artistic

tools. In fact, Fig. 45.8 shows some of the designs

that attendees of the SIGGRAPH 2001 course

entitled ‘‘Non-PhotorealisticRendering in Scien-

tific Visualization’’ [10] were able to create in an

afternoon. These were quick sketches made with

paint, markers, etc. They represent experimenta-

tion and thinking outside the box. This type of

effort is needed for complex visualization prob-

lems, the type to which art-based visualization

methods are perhaps most suited. When we

move to 3D visualization problems, quick

sketches and visualization prototypes become

much more difficult to make and critique.

45.2.4 Sketching and Prototyping for
Virtual Reality

Currently, it can take a long time to advance

from an initial art-based visualization idea

sketched out on a piece of paper to a useful
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visualization. One of the most time-consuming

parts of this process is refining and iterating on

the design; iteration is an essential part of the

design process.

For some media, it is important to do much

of the refinement step within the final medium

itself. For 2D visualizations, this is less of a

concern because traditional 2D media can do a

fairly complete job of mimicking what can be

seen on a computer screen. Thus, visualization

designers can sketch out ideas, critique them,

and revise them, all without the time-consuming

step of implementing the design on the com-

puter. However, for virtual reality (VR) and

other 3D computer mediums, it is difficult to

mock up and accurately critique a visualization

without actually going through the trouble

of programming it and experiencing it. Proto-

typing designs with traditional 2D and 3D art-

istic media is still beneficial for VR-based

visualizations, but the insight that can be gained

from critiquing these prototypes is limited

because so many of our physical and perceptual

cues change when we enter a virtual environ-

ment. Dimension, scale, colors, composition,

interaction, and sense of presence all change as

we move from a 2D representation of the idea to

a complete virtual world.

Recently, we have started to take a new ap-

proach to prototyping and design in 3D that

mimics a traditional 2D artistic process. The

cornerstone of this approach is the Cave-based

VR system, CavePainting [15]. CavePainting

uses a prop and gesture-based interface derived

from a traditional oil-painting process to allow

an artist to paint 3D forms directly in VR using

a six degree-of-freedom tracker. While the inter-

action is based on painting techniques with

which the artist is already familiar, the resulting

‘‘paintings’’ are a form of zero-gravity sculpture

that bears little resemblance to a flat oil paint-

ing. Nevertheless, the quick, loose, stroke-based

style of CavePainting makes it an excellent can-

didate for testing the feasibility of extending

painting inspired visualization techniques to

3D problems and prototyping 3D visualization

designs.

Through use of this tool, designers have been

able to refine 3D visualization techniques quickly

from within VR. The immediate advantage of

this approach is that designers can visually cri-

tique a Cave-based visualization during the early

stages of design. At this point in the process, even

dramatic changes to the approach are easy to

make. In our experience, design changes are

often discussed and sketched out in 3D during a

critique. Our vision for this approach to visual-

ization design is that the ability to more quickly

produce and iterate on designs within VR will

decrease the time that it takes us to converge on

scientifically useful visualizations.

This vision has played out in some of our

initial work with the visualization class de-

scribed above. As we continue to develop this

prototyping tool and achieve a tighter coupling

with scientific needs, we anticipate that proto-

typing designs in VR will allow us to spend

much more time iteratively designing for VR

visualizations and less time implementing com-

plex visualization approaches that eventually

prove to be less perceptually sound and scientif-

ically useful than originally planned.

We further explore some of the issues raised

in this section after providing historical perspec-

tive in the next section.

45.3 Historical Perspective: The
Connections Between Art and Science

We now present a historical perspective on the

connections between art and science, with par-

ticular emphasis on the efforts that have been

made over the last ten years to unite scientific

visualization with other visual science discip-

lines. This section is by no means comprehen-

sive; our goal is to provide a broad overview of

the current stream of momentum from which

painterly methods have derived over the past

twenty years or so.

We partition this section into two subsec-

tions, a conceptual history and then practical

connections between art and science. The

former traces the steady infusion of artistic
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ideas and concepts into the scientific visualiza-

tion community, while the latter presents cur-

rent applications, both explicit and tacit, of

painterly concepts in the development of visual-

ization methodologies.

45.3.1 History of Art-Related Scientific
Visualization

For at least the last six centuries, artists have

striven to develop methods for distilling com-

plex scene information into oil-painting repre-

sentations. Some of this work was even directed

at scientific topics, including astronomy and

fluid flow. Within the last twenty years, there

has been a renewed recognition that concepts

from art and visual disciplines are not orthog-

onal to the goals of scientific visualization.

Victoria Interrante succinctly presents the simi-

larities and differences between visualization

and art [10]. She states, ‘‘Visualization can be

viewed as the art of creating a pictorial repre-

sentation that eloquently conveys the layered

complexity of the information in a complicated

dataset.’’ In the same article, however, she also

emphasizes how visualization and art are differ-

ent: ‘‘Visualization differs from art in that its

ultimate goal is not to please the eye or to stir

the senses but, far more mundanely, to commu-

nicate information—to portray a set of data in a

pictorial form that facilitates its understanding.

As such, the ultimate success of a visualization

can be objectively measured in terms of the

extent to which it proves useful in practice. But

to take the narrow view that aesthetics don’t

matter is to overlook the complexity of visual

understanding.’’

Early pioneers in this field, such as Donna

Cox, who holds positions in both the School

of Art and Design and the National Center for

Supercomputing Applications at the University

of Illinois, Urbana-Champaign, understood the

potential of bringing scientists and visual design

artists together. In 1987 Cox developed the con-

cept of ‘‘Renaissance Teams,’’ a team of domain

experts and visualization experts whose goal

was to determine visual representations that

both appropriately and instructively presented

domain specific scientific data.

In her 1995 essay ‘‘Art, Science’’ Vibeke Sor-

ensen, Professor and Founding Chair of the Div-

ision of Animation andDigital Arts in the School

of Cinema-Television at the University of South-

ern California, alludes to the necessity of such

‘‘Renaissance Teams’’ to effectively counter the

divisional chasm between artistic and scientific

disciplines that has been caused by specializa-

tion. She argues that in the mind of most

scholars, the ideal of the artist–scientist as an

integrated, educated individual culminated in

Leonardo da Vinci. Da Vinci represents the

union of artist and scientist. Although con-

sidered by some to be the epitome of the artist–

scientist combination, the da Vinci ideal was

soon lost to specialization. As our quest for

knowledge produced a plethora of different sub-

fields of science, the communication between dif-

ferent disciplines disintegrated, and in particular

the ties between art and science were severed in

the name of scientific objectiveness. Sorensen,

however, asserts in her published articles on art

and science her strong conviction that artists

have an important role to play in the further

development of science and technology. In par-

ticular, the means of restoring the ideal artist–

scientist is through interdisciplinary research col-

laborations in which there is a synergy of many

different disciplines, scientific and artistic.

Over the last several years there have been

several attempts to foster this cultural crossover

through panels and workshops. For instance, in

1998, David Laidlaw organized a panel at IEEE

Visualization 1998 entitled ‘‘Art and Visualiza-

tion: Oil and Water?’’ [23] whose purpose was to

explore such questions as ‘‘How can artistic ex-

perience benefit visualization?’’ and ‘‘What artis-

tic disciplines have the most to offer?’’ In 1999 J.

Edward Swan organized a panel at IEEE Visual-

ization 1999 entitled ‘‘Visualization Needs More

Visual Design!’’ [30], the purpose of which pur-

pose was to argue two main points: that utilizing

visual design may be difficult but is important for

visualization, and that, in general, the scientific

community needs to work harder to tap into the
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centuries’ worth of design knowledge that exists

in fields such as art, music, theater, cartography,

and architecture. In 2001, Theresa-Marie Rhyne

organized a panel at IEEE Visualization 2001

entitled ‘‘Realism, Expressionism, and Abstrac-

tion: Applying Art Techniques to Visualization’’

[26], which explored the artistic transition be-

tween realism, expressionism, and abstraction

and attempted to examine if such a progression

also exists within the field of scientific visualiza-

tion. One conclusion of that panel, articulated by

Chris Healey, is that ‘‘the appropriate use of

perceptual cues can significantly enhance a

viewer’s ability to explore, analyze, validate and

discover.’’ In that same year, two SIGGRAPH

2001 courses were dedicated to artistic topics.

Sara Diamond organized a class entitled ‘‘Visu-

alization, Semantics, and Aesthetics’’ and Chris

Healey organized a class entitled ‘‘Nonphotor-

ealistic Rendering in Scientific Visualization,’’

both of which further explored the connection

between scientific visualization and artistic sci-

ences. At a different forum, Felice Frankel, a

research scientist in the School of Science at the

Massachusetts Institute of Technology (MIT),

organized what has been referred to as a ground

breaking conference at MIT entitled ‘‘Image

and Meaning: Envisioning and Communicating

Science and Technology’’ which was an initiative

to promote new collaborations among scien-

tists, image experts, and science writers. Her

new book captures some of the excitement of

the conferences [7]. The following year, at SIG-

GRAPH 2002,Kwan-LiuMaorganized a course

entitled ‘‘Recent Advances in Non-Photorealis-

tic Rendering for Art and Visualization’’ whose

expressed purpose was to give a concise intro-

duction to non-photorealistic rendering in the

context of generation of artistic imagery and per-

ceptually effective scientific visualization. Along

the same lines, Non-Photorealistic Animation

and Rendering (NPAR) in 2002 had a section

specifically devoted to painterly rendering.

Though the section was not limited to scientific

visualization, its focus was on the exploration of

interjecting painterly ideas into the visualization

process.

Interest in collaboration between the arts and

science has not remained confined to confer-

ences and workshops; it has also spilled over

into the archival publication realm. Laidlaw

published [18] an article entitled ‘‘Loose, Artis-

tic ‘Textures’ for Visualization’’ in which he

encouraged the scientific community to search

beyond what perceptual psychologists under-

stand about visual perception into the funda-

mental lessons that can be learned from art

and art history. Herman and Duke, in their

article entitled ‘‘Minimal Graphics’’ [5], ex-

plored what can be learned from artistic trad-

itions with respect to representing only salient

features in a visualization. Taylor, in his article

entitled ‘‘Visualizing Multiple Scalar Fields on

the Same Surface’’ [31], reviewed and aug-

mented with his own work ideas for visualizing

multivalued data fields built upon artistic ideas.

This small sampling is meant not to be all-

inclusive, but rather to show that mainstream

publishing venues are also seeing the wave of

the collaborative mixing of art and science.

In summary, over the past twenty years there

have been many efforts to, as Sorensen de-

scribes, resurrect the artist–scientist combin-

ation found in da Vinci. In our modern times,

the process of scientific investigation often re-

quires extensive specialization into the nuances

of one particular field of discovery, making a da

Vinci-like combination of the artist–scientist

in a single personage an extremely difficult,

yet worthwhile, goal [36]. In today’s world,

the synergistic interdependence of ‘‘Renaissance

Teams,’’ in which experts from many different

disciplines combine their efforts, offers the most

likely means for achieving a productive fusion

of art and science. Slowly but surely this mes-

sage is being disseminated through conference

panels, workshops, and publications.

45.3.2 Practical Connections Between Art
and Science

We now present three areas in which, whether

explicitly or tacitly, ideas from painting have

been applied to scientific visualization. We
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categorize these areas as multivalued data visu-

alization, flow visualization, and computer

graphics painting. Again, our purpose is not

necessarily to provide a comprehensive listing

of all scientific visualization efforts that could

be classified as exhibiting painterly themes, but

rather to illustrate the point that scientific visu-

alization as a discipline has been attempting to

answer some of the same questions as other

visual art disciplines, namely, how to effectively

present information in a form that is compre-

hensive, yet uncluttered.

45.3.2.1 Multivalued Data Visualization

Hesselink et al. [11] give an overview of research

issues in visualization of vector and tensor

fields. While they describe several methods that

apply to specific problems, primarily for vector

fields, the underlying data are still difficult to

comprehend; this is particularly true for tensor

fields. ‘Feature-based’’ methods, i.e., those that

visually represent only important data values,

are promising.

Statistical methods such as principal compon-

ent analysis (PCA) [14] and eigenimage filtering

[37] can be used to reduce the number of rele-

vant values in multivalued data; this is often a

worthwhile tradeoff. In reducing the dimension-

ality, these methods inevitably lose information

from the data. The approach taken in the fluid-

flow example presented earlier complements

these data-reduction methods by increasing the

number of data values that can be visually rep-

resented.

Different visual attributes of icons can be

used to represent each value of a multivalued

dataset. In Haber and McNable [8], tempera-

ture, pressure, and velocity of injected plastic

are mapped to geometric prisms that sparsely

cover the volume of a mold. Similarly, in Chern-

off [3], data values were mapped to icons of

faces; features like the curve of the mouth or

size of the eyes encoded different values. In both

cases, the icons capture many values simultan-

eously but can obscure the continuous nature of

fields. A more continuous representation using

small line segment-based icons shows multiple

values more continuously [6].

Layering has been used in scientific visualiza-

tion to show multiple items; Interrante et al.

show [12,13] surfaces with transparent stroked

textures without completely obscuring what is

behind them. The layering we presented earlier

in the fluid-flow example is more in the spirit

of oil painting, where layers are used more

broadly, often as an organizing principle.

45.3.2.2 Flow Visualization

A number of flow-visualization methods display

multivalueddata. The examples byMaxet al. [24]

and Crawfis et al. [4] combine surface geometries

representingcloudinesswithvolume-renderingof

arrows representing wind velocity. In some cases,

renderings are also placed on top of an image

of the ground.Unlikeour 2Dexamples, however,

thephenomenaare3Dandthe layeringrepresents

this third spatial dimension. Similarly, van Wijk

[34] uses surface particles, or small facets, to

visualize 3D flow: the particles are spatially

isolated and are again rendered as 3D objects.

A ‘‘probe’’ or parameterized icon can display

detailed information for one location within a

3D flow [35]; it faithfully captures velocity and

its derivatives at that location, but it does not

display them globally.

Spot noise [33] and line integral convolution [2]

methods generate texture with structure derived

from 2D flow data; the textures show the velocity

data but do not directly represent any additional

information, e.g., divergence or shear. Van Wijk

[33]mentions that spot noise canbedescribedas a

weighted superposition of many ‘‘brushstrokes,’’

but he does not explore the concept. The method

presented in the previous fluid-flow example

takes the placement of the strokes to a more

carefully structured level. Of course, placement

canbeoptimized in amore sophisticatedmanner,

as demonstrated by Turk and Banks [32].

45.3.2.3 Computer Graphics Painting

Haeberli [9] was the first to experiment with

painterly effects in computer graphics. Meier
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[25] extended the approach for animation and

further refined the use of layers and brushstrokes

characteristic for creating effective imagery.

Both of these efforts were aimed toward creating

art, however, and not toward scientific visualiza-

tion. Along similar lines, other researchers

[39,38,28] used software to create pen-and-ink

illustrations for artistic purposes. The pen and

ink approach has successfully been applied to

2D tensor visualization [29]. In Laidlaw et al.

[20], painterly concepts were presented for

visualizing diffusion tensor images of the mouse

spinal cord.

45.4 Some Open Issues

The previous sections suggest some open issues,

which we will discuss in more detail here.

45.4.1 Evaluation

One of the most difficult aspects of developing

new visualization methods is evaluating their

success, and this is certainly true for methods

that are motivated by painting and art. For

many exploratory applications, the best meas-

ure of success is the acceleration of scientific

discovery and insight in other disciplines, but

that is virtually impossible to measure quantita-

tively, even with a crystal ball. Scientific ad-

vances are dependent on many factors, and

visualization tools are only one. Even a signifi-

cant increase could be lost in the variance

caused by the others.

We must revert to less direct measures. These

may be judgments about an algorithm’s ele-

gance, simplicity, or speed. They may be about

the accuracy or speed of a group of users in

performing specific, well defined tasks. Or they

may be about a visualization’s aesthetics, ability

to display certain features in data, or appeal to

domain scientists.

The first type of algorithmic measure is well

understood in computer science. We know ele-

gance and simplicity when we see it, and we can

easily measure speed and talk about how it

scales with problem size. While these are im-

portant, their connection to how well a tool

will advance scientific discovery is tenuous, at

best. There has been many an algorithm that

has scaled nicely with problem size and yet pro-

vided no new insight into the scientific problem

that was being visualized.

The second type of measure, which is results

from performance-based user studies, is appeal-

ing because they are both quantitative and

objective [17]. For example, for six methods of

visualizing 2D fluid-flow data, we measured

user accuracy and performance in locating crit-

ical points in 2D flow, identifying their types,

and visually creating integral lines [21]. With the

results, we compared the six methods and drew

some conclusions about which features of each

may have accounted for good performance on

these specific tasks. On the other hand, a leap of

faith is required to generalize these results more

broadly to other visualization methods, particu-

larly exploratory ones, or even to other tasks.

Finding features faster and more accurately

could speed the advance of science, but we

cannot know for certain. One clear contribution

of these kinds of measures is the very explicit set

of visualization goals that must be defined in

order to perform tests.

The third type of measure is more subjective.

Here we might ask domain scientists whether

they like a method, or appeal to reviewers to

judge whether a certain feature is adequately

represented visually and whether that is import-

ant. This tends to be faster to evaluate than more

formal performance-based user studies and

can often evaluate larger conceptual advances,

but at the cost of some quantization and object-

ivity, and often with implicit assumptions. For

example, domain scientists may understandably

be biased against unfamiliar methods, even if the

unfamiliar methods will be more effective after a

learning period. This kind of measure may come

the closest to addressing our original question

about advancing science.

All three types of measures have their place.

What relates the second and third types is the

choices that must be made about the important

visualization goals to target and the specific
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population to evaluate them. With explicit

design goals, the third type of measure may be

particularly valuable. In fact, this kind of evalu-

ation is very similar to art critiques and has the

potential to advance our field more quickly.

They can provide measures of new method-

ology. They can help educate both visualization

researchers and designers. They can also help

clarify visualization goals. They should be used

more broadly and incorporated into what we

teach our visualization students.

45.4.2 Visualization Goals

An essential step in critiquing or evaluating

visualization methods is defining explicit visual-

ization goals. Too often visual appeal, or even

glitz, is confused with effectiveness. Only expli-

cit goals can be effectively evaluated.

Defining visualization goals is an iterative

process and should be driven by the underlying

scientific applications [1]. As our understanding

of a scientific problem moves forward, so will

our design goals for visualization methods to

address that problem. Our understanding of

visualization will also help us to bring effective

methods from one scientific domain to bear on

others.

It is important to understand that different

scientific questions will imply different visual-

ization goals, sometimes contradictory. No one

visualization method is right. Some people

claim that ‘‘more is better.’’ This is likely to be

true for some kinds of exploration, but for ex-

pository visualizations, ‘‘less is more’’ is more

likely true.

45.4.3 Design, Engineering, and Science
Collaborations

Designers, engineers, and scientists are brought

together because their skills and their disciplines

can benefit from collaborations. For scientists,

the benefit of collaboration is the potential for

increased scientific understanding that can

result from clearer, more perceptually sound

visualizations. Artists hold one key to making

these visualizations a reality. For artists, the

win in scientific visualization collaboration

comes in many forms. First, working with sci-

entific visualization opens the door to working

with a variety of new media. Virtual reality,

volume-rendering, and other advanced com-

puter graphics techniques are just beginning to

migrate out of the graphics research commu-

nity. Through visualization research, artists

have the opportunity to be at the forefront of

learning, working with, and even influencing

recently created computer media. As illustra-

tors, artists are also drawn to visualization

problems because of the complexity of the situ-

ations that they represent. These types of prob-

lems are exciting because they push theories

of visual representation to their limits. In add-

ition to these factors, art educational institu-

tions are beginning to become interested in

scientific visualization collaborations because

of the potential job opportunities that may be

available for their students in the future. As the

embrace of artistic insight continues to grow

within scientific fields, we will develop a need

for a new generation of artists that are adept at

understanding and interacting with scientists

and that specialize in illustrating the new scien-

tific phenomenon that our technology helps us

to explore.

While there is often some overlap in critical

knowledge and techniques within design, art,

engineering, and science, the terminology,

goals, and methods of each are often as different

as they are advanced. In scientific visualization,

collaborative efforts require insight, communi-

cation, and education from all those involved.

45.4.3.1 Designer Education

The first area for designers to master when

applying their skills to visualization problems is

the new media that they may be using. Computer

graphics in some form are now common at most

design schools. In our experience, most potential

design or illustration collaborators are familiar

with programs such as Adobe Photoshop and

occasionally a 3D modeling package. However,
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many of the visualization approaches where

designers can be most helpful to scientists today

utilize more recent computer graphics techni-

ques, such as volume-rendering or virtual reality

environments. Many basic design principles

transcend the differences between various media,

but clearly some time is needed for designers to

experiment and eventually become proficient

within a new medium.

Prototyping systems, such as the CavePaint-

ing-based virtual reality system described in

Section 45.2.4, offer a transitional tool for de-

signers. Designers are given an intuitive interface

for creating VR worlds that can be targeted to-

wards an artistic purpose or a scientific design.

This allows for experimentation and gives de-

signers a chance to learn the properties and limi-

tations of a medium that they might not have

without becoming proficient graphics program-

mers. There is much room for experimentation

here in creating tools for quickly iterating on

complicated interactive 3D visualizations.

In addition to learning how to use new media,

designers must also learn the language and goals

of their collaborators’ disciplines. Understand-

ing the scientific goals behind a visualization is

the most important element for designers to

grasp. It is nearly impossible to create a good

visualization when you do not know what you

are trying to show. This does not mean that the

designer needs to be an expert in the scientific

field. This is an unrealistic goal, but designers

must be prepared to work with scientists to

understand their goals and needs. This can be a

difficult process, as the languages of the two

disciplines are often quite different. For example,

to a scientist looking at a point in a visualization,

‘‘value’’ means 10 meters per second, a measure-

ment of an experimental quantity. To an artist,

‘‘value’’ means the lightness or darkness of the

region. Even simple conversations can become

exercises in creating a common language of com-

munication.

Cross-discipline initiatives, such as the Brown

University and RISD cross-registered course,

‘‘Interdisciplinary Scientific Visualization,’’ and

RISD’s newly created program in digital media

will help to tighten the threads connecting the art

world and the visualization community. These

ventures, and similar ones at other institutions,

will help to develop a language for collaboration

and teach scientists, engineers, programmers,

and artists to understand each others’ goals and

work together, as in Donna Cox’s renaissance

teams, to realize their designs.

45.4.3.2 Engineering and Scientific
Education

As for designers, it is important for scientists,

engineers, and programmers to not only master

the new media that computers provide but also

understand the scientific goals behind the visua-

lization. The mastery of computer media should

cover potential uses of current hardware and

software solutions. It is also important for the

computer experts in a collaboration to provide

tools toothercollaborators that theycanuse.This

may be as simple as providing digital or physical

printouts of imagery. It may be complex as a

virtual realityprototypingsystem. It is imperative

that engineers and programmers find the means

for including scientists anddesigners in thedesign

loop. Technological barriers often make this

difficult. However, any visualization collabora-

tion will be enhanced by quickly establishing a

means for overcoming the obstacles to commu-

nicationanddesign inputpresentedbydifferences

in computing facilities and experience.

Finally, it is critically important for scientists

to appreciate design and the aesthetic sense that

designers have developed through their training

and experience. This leads to a recognition of

the potential that design has for furthering sci-

entific discovery, a necessary ingredient for a

successful collaboration. Often, this appreci-

ation is best accomplished through experience

in artistic projects and classes.

45.4.3.3 Education and the Renaissance
Person

Most of the scientific visualization approaches

we have discussed upto this point involve
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significant interdisciplinary collaboration by

multiple people. It is interesting to note that

what this approach strives to create through

collaboration is the equivalent of a Leonardo da

Vinci: a scientist and artist acting as one. Artistic

insight feeds into and illustrates scientific dis-

covery, while scientific discovery pushes the

limits of artistic representation and understand-

ing. In a sense, there is a continuum between

science and art, and each individual spans some

portion of that continuum. The more that one

learns about the other’s field, the more of the

continuum one covers. As scientists learn more

about design and art through collaborations,

classes, and experience, they break down the

barriers between the two disciplines, develop a

new visual language and understanding, and

make it easier for the collaborative processes to

succeed. The same is true for artists and

designers. As they come to understand science

and its goals, they become, more and more,

renaissance people, spanning the entire conti-

nuum. Perhaps only a very few will reach da

Vinci status, but the future collaborations

of all who strive to understand their collabora-

tors’ fields will be enhanced by their increased

knowledge.

As interdisciplinary initiatives continue to

grow in universities and research settings world-

wide, we are beginning to see a change in the way

science and art are taught. There is a tighter bond

between the two and a greater appreciation for

how the two disciplines can work together to help

achieve the goals of each. By structuring our

teaching to embrace this principle, we have the

ability to foster a new generation of renaissance

people and skilled collaborators.

45.5 Summary

In this chapter we have narrated some of our

own experiments with merging concepts from

art and design into the scientific visualization

process, particularly for exploratory applica-

tions that work with multivalued data. We

have also surveyed related work to give some

context for others aiming to continue explor-

ations into the synergy between these two dis-

ciplines. It is clear to us that there remains much

visualization knowledge to mine from the world

of painting, art, and design. Some of this know-

ledge is about visual representations, but there

are design and pedagogical components as

well that will play a role in educating visualiza-

tion researchers and in evaluating visualization

methods. Collaboration in the form of renais-

sance teams and the development of renaissance

scholars will advance our field, and tools that

amplify the output of designers by better lever-

aging their design capabilities without taxing

their stamina and patience will be critical to

this advancement.
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