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Selecting the Numerical Flux in Discontinuous
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In this paper we present numerical investigations of four different formulations
of the discontinuous Galerkin method for diffusion problems. Our focus is to
determine, through numerical experimentation, practical guidelines as to which
numerical flux choice should be used when applying discontinuous Galerkin
methods to such problems. We examine first an inconsistent and weakly unsta-
ble scheme analyzed in Zhang and Shu, Math. Models Meth. Appl. Sci.(M3AS)
13, 395–413 (2003), and then proceed to examine three consistent and stable
schemes: the Bassi–Rebay scheme (J. Comput. Phys. 131, 267 (1997)), the local
discontinuous Galerkin scheme (SIAM J. Numer. Anal. 35, 2440–2463 (1998))
and the Baumann–Oden scheme (Comput. Math. Appl. Mech. Eng. 175, 311–
341 (1999)). For an one-dimensional model problem, we examine the sten-
cil width, h-convergence properties, p-convergence properties, eigenspectra and
system conditioning when different flux choices are applied. We also examine
the ramifications of adding stabilization to these schemes. We conclude by pro-
viding the pros and cons of the different flux choices based upon our numerical
experiments.

KEY WORDS: Discontinuous Galerkin methods; spectral/hp elements; para-
bolic flux choices; stabilization.

1. INTRODUCTION

Although the original thrust of most discontinuous Galerkin (DG) research
was in solving hyperbolic problems, the general proliferation of the DG
methodology has also spread to the study of parabolic and elliptic prob-
lems. For example, works such as [4], in which the viscous compressible
Navier–Stokes equations were solved, required that a DG formulation be
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extended beyond the hyperbolic advection terms to the viscous terms of
the Navier–Stokes equations. Concurrently, both in [9] and [5] other DG
formulations for parabolic and elliptic problems were proposed. In an
effort to classify all the efforts made toward the use of DG methods for
elliptic problems, Arnold et al., first in [1] and then more fully in [2], pub-
lished a unified analysis of DG methods for elliptic problems.

In [2] a mathematical framework is provided for studying different
versions of DG approaches for elliptic problems. We first recognize from
[2] that the problem of solving

−∆u = f inΩ (1)

u = 0 on ∂Ω (2)

can be formulated in the discrete case as follows.
Assume we are given a tessellation Th = {K} of the domain Ω. We

define the following two spaces:

Vh :={v ∈L2(Ω) : v|K ∈P(K)∀K ∈Th},
Σh :={τ ∈ [L2(Ω)]2 : τ |K ∈Σ(K)∀K ∈Th},

where P(K) = Pp(K) is the space of polynomial functions of degree at
most p � 1 on K and Σ(K)= [Pp(K)]2. Following [2] we now define the
discrete solution of Eq. (1) as the problem of finding uh ∈VH and σh ∈Σh

such that for all K ∈Th∫
K

σh · τ dx =−
∫

K

uh∇h · τ dx +
∫

∂K

ûKnK · τ ds, (3)
∫

K

σh ·∇v dx =
∫

K

f v dx +
∫

∂K

vσ̂K ·nK ds, (4)

where the numerical fluxes σ̂K and ûK are approximations to σ =∇u and
to u, respectively, on the boundary of K. Given this general unified for-
mulation of the discrete problem, the two remaining choices which deter-
mine exactly which DG methodology is used is the choice of the numerical
fluxes σ̂K and ûK . Although theoretical considerations are discussed, the
reader is still left with the question of which flux choice should be used
and why.

There have been several attempts to provide performance informa-
tion concerning the flux choices, both by the developers of different flux
choices (e.g. [9,5]) and by those interested in flux choice comparisons
(e.g. [16,3,15,8]). For a overview of many of the properties of the DG
method, from the theoretical perspective, the performance perspective, and
the usage perspective, we refer the reader to the review article [10] and
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the references therein. From our perspective, however, there does not
appear to be clear-cut guidelines within the literature for aiding someone
in determining what are the computational trade-offs involved in the flux
choice.

In an attempt to ascertain the trade-offs between the different flux
choices, we set out to study several of the different formulations presented
in [2]. In Table I we present the methodologies and the corresponding
numerical fluxes for which we will present results. The operator {·} denotes
averaging across the interface while [[·]] denotes the jump difference across
the interface as described in [2].

Our goal is to determine, through numerical investigation, the
trade-offs between different fluxes. To accomplish this numerical investiga-
tion, we will present a very simple model problem, and will investigate the
stencil width, h-convergence, p-convergence, eigenspectra and system con-
ditioning associated with different flux choices.

1.1. Model Problem and Notation

The model problem which we will use for our evaluation of the vari-
ous methods is diffusion, i.e.,

∂u(x, t)

∂t
= ∂2u(x, t)

∂x2
, x ∈ (0,2π) (5)

with periodic boundary conditions and an initial condition u(x, t = 0) =
sin(x).

As in [16], let us denote Ij = [xj−(1/2), xj+(1/2)], for j =1, . . . ,N as our
elemental mesh on [0,2π ] where x1/2 =0 and xN+(1/2) =2π . We define the
following set of piecewise polynomials:

VP ={v :v is a polynomial of degree at mostP forx ∈ Ij , j =1, . . . ,N},
which will be used for both our trial and test spaces. Unless otherwise
stated, the orthogonal Legendre basis [7] was used for all experiments.

Table I. Proposed DG Methodologies for Elliptic Problems and the Flux Choices They
Represent

Method ûK σ̂K

Bassi–Rebay [4] {uh} {σh}
LDG [9] {uh}−β · [[uh]] {σh}+β[[σh]]−αj ([[uh]])
Baumann–Oden [5] {uh}+nK · [[uh]] {∇huh}
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All computations were accomplished with respect to modal expansion
coefficients; as such, the model problem initial condition specified above
was first projected to the space of piecewise polynomials based upon
the elemental decomposition and polynomial order per element. All inner
product calculations were accomplished using Gauss–Legendre quadra-
ture [7] of sufficient order to guarantee exact numerical integration of
the inner products of the polynomials used. Error (L2) calculations were
accomplished numerically using the same quadrature rules as used for
formulating the polynomial inner products. The computed approximate
solution was compared against the true exact solution, not the projected
(to the piecewise polynomial space) solution in all cases, and hence due
to the quadrature rules employed the error presented herein is a numeri-
cal approximation of the true L2 error.

The three primary fluxes which we will study in this paper are the
Bassi–Rebay flux [4] which we will denote with the initials BR, the LDG
flux [9] which we will denote with the initials LDG, and the Baumann–
Oden flux [5] which we will denote with the initials BO (as summarized
in Table I). To accomplish our study, we will follow the work of Shu in
[15], and by algebraic manipulation rewrite Eqs. (3 and 4) to eliminate the
auxiliary variable σ from the formulation (taking into account the proper
flux when manipulating the variable out of the expression). For our model
problem this manipulation leads to the following systems for BR, LDG,
and BO, respectively:

dûj

dt
= ABR

−2 ûj−2 +ABR
−1 ûj−1 +ABR

0 ûj +ABR
1 ûj+1 +ABR

2 ûj+2, (6)

dûj

dt
= ALDG

−1 ûj−1 +ALDG
0 ûj +ALDG

1 ûj+1, (7)

dûj

dt
= ABO

−1 ûj−1 +ABO
0 ûj +ABO

1 ûj+1, (8)

where ûj denotes a vector of the modal coefficients of the polynomial
expansion on an element j , and the matrices Ak are formulated based
upon the choice of the numerical fluxes σ̂K and ûK in Eqs. (3) and (4).
The subscript k on each matrix Ak denotes the offset from the current ele-
ment j for which the solution is being sought. The particular LDG sten-
cil above corresponds to a choice of β =1/2 as in the works of [16,15]. A
different choice of the β parameter may lead to a wider stencil and differ-
ent numerical properties for LDG. For the purposes of this paper we limit
ourselves to examining the cases of β =0 (which, when no stabilization is
added, reverts to the BR scheme), and β =1/2 as in [15,16]. We can now
write our numerical approximation of the model problem in the following
form:
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dûg

dt
=Aûg, (9)

where ûg denotes the concatenation of modal coefficients of each element
(hence if given N elements, each having M modal coefficients, the size of
ûg is N ×M), and A is a size(ûg) × size(ûg) square matrix. When exam-
ining eigenspectra, we will examine the matrix A associated with different
flux choices, and will denote the choice with a subscript (such as ABR for
the matrix based upon the BR flux choice).

For all numerical tests accomplished in this paper, we will use the
second-order implicit Crank–Nicolson scheme, which can be written as

LCNûn+1
g =

(
M + 1

2
∆tA

)
ûn

g, (10)

LCN =
(

M − 1
2
∆tA

)
, (11)

where M denotes the mass matrix and A denotes the spatial operator
matrix as described above. When discussing the conditioning of the sys-
tem, we will examine LCN, since this is the matrix term which requires
inversion in the above expression.

1.2. Outline

This paper is divided as follows. We examine four different one-
dimensional formulations of the DG method for our model problem. In
Sec. 2 we examine the “inconsistent scheme” analyzed in [15,16]. In Sec. 3,
we present a convergence study, eigenspectra and conditioning information
for the BR formulation. In Sec. 4 we present similar information for LDG
and in Sec. 5 we present information for the BO formulation. In Sec. 6 we
present some effects of stabilization. Finally, in Sec. 7, we summarize our
finding by providing the trade-offs for using each method based upon this
numerical study.

2. FORMULATION 1: THE “INCONSISTENT” SCHEME

The first scheme we investigate is the “inconsistent” scheme – a
scheme deemed to be both inconsistent and weakly unstable in the analy-
sis of [16]. The solution of our model problem using this scheme is to find
u∈VP such that

∫
Ij

utv dx +
∫

Ij

uxvx dx − (ûx)j+ 1
2
v−
j+ 1

2
+ (ûx)j− 1

2
v+
j− 1

2
= 0
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for all test function v ∈VP . Since there is no upwinding mechanism in the
diffusion problem of interest, we will take (ûx)j+(1/2) = (1/2)

(
(û+

x )j+(1/2)+
(û−

x )j+(1/2)

)
. In Fig. 1 we present solutions to the model problem using

three different polynomial orders per element: P = 1, P = 2 and P = 4.
Forty evenly spaced elements were used for all three polynomial orders,
and a time step of 10−5 was employed with the CN time stepping scheme.
Results are shown at T =0.7.

To help elucidate the statements about consistency made in [16], we
examine both the h-convergence and p-convergence of this scheme. In
Fig. 2 we present both h-convergence (left) and p-convergence (right)
plots. We observe that for a fixed polynomial order, the method does not
converge upon elemental refinement. This is consistent with the claims
made in [16]. For a fixed number of elements (40 evenly spaced ele-
ments), upon p-refinement, we observe what appears to be the initial signs
of convergence. As the polynomial order is increased, however, the
solution starts to diverge from the true solution. This phenomenon
is consistent with the analysis shown in [16] in which an O(1/∆x)

instability is predicted. As the polynomial order is increased, the wave-
length support (a measure of spatial resolution) is increased, and hence the
instability mentioned in [16] becomes prominent. Also, h-convergence is
insufficient to demonstrate this instability as the wavelength support added
by increasing the elemental resolution is slow compared to polynomial

0 1 2 3 4 5 6 7
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–0.4
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0.8

1

Fig. 1. Solution of the model problem using formulation 1. The exact solution (solid) and
polynomial orders P = 1 (dotted), P = 2 (dashed) and P = 4 (dot-dashed) are presented at
time T =0.7. Forty evenly spaced elements were used.
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Fig. 2. Convergence study of formulation 1 based upon the model problem evaluated at
T = 0.7: On the left, we present the L2 error vs. the number of evenly spaced elements hav-
ing polynomial orders P = 1 (squares), P = 2 (circles) and P = 4 (triangles). On the right we
present the L2 error vs. polynomial order for a mesh consisting of 40 evenly spaced elements.

refinement. To verify that this phenomenon is not a function of the CN
time stepping algorithm, we also studied the p-convergence when using
the implicit first-order Euler–Backward scheme. The convergence diagram
did not change (for instance, the L2 error for the Euler–Backward scheme
for a ninth-order discretization was 2.52 compared to 2.43 using CN;
the small discrepancy is due to the difference in the time integration
order).

3. FORMULATION 2: BASSI–REBAY FLUX CHOICE

The first consistent scheme that we examine is given by splitting the
solution of the model problem into two equations. We seek to find u, q ∈
VP such that, for all test functions v,w ∈VP ,

∫
Ij

utv dx +
∫

Ij

qvx dx − q̂
j+ 1

2
v−
j+ 1

2
+ q̂

j− 1
2
v+
j− 1

2
= 0,

∫
Ij

qw dx +
∫

Ij

uwx dx − û
j+ 1

2
w−

j+ 1
2
+ û

j− 1
2
w+

j− 1
2

= 0,

where for flux choices we make the choice of BR [4]:

û
j+ 1

2
= 1

2

(
u+

j+ 1
2
+u−

j+ 1
2

)
, q̂

j+ 1
2
= 1

2

(
q+
j+ 1

2
+q−

j+ 1
2

)
.

The scheme above has been shown in [2] to be both consistent and
stable for all polynomial orders.
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The first observation that can be made, as in [15], is that averaging in
both the primary and the auxiliary variable yields a five element wide sten-
cil. This observation will become important in discussing the eigenspectra
and the system conditioning. We will now proceed to examine the conver-
gence rate, eigenspectra and system conditioning for this flux choice.

3.1. Convergence Rate

In Table II we present a convergence study using the BR flux. For this
study, we examine five different numbers of evenly spaced elements (10, 20,
40, 80, 160) with polynomial orders varying systematically from P = 1 to
P =6. For this test, the model problem was solved up to time T =0.7 using
the second-order CN scheme with a time step of ∆t = 10−5. In Table II
we present the error defined as the L2 difference between the approximate
and exact solution. In the table, the symbol ‘–’ denotes when the error due
to the spatial discretization is less than 10−10, and hence the time error
becomes the dominant error. As was shown in [3,15], the order of accu-
racy is P when the polynomial order is odd (sub-optimal) and P + 1 when
the polynomial order is even (optimal). In Figs. 6 and 4 we present a com-
parison of the h-convergence and p-convergence between BR, LDG and
BO, respectively. In Fig. 6 we examine the h-convergence of the method
(denoted with circles) for two different polynomial orders, P = 1 (solid
line) and P = 2 (dashed line). In Fig. 4, we examine the p-convergence
of the method (denoted with circles) when 40 evenly spaced elements are
used. The method exhibits a stair-case convergence as the polynomial order
is increased, consistent with the optimal and sub-optimal estimates men-
tioned above. With respect to the optimal parity (even), the scheme exhibits

Table II. BR Convergence Data: L2 Error Computed when Solving the Model Problem
Evaluated at T =0.7.

Polynomial order N =10 N =20 N =40 N =80 N =160

1 4.1349e−02 2.0084e−02 9.9664e−03 4.9737e−03 2.4856e−03
2 7.2334e−04 8.6986e−05 1.0776e−05 1.3441e−06 1.6792e−07
3 8.8529e−05 1.0827e−05 1.3457e−06 1.6797e−07 2.0988e−08
4 9.0255e−07 2.7175e−08 8.4172e−10 – –
5 7.3355e−08 2.2518e−09 – – –
6 5.3352e−10 – – – –

Evenly spaced elements were used in space; second-order Crank–Nicolson with at time step
of ∆t = 10−5 was used in time. Entries denoted with ‘–’ represent cases where the spatial
error is less than 10−10, and hence the time stepping error becomes the dominant error.
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Fig. 3. Eigenspectra of the spatial operator for BR ABR. Forty elements were used in all
cases; each plot denotes a different polynomial order. The polynomial order runs from first-
order P = 1 to ninth-order P = 9 in row-major order. The ordinate of each plot is the com-
plex imaginary axis, and the abscissa is the complex real axis. Note that the axes scales are
only consistent across rows due to the large magnitude variation in the spectra due to poly-
nomial order.

exponential convergence. Comparative statements between the methods will
be made later in the paper.

3.2. Eigenspectra

In Fig. 3 we present the eigenspectra of the spatial operator ABR
formed using BR flux. The operator is a real symmetric matrix, and hence
yields eigenvalues which are real. We present eigenspectra diagrams for nine
different polynomial orders running from first-order P = 1 to ninth-order
P =9 in row-major order.

As we would expect, increasing the polynomial order increases the
absolute maximum eigenvalue. In Table III we present the maximum abso-
lute eigenvalue (max |λi |) for different element number and polynomial
order combinations. In Fig. 8, we present a graph of maximum absolute
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Table III. BR Maximum Absolute Eigenvalue Study: Maximum Absolute Eigenvalue of
the Discrete Operator ABR Approximating the Second-order Spatial Derivative Operator

for Different Number of Elements and Polynomial Order Per Element.

Polynomial order N =10 N =20 N =40 N =80 N =160

1 1.9099e+01 3.8197e+01 7.6394e+01 1.5279e+02 3.0558e+02
2 3.1831e+01 6.3662e+01 1.2732e+02 2.5465e+02 5.0930e+02
3 9.9688e+01 1.9938e+02 3.9875e+02 7.9750e+02 1.5950e+03
4 1.3268e+02 2.6535e+02 5.3071e+02 1.0614e+03 2.1228e+03
5 2.8474e+02 5.6949e+02 1.1390e+03 2.2779e+03 4.5559e+03
6 3.4837e+02 6.9673e+02 1.3935e+03 2.7869e+03 5.5738e+03
7 6.1846e+02 1.2369e+03 2.4739e+03 4.9477e+03 9.8954e+03
8 7.2296e+02 1.4459e+03 2.8919e+03 5.7837e+03 1.1567e+04
9 1.1448e+03 2.2897e+03 4.5793e+03 9.1586e+03 1.8317e+04
10 1.3004e+03 2.6009e+03 5.2017e+03 1.0403e+04 2.0807e+04
11 1.9078e+03 3.8156e+03 7.6312e+03 1.5262e+04 3.0525e+04
12 2.1247e+03 4.2494e+03 8.4989e+03 1.6998e+04 3.3995e+04
13 2.9513e+03 5.9026e+03 1.1805e+04 2.3610e+04 4.7221e+04
14 3.2398e+03 6.4795e+03 1.2959e+04 2.5918e+04 5.1836e+04
15 4.3193e+03 8.6386e+03 1.7277e+04 3.4554e+04 6.9109e+04
16 4.6895e+03 9.3791e+03 1.8758e+04 3.7516e+04 7.5033e+04

Evenly spaced elements were used in all cases.

eigenvalue vs. polynomial order for a 40 evenly spaced element mesh (cir-
cles denote BR). The increase in the magnitude is of order P 4 where P is
the order of the polynomial approximation used. This coincides with the
commonly used 1/P 4 estimate for the diffusion number when using spec-
tral methods for solving parabolic problems.

3.3. Conditioning

When solving our model problem implicitly, we are interested in invert-
ing the operator LCN as described above when formed using the spatial
operator ABR. In Table IV we examine the L2 condition number of the
matrix LCN before and after diagonal preconditioning (denoted by multi-
plying by a matrix Z which consists of the inverse diagonal operator). For
this experiment, a 40 evenly spaced element discretization using a time step
of ∆t =10−5 was used. This time step was chosen so as to yield a time step-
ping error on the order of 10−10 when using the second-order CN scheme.
A different choice of time step will change the absolute numbers presented,
however trends can be assessed. It is also important to note that variations
in the elemental spacing and in the choice of basis may strongly influence
the condition number [11]; this must be considered when interpreting the
conditioning results presented herein.
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Table IV. Condition Number Comparison Before
and After Diagonal Preconditioning for the Linear

Operator LCN formed Using BR.

Polynomial order κ2(LCN) κ2(ZLCN)

1 3.0073 1.0037
2 5.0122 1.0141
3 7.0570 1.0446
4 9.0733 1.0929
5 11.1912 1.1970
6 13.2259 1.3310

A mesh consisting of 40 evenly spaced elements and a
time step of ∆t =10−5 was used.

As the polynomial order is increased, the condition number of the
system increases (as expected). It is interesting to note that the growth in
the condition number appears linear with respect to the polynomial order.
Recall that we are not examining the condition number of the spatial oper-
ator ABR as done in [8], but rather the condition number of LCN, which
is the matrix that we must invert due to the implicit time stepping algo-
rithm which we are using. The CN scheme applied to this system produces
a system which is diagonally dominant, and hence diagonal preconditioning
works well. The new system, which is symmetric and has a condition num-
ber near one, is now a prime candidate for using conjugate gradient meth-
ods. Numerical experiments found that the number of iterations necessary
to solve the preconditioned system was at least an order of magnitude lower
than the rank of the original system.

When less stringent time stepping errors are required, and hence larger
time steps are used, the effect of the diagonal preconditioner becomes less
pronounced. For instance, given a time step of 10−3 with sixth-order poly-
nomials, diagonal preconditioning reduces the condition number of the sys-
tem by a factor of 1.2.

4. FORMULATION 3: LOCAL DISCONTINUOUS
GALERKIN (LDG) FLUX CHOICE

The second consistent scheme that we examine is given by splitting the
solution of the model problem into two equations. We seek to find u, q ∈VP

such that, for all test functions v,w ∈VP ,
∫

Ij

utv dx +
∫

Ij

qvx dx − q̂
j+ 1

2
v−
j+ 1

2
+ q̂

j− 1
2
v+
j− 1

2
= 0,
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∫
Ij

qw dx +
∫

Ij

uwx dx − û
j+ 1

2
w−

j+ 1
2
+ û

j− 1
2
w+

j− 1
2

= 0,

where for flux choices we make the choice of Cockburn and Shu [9]

û
j+ 1

2
=u+

j+ 1
2
, q̂

j+ 1
2
=q−

j+ 1
2
.

The scheme above has been shown in [2] to be both consistent and sta-
ble for all polynomial orders.

The first observation that can be made, as in [15], is that this scheme
yields a three element stencil. The “flip-flopping” of the flux choice yields
a three element wide stencil, which is tighter spatially than the BR flux dis-
cussed previously. This observation will become important in discussing the
eigenspectra and the system conditioning. We will now proceed to exam-
ine the convergence rate, eigenspectra and system conditioning for this flux
choice.

4.1. Convergence

In Table V we present a convergence study using the LDG flux. For
this study, we examine five different numbers of evenly spaced elements
(10, 20, 40, 80, 160) with polynomial orders varying systematically from
P = 1 to P = 6. For this test, the model problem was solved up to time
T = 0.7 using the second-order CN scheme with a time step of ∆t = 10−5.
In Table V we present the error defined as the L2 difference between the
approximate and exact solution. In the Table, the symbol ‘–’ denotes when
the error due to the spatial discretization is less than 10−10, and hence the

Table V. LDG Convergence Data: L2 Error Computed when Solving the Model Problem
Evaluated at T =0.7

Polynomial Order N =10 N =20 N =40 N =80 N =160

1 2.1270e−02 5.2941e−03 1.3221e−03 3.3045e−04 8.2607e−05
2 1.0662e−03 1.3319e−04 1.6646e−05 2.0807e−06 2.6009e−07
3 4.1068e−05 2.5706e−06 1.6072e−07 1.0046e−08 6.2812e−10
4 1.2779e−06 4.0010e−08 1.2510e−09 – –
5 3.3266e−08 5.2098e−10 – – –
6 7.4372e−10 – – – –

Evenly spaced elements were used in space; second-order CN with at time step of ∆t =10−5

was used in time. Entries denoted with ‘–’ represent cases where the spatial error is less then
10−10, and hence the time stepping error becomes the dominant error.
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Fig. 4. p-Convergence study comparison of BR (circles), LDG (squares) and BO (triangles)
Based upon the model problem evaluated at T =0.7; We present the L2 error vs. polynomial
order for a mesh consisting of 40 evenly spaced elements.

time error becomes the dominant error. As was shown in [16,3], the order
of accuracy is P +1 (optimal) irrespective of polynomial order. In Fig. 6 we
examine the h-convergence of the method (denoted with squares) for two
different polynomial orders, P = 1 (solid line) and P = 2 (dashed line). In
Fig. 4, we examine the p-convergence of the method (denoted with squares)
when 40 evenly spaced elements are used. The method exhibits exponential
convergence as the polynomial order is increased, independent of the par-
ity. Comparative statements between the methods will be made later in the
paper.

4.2. Eigenspectra

In Fig. 5 we present the eigenspectra of the spatial operator ALDG
formed using LDG fluxes. The operator is a real symmetric matrix, and
hence yields eigenvalues which are real. We present eigenspectra diagrams
for nine different polynomial orders running from first-order P =1 to ninth-
order P =9 in row-major order. Observe the nice clustering property of the
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Fig. 5. Eigenspectra of the spatial operator for LDG ALDG. Forty elements were used in
all cases; each plot denotes a different polynomial order. The polynomial order runs from
first-order P = 1 to ninth-order P = 9 in row-major order. The ordinate of each plot is the
complex imaginary axis, and the abscissa is the complex real axis. Note that the axes scales
are only consistent across rows due to the large magnitude variation in the spectra due to
polynomial order.

LDG eigenvalues; this clustering property makes LDG a prime candidate
for preconditioning techniques.

In Table VI we present the maximum absolute eigenvalue (max |λi |)
for different element number and polynomial order combinations. In Fig. 8,
we present a graph of maximum absolute eigenvalue vs. polynomial order
for a 40 evenly spaced element mesh (squares denote LDG). The increase
in the maximum absolute eigenvalue is of order P 4 where P is the order
of the polynomial approximation used. This coincides with the commonly
used 1/P 4 estimate for the diffusion number when using spectral methods
for solving parabolic problems.

We observe that the maximum absolute value of LDG is about three
times that of BR for comparative element number and polynomial order.
This is consistent with the observations made in [3]. This implies that when
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Table VI. LDG Maximum Absolute Eigenvalue Study: Maximum Absolute Eigenvalue of
the Discrete Operator ALDG Approximating the Second-order Spatial Derivative Operator

for Different Number of Elements and Polynomial Order per Element.

Polynomial order N =10 N =20 N =40 N =80 N =160

1 2.7392e+01 5.4785e+01 1.0957e+02 2.1914e+02 4.3828e+02
2 8.8096e+01 1.7619e+02 3.5239e+02 7.0477e+02 1.4095e+03
3 1.9486e+02 3.8971e+02 7.7942e+02 1.5588e+03 3.1177e+03
4 3.7235e+02 7.4470e+02 1.4894e+03 2.9788e+03 5.9576e+03
5 6.2813e+02 1.2563e+03 2.5125e+03 5.0250e+03 1.0050e+04
6 9.8623e+02 1.9725e+03 3.9449e+03 7.8898e+03 1.5780e+04
7 1.4545e+03 2.9090e+03 5.8180e+03 1.1636e+04 2.3272e+04
8 2.0568e+03 4.1136e+03 8.2272e+03 1.6454e+04 3.2909e+04
9 2.8011e+03 5.6022e+03 1.1204e+04 2.2409e+04 4.4818e+04
10 3.7112e+03 7.4224e+03 1.4845e+04 2.9690e+04 5.9379e+04
11 4.7951e+03 9.5902e+03 1.9180e+04 3.8361e+04 7.6722e+04
12 6.0766e+03 1.2153e+04 2.4306e+04 4.8613e+04 9.7225e+04
13 7.5636e+03 1.5127e+04 3.0255e+04 6.0509e+04 1.2102e+05
14 9.2801e+03 1.8560e+04 3.7120e+04 7.4240e+04 1.4848e+05
15 1.1234e+04 2.2468e+04 4.4935e+04 8.9871e+04 1.7974e+05
16 1.3449e+04 2.6898e+04 5.3795e+04 1.0759e+05 2.1518e+05

Evenly spaced elements were used in all cases.

using an explicit time stepping scheme with the same elemental and polyno-
mial discretization, LDG will require a time step approximately three times
smaller than BR for stability.

4.3. Conditioning

As mentioned earlier, when solving our model problem implicitly, we
are interested in inverting the operator LCN as described above when
formed using the spatial operator ALDG. In Table VII we examine the L2
condition number of the matrix LCN before and after diagonal precondi-
tioning (denoted by multiplying by a matrix Z which consists of the inverse
diagonal operator). For this experiment, a 40 evenly spaced element discret-
ization using a time step of ∆t =10−5 was used.

As the polynomial order is increased, the condition number of the sys-
tem increases (as expected). As in the BR case, the condition number of
LCN appears to grow linearly with the polynomial order. The CN scheme
applied to this system produces a system which is diagonally dominant, and
hence diagonal preconditioning works well. One observation, however, is
that the condition number of the preconditioned LDG system is not as low
as the conditioned number for the preconditioned BR system. This may be
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Table VII. Condition Number Comparison Before
and After Diagonal Preconditioning for the Linear

Operator LCN Formed using LDG.

Polynomial order κ2(LCN ) κ2(ZLCN )

1 3.0024 1.0056
2 4.9772 1.0308
3 6.8769 1.0918
4 8.6917 1.2362
5 10.4851 1.4847
6 12.3185 1.9161

A mesh consisting of 40 evenly spaced elements and a
time step of ∆t =10−5 was used.

attributed to the tighter LDG stencil. Because the LDG stencil is tighter,
LDG is less diagonally dominant (in the sense of monitoring the ratio of
the absolute row sums over the diagonal element) than BR, and hence diag-
onal preconditioning is less effective than in the BR case. However, the new
system, which is symmetric and has a condition number near one, is also
a prime candidate for using conjugate gradient methods. Numerical experi-
ments found that the number of iterations necessary to solve the precondi-
tioned system was at least an order of magnitude lower than the rank of the
original system, however the number of iterations is greater than or equal
to the number of iterations needed for the BR system.

It is interesting to note that when less stringent time stepping errors
are required, and hence larger time steps are used, diagonal preconditioning
still has a greater relative effect on the BR system compared to the LDG
system.

5. FORMULATION 4: BAUMANN–ODEN FLUX CHOICE

The consistent scheme that we examine is given by a modification of
formulation 1 to make it consistent. We seek to find u, q ∈VP such that, for
all test functions v,w ∈VP ,

∫
Ij

utv dx +
∫

Ij

uxvx dx − (ûx)j+ 1
2
v−
j+ 1

2
+ (ûx)j− 1

2
v+
j− 1

2

−1
2
(vx)

−
j+ 1

2

(
u+

j+ 1
2
−u−

j+ 1
2

)
− 1

2
(vx)

+
j− 1

2

(
u+

j− 1
2
−u−

j− 1
2

)
=0,

where we take (ûx)j+(1/2) = (1/2)
(
(û+

x )j+(1/2) + (û−
x )j+(1/2)

)
as with the

inconsistent scheme. The modification above yields a consistent scheme
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Table VIII. BO Convergence Data: L2 Error Computed when Solving the Model Problem
Evaluated at T =0.7

Polynomial order N =10 N =20 N =40 N =80 N =160

1 6.1733e−02 1.5530e−02 3.8852e−03 9.7141e−04 2.4286e−04
2 3.4457e−02 9.7002e−03 2.5055e−03 6.3165e−04 1.5824e−04
3 1.3137e−04 7.8184e−06 4.8267e−07 3.0076e−08 1.8786e−09
4 1.7944e−05 1.1723e−06 7.4127e−08 4.6490e−09 2.8931e−10
5 8.7873e−08 1.3167e−09 – – –
6 7.3241e−09 1.2006e−10 – – –

Evenly spaced elements were used in space; second-order CN with at time step of ∆t =10−5

was used in time. Entries denoted with ‘–’ represent cases where the spatial error is less then
10−10, and hence the time stepping error becomes the dominant error.

for all polynomial orders greater than or equal to one. The sacrifice that
is made, however, is that the modification above yields a non-symmetric
scheme, which will be evident when examining the eigenspectra. We will
now proceed to examine the convergence rate, eigenspectra and system con-
ditioning for this flux choice.

5.1. Convergence Properties

In Table VIII we present a convergence study using the BO flux. For
this study, we examine five different numbers of evenly spaced elements (10,
20, 40, 80, 160) with polynomial orders varying systematically from P = 1
to 6. For this test, the model problem was solved up to time T =0.7 using
the second-order CN scheme with a time step of ∆t = 10−5. In Table II
we present the error defined as the L2 difference between the approximate
and exact solution. In the table, the symbol ‘–’ denotes when the error due
to the spatial discretization is less than 10−10, and hence the time error
becomes the dominant error. As was shown in [15,3], the order of accu-
racy is P + 1 when the polynomial order is odd (optimal) and P when
the polynomial order is even (sub-optimal). In Fig. 6 we examine the h-
convergence of the method (denoted with triangles) for two different poly-
nomial orders, P = 1 (solid line) and P = 2 (dashed line). In Fig. 4, we
examine the p-convergence of the method (denoted with triangles) when 40
evenly spaced elements are used. The method exhibits a stair-case conver-
gence as the polynomial order is increased, consistent with the optimal and
sub-optimal estimates mentioned above. With respect to the optimal par-
ity (odd), the scheme exhibits exponential convergence. Comparative state-
ments between the methods will be made later in the paper.
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Fig. 6. h-Convergence study comparison of BR (circles), LDG (squares) and Baumann–
Oden (triangles) based upon the model problem evaluated at T =0.7; we present the L2 error
vs. the number of evenly spaced elements when using polynomial order P =1 (solid) and P =
2 (dashed).

Based upon the h-convergence results presented in Fig. 6, we observe
that when the polynomial order is odd (P = 1 for the experiment in
the figure), LDG provides the best convergence properties followed by
Baumann–Oden and Bassi–Rebay (in descending order). We observe that
when the polynomial order is even (P =2 for the experiment in the figure),
BR provides the best convergence properties followed by LDG and BO (in
descending order). These observations are consistent with the convergence
studies accomplished in [3]. Observe that with respect to p-convergence, BR
and LDG provide nearly identical convergence results, both which are bet-
ter than BO.

5.2. Eigenspectra

In Fig. 7 we present the eigenspectra of the spatial operator ABO
formed using BO fluxes. The operator is a real but not symmetric, and
hence admits the possibility of eigenvalues which are complex. We present
eigenspectra diagrams for nine different polynomial orders running from
first-order P =1 to ninth-order P =9 in row-major order.

Observe that the eigenspectra of this operator clearly demonstrate the
non-symmetric nature of the operator. Complex eigenvalues denote the
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Fig. 7. Eigenspectra of the spatial operator for BO ABO. Forty elements were used in all
cases; each plot denotes a different polynomial order. The polynomial order runs from first-
order P = 1 to ninth-order P = 9 in row-major order. The ordinate of each plot is the com-
plex imaginary axis, and the abscissa is the complex real axis. Note that the axes scales are
only consistent across rows due to the large magnitude variation in the spectra due to poly-
nomial order.

dispersive properties of the modification made to the inconsistent scheme.
The other observation which can be made is that when solving the BO
scheme explicitly, special care must be taken to use a time stepping scheme
whose region of convergence contains a sufficient amount of the complex
half-plane to encompass the dispersive eigenvalues.

In Table IX we present the maximum absolute eigenvalue (max |λi |) for
different element number and polynomial order combinations. In Fig. 8, we
present a graph of maximum absolute eigenvalue vs. polynomial order for a
40 evenly spaced element mesh (triangles denote BO). We observe that the
maximum absolute value of LDG is about five times that of BO for com-
parative element number and polynomial order.

In Fig. 8 we compare the maximum absolute eigenvalue vs. polynomial
order for the three consistent schemes. A 40 evenly spaced elemental mesh
was used. As one would expect, all three flux choices exhibit O(P 4) growth.
Observe that LDG has the largest absolute eigenvalue, implying that LDG
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Table IX. BO Maximum Absolute Eigenvalue Study: Maximum Absolute Eigenvalue of
the Discrete Operator ABO Approximating the Second-order Spatial Derivative Operator

for Different Number of Elements and Polynomial Order per Element.

Polynomial order N =10 N =20 N =40 N =80 N =160

1 6.3662e+00 1.2732e+01 2.5465e+01 5.0930e+01 1.0186e+02
2 1.9099e+01 3.8197e+01 7.6394e+01 1.5279e+02 3.0558e+02
3 3.9423e+01 7.8846e+01 1.5769e+02 3.1539e+02 6.3077e+02
4 8.1525e+01 1.6305e+02 3.2610e+02 6.5220e+02 1.3044e+03
5 1.1647e+02 2.3294e+02 4.6587e+02 9.3175e+02 1.8635e+03
6 2.0980e+02 4.1959e+02 8.3918e+02 1.6784e+03 3.3567e+03
7 2.7169e+02 5.4339e+02 1.0868e+03 2.1735e+03 4.3471e+03
8 4.2726e+02 8.5452e+02 1.7090e+03 3.4181e+03 6.8361e+03
9 5.2385e+02 1.0477e+03 2.0954e+03 4.1908e+03 8.3816e+03
10 7.5720e+02 1.5144e+03 3.0288e+03 6.0576e+03 1.2115e+04
11 8.9621e+02 1.7924e+03 3.5849e+03 7.1697e+03 1.4339e+04
12 1.2229e+03 2.4458e+03 4.8917e+03 9.7833e+03 1.9567e+04
13 1.4121e+03 2.8241e+03 5.6483e+03 1.1297e+04 2.2593e+04
14 1.8477e+03 3.6953e+03 7.3907e+03 1.4781e+04 2.9563e+04
15 2.0947e+03 4.1893e+03 8.3787e+03 1.6757e+04 3.3515e+04
16 2.6547e+03 5.3095e+03 1.0619e+04 2.1238e+04 4.2476e+04

Evenly spaced elements were used in all cases.

will be the most restrictive when applying an explicit time stepping algo-
rithm. BR is less restrictive than LDG (as stated previously, about three
times less restrictive), and BO is the least restrictive based upon maximum
eigenvalue magnitude. For BO, however, we must remember that the explicit
time stepping scheme must contain a large region of the complex half-plan
to encompass the dispersive eigenvalues of the BO spatial operator.

5.3. Conditioning

As mentioned earlier, when solving our model problem implicitly, we
are interested in inverting the operator LCN as described above when
formed using the spatial operator ABO. In Table X we examine the L2 con-
dition number of the matrix LCN before and after diagonal preconditioning
(denoted by multiplying by a matrix Z which consists of the inverse diago-
nal operator). For this experiment, a 40 evenly spaced element discretiza-
tion using a time step of ∆t =10−5 was used.

As in the BR and LDG cases, the condition number of LCN appears
to grow linearly with the polynomial order. Observe that diagonal precon-
ditioning modifies this system significantly also. The caveat, however, is that
the BO system is not symmetric, and hence conjugate gradient methods
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Fig. 8. Maximum absolute eigenvalue maxi |λi | vs. polynomial order for BR (circles), LDG
(squares) and BO (triangles). A mesh consisting of 40 evenly spaced elements was used.

cannot be applied; one must resort to methods such as generalized residual
methods (e.g., GMRES).

6. STABILIZATION

For the three consistent flux choices presented above, stabilization fac-
tors are sometimes added when solving elliptic problems. In the case of
solving purely elliptic problems, these stabilization factors quite often help
to guarantee that the null space of the discrete operator is trivial or mod-
ify the scheme so that optimal convergence rates can be achieved [2]. For
instance, in the case of discretizing the model parabolic problem, only
the constant function should exist in the discrete null space of the spa-
tial operator. One form of the stabilization factor commonly used is the
term −ηehe[[uh]], which is appended to the σ̂K flux. The term ηe is basi-
cally a penalization factor taken to be greater than or equal to zero, he

is related to the length of the edge on which the penalization is to occur
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Table X. Condition Number Comparison Before and
After Diagonal Preconditioning for the Linear

Operator LCN Formed Using BO.

Polynomial order κ2(LCN) κ2(ZLCN)

1 2.9927 1.0008
2 4.9400 1.0096
3 6.7697 1.0237
4 8.3936 1.0823
5 9.7528 1.1423
6 10.9273 1.3039

A mesh consisting of 40 evenly spaced elements and a
time step of ∆t =10−5 was used.

(and in the one-dimensional case is taken to be one), and [[uh]] is a mea-
sure of the jump in the solution [2]. For LDG with β = 0 (which in the
absence of stabilization reduces to the original BR scheme), the inclusion
of this term implies that σ̂K ={σh}−ηehe[[uh]], for LDG (in general) σ̂K =
{σh} + β · [[σh]] − ηehe[[uh]] and for BO σ̂K = {∇huh} − ηehe[[uh]] (a new
variation on BO stabilization has recently been presented in [14], but will
not be discussed here). The addition of this elementary stabilization is
designed to be consistent with the LDG stabilization factor found in [2],
and is similar to adding an additional penalty term [12] which penalizes
jumps in the solution. The larger ηe is chosen to be, the more penalized the
method; asymptotically the scheme becomes a C0 method because the sta-
bilization factor more strongly enforces continuity across element interfaces.
Several other stabilization options have been proposed and studied in the
literature, for instance: “stabilized” BR [6], variants of the non-symmetric
interior penalty Galerkin (NIPG) method [13], and the aforementioned
penalization in terms of jumps in derivatives [14]. None of these will be
considered in this paper, although similar tests could be accomplished to
understand the influence of the penalty parameters.

For parabolic problems, two natural questions are: why would stabil-
ization be necessary, and what is the effect of stabilization? To attempt to
understand the first of these questions, we attempted to quantify the size of
the discrete null space of the discretized operators formed using BR, LDG
and BO. To accomplish this task, we examined carefully the eigenvalues of
the discrete operator A which is the DG approximation of the second-order
derivative operator on a periodic interval. The continuous operator, in this
case, has only the constant function in its null space. We would desire that
this also be true of the discrete operator. After ordering the eigenvalues, we
declared the size of the discrete null space to be the number of eigenvalues
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that, in absolute magnitude, are less than 10−13. We expect that only one
such eigenvalue exists for the discrete operators. In Table XI, we present the
size of the null space for the three different formulations. We compute for
two different evenly spaced element numbers (N =10 and 11) and for poly-
nomial orders P =1 to 10.

Observe that LDG exhibits exactly what we expect; upon examination,
only the constant solution is in the null space. BO exhibits what we expect
except for one case: N = 10 with P = 1. It is discussed in [2] that for P < 2
such problems may exist. More importantly, however, is that (as predicted
in [2]) the BR operator has a null space which contains, under certain cir-
cumstances, more than a constant mode. This study shows that the size of
the discrete null space does not grow above two with polynomial order, and
apparently the size is effected by a combination of the parity of the element
number and polynomial order. In Fig. 9 we plot as an example the non-
constant function within the discrete null space for BR on ten evenly spaced
elements with sixth order polynomials.

The concern which arises for BR is that, when combined with non-lin-
ear advection (such as in the Navier–Stokes equations), BR may, in some
instances, leave some solutions untouched with respect to dissipation. Con-
sistent with [2], we affirmed numerically that stabilization can be added to
BR which reduces the null space to contain only the constant mode.

To understand the effect of stabilization, we examined the eigenspec-
tra of the new operator formed by stabilization. In Fig. 10, we present
on the left the eigenspectra of the LDG β = 0 (i.e., the reduction to BR)

Table XI. Numerical Evaluation of the Dimension of the Null Space (λi � 1×10−13) for
Different Polynomial Order Expansions P when Partitioning the Domain into Evenly

Spaced Elements

Polynomial
order BR: N =10 BR: N =11 LDG: N =10 LDG: N =11 BO: N =10 BO: N =11

1 2 2 1 1 2 1
2 2 1 1 1 1 1
3 2 2 1 1 1 1
4 2 1 1 1 1 1
5 2 2 1 1 1 1
6 2 1 1 1 1 1
7 2 2 1 1 1 1
8 2 1 1 1 1 1
9 2 2 1 1 1 1
10 2 1 1 1 1 1

All three schemes are presented; ‘N ’ denotes the number of elements used.
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Fig. 9. Plot of the non-constant function which exists in the null space of the classic (unsta-
bilized) BR discrete operator. Ten evenly-spaced elements with sixth order polynomials were
used.

operator when the elementary stabilization factor described above is added.
The three plots denote the eigenspectra when the stabilization factor ηe is
taken to be zero, five and ten from top to bottom, respectively. On the right
we present the maximum absolute magnitude of the eigenspectra for both
LDG β = 0 and LDG β = 0.5 when a 40 element discretization using 4th
order polynomials were employed.

Figure 10 shows that the effect of the stabilization factor is to move the
eigenvalues to the left. More specifically, the stabilization factor makes the
scheme more dissipative (which is what one would expect of a stabilization
factor). In terms of the schemes that we are examining, the major ramifi-
cation of this movement of the eigenvalues if the further restriction on the
time step which moving the eigenvalues incurs. This behavior is consistent
with the observations of [12]; increasing the stabilization penalty parameter
more strongly enforces continuity at the sacrifice of a more stringent time
step restriction.

7. SUMMARY

In this paper we have sought to provide the pros and cons of differ-
ent flux choices when solving diffusion problems using the DG method
through an investigation of a model one-dimensional problem. We began by
examining an “inconsistent” scheme, and then proceeded to examine three
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Fig. 10. On the left we present the eigenspectra of the spatial operator for LDG β =0 (BR
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commonly used flux choices: BR, LDG and BO. In particular, we provided
numerical evaluations of the h-convergence rate, the p-convergence rate, the
eigenspectra and the system conditions. From our examination, the follow-
ing observations can be made:

• For the one-dimensional system considered, the LDG (with β =0.5)
and BO schemes produce tighter elemental stencils than BR. In the
case of parallel computation, this implies that LDG and BO require
less communication than BR. A similar result for two-dimensions
was discussed in [8].

• LDG has optimal h-convergence independent of the polynomial
order. Both BR and BO can observe suboptimal convergence
depending on the parity of the polynomial order.

• When solving the model problem with an explicit time-stepping
method, LDG requires a smaller time step. This is observed by
examining the spectra of the operator.

• For the cases considered, diagonal preconditioning works better for
BR than LDG. Both BR and LDG benefit from diagonal precondi-
tioning, and since they are symmetric, both BR and LDG can use
conjugate gradient methods.

• For the cases considered, diagonal preconditioning works well for
BO. The trade-off is that BO is not a symmetric system, and hence
conjugate gradient methods cannot be employed. Rather, generalized
residual methods (e.g., GMRES) must be employed.

• Stabilization factors move the eigenvalues to the left on the stabil-
ity diagram, and hence decrease the time step when using an explicit
method.

Examination of the one-dimensional model problem presented herein
provides some insight into how to make appropriate flux choices when solv-
ing diffusion problems with the DG method. Further examinations of the
type presented in this paper for two- and three-dimensional spatial discret-
izations will be accomplished and presented in the future.
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