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Abstract

The von-K�arm�an non-linear, dynamic, partial differential system over rectangular domains is solved by the

Chebyshev-collocation method in space and the implicit Newmark-b time marching scheme in time. In the Newmark-b
scheme, a non-linear fixed point iteration algorithm is employed.

We monitor both temporal and spatial discretization errors based on derived analytical solutions, demonstrating

highly accurate approximations. We also quantify the influence of a common modeling assumption which neglects the

in-plane inertia terms in the full von-K�arm�an system, demonstrating that it is justified. A comparison of our steady-

state von-K�arm�an solutions to previous results in the literature and to a three-dimensional high-order finite element

analysis is performed, showing an excellent agreement. Other modeling assumptions such as neglecting in-plane qua-

dratic terms in the strain expressions are also addressed.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Plates are viewed in structural engineering practice as three-dimensional components with one of their

dimensions, usually denoted by ‘‘thickness’’ (h), much smaller compared to the other two dimensions. Due

to the complexity of three-dimensional elastic analysis, much attention has been given historically to the
derivation of ‘‘plate-models’’, which can be understood as an application of dimensional reduction prin-

ciples. These plate models are aimed at approximating the three-dimensional problem through a two-

dimensional formulation. As the transverse displacement (deflection) in thin plates may be of the same

order of magnitude as the plate thickness, it is necessary to formulate the problem to account for large
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strains/deflections. The equivalent to the popular plate model of Kirchhoff–Love (derived under the
assumption of a small strain situation) is the von-K�arm�an plate model, which takes into account large

deflections. It involves a system of three non-linear time dependent partial differential equations.

The von-K�arm�an system, although being reduced to a problem over a two-dimensional domain, is still

mathematically and numerically very challenging, so that most previous investigations addressed either the

time independent system, see e.g. [1] and the references therein, or the eigenfrequencies, see e.g. [2]. In many

practical engineering problems, such as the fluid–structure interaction problem of a plate embedded in a

flow-field, time-dependent von-K�arm�an solutions are required, thus we address herein the fully non-linear

time-dependent von-K�arm�an system. This system has been investigated by Nath and Kumar [3] (using
Chebyshev series), as well as by Gordnier et al. [4,5] (using finite differences and C1 h-version finite element

methods). In these works, as in [6], it is assumed a priori that terms involving in-plane time derivatives are

negligible and are therefore neglected. The neglected terms are the only ones multiplied by the plate

thickness, thus neglecting these implies that the solution is thickness independent. Because the system is

non-linear and there is no study which quantifies the influence of the in-plane time derivatives on the

solution, we herein retain these terms and quantify their influence. Hard-clamped boundary conditions are

considered, although other boundary conditions can be easily treated.

In view of the mathematical complexity of the von-K�arm�an plate model, namely, being a set of three
coupled non-linear PDEs involving a biharmonic operator and first and second time derivatives, the

numerical solution and the control of both discretization as well as some of the idealization errors are the

aim of the present work. Herein we:

• present a high-order spatial discretization based on a pseudo-spectral Chebyshev-collocation method,

• investigate the coupling of the second-order implicit Newmark-b time marching scheme with the spatial

pseudo-spectral method so as to provide control of the time-space discretization error. The Newmark-b
scheme is applied using a fixed point iteration technique, without linearization,

• quantify the idealization error for time dependent solutions introduced by the heuristic assumption of

discarding the inertial terms in the momentum equations for the in-plane displacements, and

• compare the steady-state von-K�arm�an solution (the static elastic non-linear solution) with a three-

dimensional elastic non-linear solution in order to quantify the idealization errors introduced when

deriving the von-K�arm�an model from the three-dimensional elasticity equation (discarding the quadratic

spatial derivatives of u and v, and assuming a Kirchhoff–Love displacement field).

The von-K�arm�an system, notations, and non-dimensionalization are presented in Section 2. In Section 3
we present two analytical solutions, one for a simplified linear bi-harmonic equation, and the other for the

von-K�arm�an set, based on which we check the convergence rates of our numerical schemes. The spatial

discretization by means of the pseudo-spectral Chebyshev-collocation method in conjunction with a tem-

poral discretization using the Newmark-b scheme are presented in Section 4. Numerical experiments and

control of spatial and temporal errors are presented in Section 5, whereas some of the modelling errors are

discussed in Section 6. The summary, conclusions and open topics of future research are provided in

Section 7.
2. Notations and formulation

Following [1,6,7] we provide herein the equations describing the von-K�arm�an plate model made of an

isotropic elastic material.

Summation notation is implied (unless otherwise explicitly stated) where summation from 1 to 3 is

implied on Latin indices and summation from 1 to 2 is implied on Greek indices. We consider a square plate
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of dimensions a� a� h, with the assumption that h � a. We denote by x the Cartesian coordinate system
ðx1 x2 x3ÞT, where the plate thickness is in the x3 direction, and Uðx) is the displacement vector ðU1U2U3ÞT in

the corresponding directions (see Fig. 1).

Let E and m be the Young modulus and Poisson ratio of the plate�s material, with a density denoted by q
and a structural viscosity coefficient denoted by c. A body force vector, denoted by f can be applied on the

plate, where only f3 6¼ 0. On the upper and lower surfaces of the plate, we consider traction loading in the x3
direction g�h=2

3 . These are of course prescribed functions of x1, x2 and t alone.
We denote by EijðUÞ the Green strain tensor (finite strain):

EijðUÞ ¼def 1
2
ðoiUj þ ojUi þ oiUkojUkÞ ð1Þ

where oiUj ¼def oUj

oxi
. The plate is denoted by X � ½
 h

2
; h
2
� with X 2 R2, and the lateral boundary of the plate is

denoted by oX. The outer normal vector on the boundary oX is denoted by n, and ðuðx1; x2;tÞ�
vðx1; x2; tÞwðx1; x2; tÞÞT is the displacement vector of the plate mid-surface. The deflection of the mid-surface

of the plate is w. The in-plane stresses are denoted by Rab and are functions generated by the material

properties and u; v;w and are explicitly given in (4).

The model is an approximation of the three-dimensional elastic equations for thin plates, and is derived

by asymptotic analysis. The following assumptions are posted in the asymptotic analysis when deriving the

von-K�arm�an model:

• The displacements U are typically of Kirchhoff–Love type, i.e. can be generated from the mid-surface

displacement vector as follows:

U1 ¼ u
 x3o1w; U2 ¼ v
 x3o2w; U3 ¼ w ð2Þ

This is the first source of idealization errors, namely the assumptions on the functional representation of

the displacement fields in the x3 direction.

• Only the terms involving w are retained in the quadratic terms in (1).
• Terms associated with the rotational inertia will be neglected.

• The body forces are of the form f ¼ ð0 0 f3ÞT.
• Shear stresses on x3 ¼ �h=2 are negligible.

Some derivations also assume that the accelerations in xa directions are negligible, however, we will treat

these inertial terms in our formulation also.
Fig. 1. Notations for plate of interest.
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Let us denote by E
ab the (symmetric) ‘‘in-plane Green strain’’ defined by:

E
ab ¼ 1

2

ð2o1uþ ðo1wÞ2Þ a ¼ b ¼ 1;

ð2o2vþ ðo2wÞ2Þ a ¼ b ¼ 2;
1
2
ðo2uþ o1vþ o1wo2wÞ otherwise:

8><>: ð3Þ

By the definition of the Green strain as in (3), an idealization error is introduced, assuming the terms of the

form oiuoju and of the form oivojv are negligible with respect to o1wo2w.
The ‘‘in-plane stresses’’ Rab are connected to the mid-plane displacements by:

Rab ¼def hE m
1
 m2

dabE
hh

�
þ 1

1þ m
E

ab

�
; ð4Þ

¼

hE
2ð1þ mÞ

m
1
 m

½2o1uþ 2o2vþ ðo1wÞ2 þ ðo2wÞ2� þ 2o1uþ ðo1wÞ2
n o

a ¼ b ¼ 1;

hE
2ð1þ mÞ

m
1
 m

½2o1uþ 2o2vþ ðo1wÞ2 þ ðo2wÞ2� þ 2o2vþ ðo2wÞ2
n o

a ¼ b ¼ 2;

hE
2ð1þ mÞ fo2uþ o1vþ o1wo2wg otherwise:

8>>>>>>><>>>>>>>:
ð5Þ

With the above definitions, the system of three PDEs for the computation of the three unknown functions

for any ðx1; x2Þ 2 X is [1,7]:

hq€w
 q
h3

12
r2€wþ hc _wþ Dr4w
 oaðRabobwÞ ¼

Z h
2


h
2

f3 dx3 þ g
h
2

3 þ g

h

2

3 ; ð6Þ

hq€uþ hc _u
 oaR1a ¼ 0; ð7Þ

hq€vþ hc _v
 oaR2a ¼ 0; ð8Þ
where D ¼def Eh3

12ð1
m2Þ is the flexural rigidity.

Remark 1. One has to find three unknown functions uðx1; x2; tÞ, vðx1; x2; tÞ, wðx1; x2; tÞ, over the two-

dimensional domain X, which describe the displacements of the mid-surface of the plate.

Remark 2. The second term in (6) representing rotational inertia is frequently neglected as we shall do too,
but the other terms are retained in our formulation, although these are neglected in other publications also.

The last term in the LHS of Eqs. (6)–(8) is a non-linear term in the formulation since it involves higher order

terms, and also generates the coupling between the various unknown functions. Observe that this is the

reason why one cannot split the expression for the energy into pure bending energy and pure tension energy!

The von-K�arm�an equations have to be complimented by appropriate boundary conditions. Two of the

commonly used boundary conditions in engineering practice are:

• ‘‘Soft-clamped’’ boundary conditions:

U3 ¼ 0

U1 & U2 independent of x3



on oX �

�

 h
2
;
h
2

�
ð9Þ

which imply the following boundary conditions for the functions u; v;w:

w ¼ onw ¼ 0 on oX; ð10Þ
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Rabnb ¼ hb on oX; ð11Þ
where hb are averaged ‘‘in-plane’’ traction boundary conditions on the lateral boundary of the domain.

• ‘‘Hard-clamped’’ boundary conditions:

U1 ¼ U2 ¼ U3 ¼ 0 on oX �
�

 h
2
;
h
2

�
; ð12Þ

which imply the following boundary conditions for the functions u; v;w:

u ¼ v ¼ w ¼ onw ¼ 0 on oX: ð13Þ

Assuming no body forces (f3 ¼ 0), then (6)–(8) in terms of the three displacement functions can be

expressed as:

hðq€wþ c _wÞ þ Dr4w
 12D
h2

u;1

��
þ 1

2
w2

;1

�
ðw;11 þ mw;22Þ þ v;2

�
þ 1

2
w2

;2

�
ðw;22 þ mw;11Þ

þ ð1
 mÞðv;1 þ u;2 þ w;1w;2Þw;12

�
¼ g

h
2

3 þ g

h

2

3 ¼def gðx1; x2; tÞ; ð14Þ

hðq€uþ c _uÞ 
 6D
h2

½2u;11 þ ð1þ mÞv;12 þ ð1
 mÞu;22 þ 2w;1w;11 þ ð1þ mÞw;2w;12 þ ð1
 mÞw;1w;22� ¼ 0;

ð15Þ

hðq€vþ c _vÞ 
 6D
h2

½2v;22 þ ð1þ mÞu;12 þ ð1
 mÞv;11 þ 2w;2w;22 þ ð1þ mÞw;1w;12 þ ð1
 mÞw;2w;11� ¼ 0:

ð16Þ

The boundary conditions, denoted by ‘‘hard clamped’’ which complement the system of PDEs are con-

sidered in the present paper, although ‘‘soft-clamped’’ boundary conditions are a straight-forward gener-

alization of the methods presented.
2.1. Non-dimensionalization of (14)–(16)

Following [3] we perform the following change of variables:

û ¼ ða=2Þu
h2

; v̂ ¼ ða=2Þv
h2

; ŵ ¼ w
h
; x̂1 ¼

x1
ða=2Þ ; x̂2 ¼

x2
ða=2Þ ; t̂ ¼ t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D

qhða=2Þ4

s
;

ĝ ¼ gða=2Þ4

Dh
; ĥ ¼ h

ða=2Þ ; ĉ ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða=2Þ4h

qD

s
:

With the above set of non-dimensional variables, Eqs. (14)–(16) can be written in non-dimensional form:

ŵ;̂t̂t þ ĉŵ;̂t þ r̂4ŵ
 12½ðû;1̂ þ 1
2
ŵ2

;1̂
Þðŵ;1̂1̂ þ mŵ;2̂2̂Þ þ ðv̂;2̂ þ 1

2
ŵ2

;2̂
Þðŵ;2̂2̂ þ mŵ;1̂1̂Þ

þ ð1
 mÞðv̂ ^ þ û ^ þ ŵ ^ŵ ^Þŵ ^^� ¼ ĝ ; ð17Þ
;1 ;2 ;1 ;2 ;12 3



580 R.M. Kirby, Z. Yosibash / Comput. Methods Appl. Mech. Engrg. 193 (2004) 575–599
ĥ2

6
ðû;̂t̂t þ ĉû;̂tÞ 
 ½2û;1̂1̂ þ ð1þ mÞv̂;1̂2̂ þ ð1
 mÞû;2̂2̂ þ 2ŵ;1̂ŵ;1̂1̂ þ ð1þ mÞŵ;2̂ŵ;1̂2̂ þ ð1
 mÞŵ;1̂ŵ;2̂2̂� ¼ 0;

ð18Þ

ĥ2

6
ðv̂;̂t̂t þ ĉv̂;̂tÞ 
 ½2v̂;2̂2̂ þ ð1þ mÞû;1̂2̂ þ ð1
 mÞv̂;1̂1̂ þ 2ŵ;2̂ŵ;2̂2̂ þ ð1þ mÞŵ;1̂ŵ;1̂2̂ þ ð1
 mÞŵ;2̂ŵ;1̂1̂� ¼ 0: ð19Þ

The boundary conditions, denoted by ‘‘hard clamped’’ which complement the system of PDEs are:

û ¼ v̂ ¼ ŵ ¼ onŵ ¼ 0 on oX: ð20Þ
Remark 3. The first two time dependent terms in (18) and (19) are of order ĥ2 compared to the order one

terms in the rest of the equations, so are commonly neglected (see [1,3,5] for example). This set of equations

will be denoted by simplified von-K�arm�an set, as opposed to the full von-K�arm�an system (17)–(19). The

simplified von-K�arm�an system considerably simplifies its numerical treatment as one is left with one

prognostic equation (17) with two ‘‘constraint equations’’, a set which is much easier to solve. Nath and

Kumar [3] and Gordnier and Visbal [5] considered the simplified von-K�arm�an set of equations.

Remark 4. Notice that Nath and Kumar [3] have an error in their Eqs. (1) and (B.1), where instead of
ð1
 mÞ they mistakenly have ð1
 m2Þ. This may result in the slightly difference when compared to the work

by Timoshenko. Furthermore, the non-dimensionalization of the viscosity term in their (4) has an error,

and q should be in the denominator instead of the numerator.
3. Analytic solutions for a bi-harmonic equation and a special case of the full von-Kármán system

To verify the numerical code and the proper treatment of boundary conditions and still obtain the
spectral convergence expected of the Chebyshev-collocation method, we introduce the following simple

bi-harmonic example problem for which an analytical solution is available.

Linear bi-harmonic problem for verification of the pseudo-spectral method: Consider the linear bi-har-

monic equation:

o2uðx1; x2; tÞ
ot2

¼ 
r4uðx1; x2; tÞ þ gðx1; x2; tÞ on X ¼ ð0; 1Þ � ð0; 1Þ ð21Þ

with the following boundary conditions:

uð0; x2; tÞ ¼ uð1; x2; tÞ ¼ uðx1; 0; tÞ ¼ uðx1; 1; tÞ ¼ 0;

u;1ð0; x2; tÞ ¼ u;1ð1; x2; tÞ ¼ u;2ðx1; 0; tÞ ¼ u;2ðx1; 1; tÞ ¼ 0;
ð22Þ

and with the following initial conditions:

uðx1; x2; 0Þ ¼ u;tðx1; x2; 0Þ ¼ 0: ð23Þ
For a given forcing function gðx1; x2; tÞ:

gðx1; x2; tÞ ¼ 
e
tfð2
 4t þ t2Þ sin2 ðpx2Þ 
 8t2p4½cosð2px1Þ sin2 ðpx2Þ
þ cosð2px2Þ sin2 ðpx1Þ 
 cosð2px1Þ cosð2px2Þ�g; ð24Þ

one obtains an exact solution given by:

uðx1; x2; tÞ ¼ t2e
t sin2 ðpx1Þ sin2 ðpx2Þ:
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This example serves for verification of the convergence rates when using the Chebyshev-collocation method

and the proper implementation of boundary conditions.

The full von-K�arm�an system with an analytic solution: In this paper we consider a plate having the

dimensions a=2 ¼ half plate length ¼ half plate width ¼ 1, with its left lower corner located at ðx̂1; x̂2Þ ¼
ð0; 0Þ. To check the temporal and spatial convergence rates for a non-linear system, consider von-K�arm�an
equations (17)–(19) with ĉ ¼ 0, m ¼ 0:3, clamped boundary conditions, initial displacements and velocities

being zero, and a non-homogeneous right-hand side given by:

RHS of ð17Þ ¼ e
3̂t̂ tf
0:36825441267825et̂̂ t5 cos3 px̂1 sin
3 px̂2


 1:1968268412043̂t8 cos4 px̂1 sin
2 px̂1 sin

6 px̂2

þ et̂̂ t5 cos px̂1 sin
2 px̂1 sin px̂2ð
0:626032501553018 cos2 px̂2

þ 0:478730736481719 sin2 px̂2Þ þ t̂2 cos2 px̂1½
98:9577178047726e2̂t sin2 px̂2


 0:626032501553018et̂̂ t3 cos px̂2 sin px̂1 sin
2 px̂2 þ 1:55587489356559̂t6 sin4 px̂1 sin

6 px̂2

þ cos2 px̂2ð49:4788589023863e2̂t 
 4:0692112600946̂t6 sin4 px̂1 sin
4 px̂2Þ�

þ sin2 px̂1½
0:36825441267825et̂̂ t5 cos3 px̂2 sin px̂1

þ 148:5000703430931e2̂tð0:00256539821648
 0:00256539821648̂t þ t̂2Þ sin2 px̂2

þ 0:478730736481719et̂̂ t5 cos px̂2 sin px̂1 sin
2 px̂2


 1:1968268412043̂t8 cos4 px̂2 sin
4 px̂1 sin

2 px̂2

þ cos2 px̂2ð
98:9577178047726e2̂t̂ t2 þ 1:55587489356559̂t8 sin4 px̂1 sin
4 px̂2Þ�g;

RHS of ð18Þ ¼ e
2̂t̂ t 0:007793937203257et̂ 26:64793188294126̂t2
"(

þ ĥ2

6
ð6
 6̂t þ t̂2Þ

#
sin px̂1 sin px̂2


 t̂5 cos3 px̂1 sin px̂1 sin
4 px̂2 þ cos px̂1½ 
 0:1et̂̂ t2 cos px̂2 
 1:65̂t5 cos2 px̂2 sin

3 px̂1 sin
2 px̂2

þ 1:35̂t5 sin3 px̂1 sin
4 px̂2�

)
;

RHS of ð19Þ ¼ e
2̂t̂ t

(

 0:1et̂̂ t2 cos px̂1 cos px̂2 
 1:65̂t5 cos2 px̂1 cos px̂2 sin

2 px̂1 sin
3 px̂2

þ 0:007793937203257et̂ 26:64793188294127̂t2
"

þ ĥ2

6
ð6
 6̂t þ t̂2Þ

#
sin px̂1 sin px̂2

þ t̂5 sin4 px̂1ð 
 cos3 px̂2 sin px̂2 þ 1:35 cos px̂2 sin
3 px̂2Þ

)
:

The above RHS was derived by substituting into Eqs. (17)–(19) the following assumed solutions:

û ¼ 0:007793937203257̂t3e
t̂ sin px̂1 sin px̂2; ð25Þ

v̂ ¼ 0:007793937203257̂t3e
t̂ sin px̂1 sin px̂2; ð26Þ

ŵ ¼ 0:0634936359342̂t3e
t̂ sin2 px̂1 sin
2 px̂2: ð27Þ
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Although the coefficients of the assumed solutions above look intriguing, they have been selected so as to

produce expressions which are relatively simple in the RHS of (17)–(19).

If one considers the simplified von-K�arm�an system, without the first two time derivatives terms in (17)–

(19), and ĉ ¼ 0, m ¼ 0:3, clamped boundary conditions, and initial displacements and velocities zero, then

(25)–(27) is still its exact solution if the RHS of Eqs. (18) and (19) are changed to:

RHS of ð18Þ ¼ e
2̂t̂ t3f0:20769230769231et̂ sin px̂1 sin px̂2 
 t̂3 cos3 px̂1 sin px̂1 sin
4 px̂2

þ cos px̂1½
0:1et̂ cos px̂2 
 1:65̂t3 cos2 px̂2 sin
3 px̂1 sin

2 px̂2 þ 1:35̂t3 sin3 px̂1 sin
4 px̂2�g;

RHS of ð19Þ ¼ e
2̂t̂ t3f
0:1et̂ cos px̂1 cos px̂2 
 1:65̂t3 cos2 px̂1 cos px̂2 sin
2 px̂1 sin

3 px̂2 þ sin px̂1 sin px̂2

� ½0:20769230769231et̂ 
 t̂3 cos3 px̂2 sin
3 px̂1 þ 1:35̂t3 cos px̂2 sin

3 px̂1 sin
2 px̂2�g:

The problems with analytic solutions presented herein are used for verifying the spectral and temporal

discretization schemes introduced in the next section.
4. Numerical formulation

We solve numerically the non-dimensional form of the von-K�arm�an plate model using a pseudo-spectral

Chebyshev-collocation method [8,9] for the spatial discretization and the Newmark-b scheme [10] for

integration in time. In this section we elaborate on each of these components of our work.

Pseudo-spectral methods [8,9] as well as high-order finite element methods [11,12] were shown to be

efficient for spatial-discretization, yielding in ‘‘exponential (spectral) converge rates’’, and have been used in

[2,3] for the solution of variants of the von-K�arm�an system. Due to the bi-harmonic operator, the finite-

element formulation requires C1 continuous elements, thus considerably affects the computational com-
plexity. The Chebyshev-collocation method on the other hand can easily treat the non-linear terms and is a

natural choice for quadrilateral domains, and thus has been adopted in the present work (differences

compared to [3] with respect to the handling of the boundary conditions and the non-linear terms will be

explained in the next section).

4.1. Spatial discretization

As the spatial discretization, we chose to use a Chebyshev-collocation method as described in [8,9]. To
explain the methodology and for ease of presentation, we use the following simplified one-dimensional

linear diffusion problem (after which the extension of this methodology to two-dimensions and to non-

linear problems will be discussed):

ouðx; tÞ
ot

¼ m
o2uðx; tÞ

ox2

on the interval ½0; a� with initial condition uðx; t ¼ 0Þ ¼ u0ðxÞ (a given smooth function) and boundary

conditions uð0; tÞ ¼ uða; tÞ ¼ 0. This equation is chosen merely as a simple example partial differential

equation commonly seen in elementary numerical analysis texts. We begin by discretizing the interval ½0; a�
using a mapping of the Chebyshev–Lobatto point distribution given on ½
1; 1� as xj ¼ cosðjp=NÞ; j ¼
0; . . . ;N . In a collocation method we seek an approximate solution ~uðx; tÞ which satisfied the differential

equation exactly at the grid points. Hence we seek an approximate solution ~uðx; tÞ which ‘‘collocates’’ the

partial differential equation, that is, we try to find ~uðx; tÞ such that:

o~uðxj; tÞ
ot

¼ m
o2~uðxj; tÞ

ox2
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for all collocation points xj; j ¼ 0; . . . ;N . If we assume that we evaluate the solution of our system at these

points, we can form an N th order approximating interpolant of the solution. We approximate derivatives of

the solution by computing derivatives of the approximating interpolating polynomial. Mathematically, the

operation of computing the derivative of the interpolating polynomial can be formulated as pre-multiplying

the collocated data by a collocation derivative matrix D (as given in [9, p. 53]). Higher-order derivatives can

be obtained through successive application of the matrix operator D. Thus, if we define our solution vector

as ~u ¼ ð~uðx0; tÞ; . . . ; ~uðxN ; tÞÞT and we substitute continuous derivative with the discrete collocation deriv-

ative operator D, our problem now becomes a matter of solving the following linear system of ordinary
differential equations:

oû
ot

¼ mD2~u:

Dirichlet boundary conditions can be handled strongly by setting ~uðx0; tÞ ¼ ~uðxN ; tÞ ¼ 0. To extend this to
two-dimensions, we discretize our two-dimensional domain using the tensor product of the one-dimen-

sional Chebyshev–Lobatto point distribution. Two-dimensional derivative approximations are accom-

plished by successive application of one-dimensional derivative operations. Mathematically this equates to

constructing a two-dimensional derivative operator as the Kronecker sum of the one-dimensional deriv-

ative operators.

Using the methodology as discussed above, Eqs. (17)–(19) are solved in a point-wise fashion where

spatial derivative operators are replaced by the appropriate discrete collocation derivative operators. This

form of discretization allows for easy implementation of the non-linear terms; non-linearities are handled
by point-wise evaluation at the collocation points. This approach was used by Nath and Kumar [3] for

solving the von-K�arm�an system. They, however, did not chose to solve the full non-linear system directly

(and hence did not collocate the non-linear terms directly). Instead, they first write the von-K�arm�an system

in terms of Chebyshev sums, then linearize the system before collocating their equations. In this work, we

do not linearize the equations, but instead we collocate the full non-linear system directly.

In the example above, we discussed simple Dirichlet boundary conditions of a second-order spatial

operator. For collocation methods of this type, special care must be taken so that boundary conditions

associated with a fourth-order differential operator (like the bi-harmonic operator in the von-K�arm�an
equations) are properly handled. In general, there are two basic approaches which may be used to satisfy

boundary conditions when using pseudo-spectral collocation methods:

(1) Restrict attention to polynomial interpolants that (automatically) satisfy the boundary conditions; or

(2) Do not restrict the interpolants but rather add additional equations to enforce boundary conditions.

Nath and Kumar [3] applied the second approach which, in their case, led to an over-specified system of

equations. Hence their algorithm required the addition of a projection method for determining the solution.
We have chosen the first approach upon which we will now elaborate.

The complication of satisfying simultaneously the boundary conditions on the function itself and its

normal derivative, can be accomplished through a careful modification of the fourth-derivative collocation

operator [9]. This modification consists of restricting our polynomial interpolants of order N to be of the

form (in one-dimension) pðxÞ ¼ ð1
 x2ÞqðxÞ where qðxÞ is a polynomial of degree N 
 2 such that

qð�1Þ ¼ 0. Observe that the polynomial pðxÞ has been devised so that pð�1Þ ¼ 0 and oxpð�1Þ ¼ 0. This

restriction equates to constraining our polynomial search space to only those polynomial interpolants

having roots at x ¼ �1 with a multiplicity of two or higher.
Given that our polynomial interpolant pðxÞ is defined as just previously given, we can construct an

matrix operator D4 which approximates the fourth-derivative and satisfies both pð�1Þ ¼ oxpð�1Þ ¼ 0

conditions as follows:



Fig. 2. Discrete L1 error versus the number of grid points used per direction in the Chebyshev collocation scheme. Data shown is

taken at t ¼ 1 with Dt ¼ 10
6.
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D4 ¼ ðAD4 
 8BD3 
 12D2ÞA
1; ð28Þ
where A ¼ Aij ¼ ð1
 x2j Þdij and B ¼ Bij ¼ xjdij, the set fxjg is the Chebyshev–Lobatto point distribution on

½
1; 1�, and D is the one-dimensional Chebyshev-collocation derivative operator (see [13] for details).

To verify that we properly satisfy the boundary conditions and that we still obtain the spectral con-

vergence expected of the Chebyshev-collocation method, we solved the linear bi-harmonic equation (21),

subjected to the boundary conditions and initial conditions (22) and (23) and the forcing function given by

(24). We use the Chebyshev-collocation method with boundary condition modification as described above
using the second-order Newmark-b scheme (to be described in the following section).

In Fig. 2 we plot the discrete L1 error defined as

L1 ¼def max
xi ;xj

juapproxðxi; xjÞ 
 uexactðxi; xjÞj ð29Þ

taken over the collocation point grid ðxi; xjÞ versus the number of points used per direction evaluated at the

time t ¼ 1. A time step of Dt ¼ 10
6 was used (so that given the second-order convergence in time of our

time integrator we should expect time dicretization errors on the order of 10
12 and hence spatial errors

should dominate); the exact solution was used to initialize the time integrator. Observe in Fig. 2 that on a

log-linear plot a straight line is obtained indicating an exponential convergence rate to the exact solution
with increasing N .

This example serves to demonstrate the correctness of both the Chebyshev-collocation method and the

boundary condition implementation used for a bi-harmonic PDE.

4.2. Temporal discretization

To discretize the von-K�arm�an system in time, we have chosen to employ the Newmark-b scheme [10].

For our first attempt we used the fully explicit form of the Newmark-b scheme given by the following
expression:

d2u
dt2

¼ unþ1 
 2un þ un
1

Dt2
þ OðDt2Þ:
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Because of the small stability region of this explicit scheme coupled with the large ‘‘wave speeds’’ associated

with Eqs. (18) and (19) we found the time step required to meet the CFL condition overly restrictive. We

hence chose to use the average acceleration variant of the Newmark-b scheme (with Newmark parameters

c ¼ 1
2
and b ¼ 1

4
) which also exhibits second-order convergence in time and is unconditionally stable under

linear analysis.

The variant of the Newmark-b scheme which we employed can be algorithmically described as follows.

Assume one is given the equation:

m€uþ c _uþ ku ¼ g; ð30Þ
where the forcing g may be a function of the solution u. Discretizing in time we obtain the expressions at

time level n and nþ 1 respectively:

m€un þ c _un þ kun ¼ gn;

m€unþ1 þ c _unþ1 þ kunþ1 ¼ gnþ1:
ð31Þ

The average acceleration variant of the Newmark-b scheme (see [10]) are given by the following time

difference equations:

_unþ1 ¼ _un þ
Dt
2
ð€un þ €unþ1Þ

unþ1 ¼ un þ Dt _un þ
ðDtÞ2

4
ð€un þ €unþ1Þ;

ð32Þ

where the local truncation error of these equations is OðDt2Þ. We can now combine Eqs. (31) and (32) to

yield the following equation for the solution u at time level nþ 1 given information at time level n and the

forcing function g at time level nþ 1:

4m

ðDtÞ2

 
þ 2c

Dt
þ k

!
unþ1 ¼ gnþ1 þ m

4

ðDtÞ2
un

 
þ 4

Dt
_un þ €un

!
þ c

2

Dt
un

�
þ _un

�
: ð33Þ

To demonstrate the second-order temporal convergence rate of this scheme, we revisit the bi-harmonic

equation (see Eqs. (21)–(23) presented in the previous section. Observe that in solving Eq. (21) we have a

right-hand-side term gnþ1 which is a function of the solution unþ1. Discretizing Eq. (21) in the form given in
Eq. (33) yields the following expression:

4

ðDtÞ2

 !
1

 
þ ðDtÞ2

4
r4

!
unþ1ðx1; x2Þ ¼ gnþ1ðx1; x2Þ þ

4

ðDtÞ2
un

 
þ 4

Dt
_un þ €un

!
:

After substituting in the spatial discretization operators discussed previously, we arrive at a set of linear

equations for which to solve. Given the linearity of the system we can directly invert the operator on the left

hand side to yield the solution unþ1 in terms of the solution un and the forcing gðx1; x2; tÞ evaluated at the

new time level tnþ1. In Fig. 3 we plot the discrete L1 error (as defined in Eq. (29)) versus time step for a

spatial discretization of N ¼ 21 points per collocated direction. Observe that on a log–log plot we obtain a

straight line of slope 2.0 indicating that second-order convergence has been achieved.

Unlike the example problem given above, the von-K�arm�an model which we are solving is not linear, and

hence direct inversion cannot be used. There exist two general approaches to solving this type of non-linear
system:

(1) Linearize the equations about some state and use sub-iteration of the linearized problem to obtain to

the solution of the non-linear problem, or

(2) Solve directly the non-linear problem, making no linearizing assumptions.



Fig. 3. Discrete L1 error versus the time step Dt. The comparison is done at time t ¼ 1.
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The first of these two approaches was used by Nath and Kumar [3] and Gordnier and Visbal [5]. We

have chosen the second approach, which does not allow us to use direct inversion of a linear system;

however, following the second approach we also have no linearization considerations.

To solve the non-linear system given in Eqs. (17)–(19) directly, we employ the fixed point method of

solving a non-linear system of equations [14]. This can be understood as follows. First, define the solution
vector as ~u ¼ ðûðx1; x2; tÞ; v̂ðx1; x2; tÞ; ŵðx1; x2; tÞÞT. We can thus re-write Eqs. (17)–(19) as:

o2~u
ôt2

þ ĉ
o~u
ôt

¼ Gð~uÞ;

where we have grouped all the non-linear terms and forcing terms into the expression Gð~uÞ. We now
discretize this system in time using Eq. (33) to obtain:

4

ðDtÞ2

 
þ 2ĉ

Dt

!
~unþ1 ¼ Gð~unþ1Þ þ

4

ðDtÞ2
~un

 
þ 4

Dt
_~un þ €~un

!
þ ĉ

2

Dt
~un

�
þ _~un

�
:

The equation above can easily be re-cast in the following form:

~unþ1 ¼ eGð~unþ1Þ; ð34Þ

where we have grouped all the terms involving information at time level n and all non-linear and forcing
terms into the expression eG. Written in this form, we see that this is a candidate for the fixed point method.

Henceforth, for all our von-K�arm�an tests, we employ this combination of the Newmark-b scheme with the

fixed point iteration method.

In the case of the simplified von-K�arm�an equations, we can still use the fixed point iteration to solve the

system. Unlike linearization schemes which require sub-iteration, we can incorporate the constraining

system into the fixed point iterative scheme as follows. With ĥ ¼ 0, Eqs. (18) and (19) can be re-written in

the form:
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L
û
v̂

¼ NuvðŵÞ; ð35Þ

where L is a linear differential operator and Nuv is a non-linear operator operating on ŵ. Since L is a

linear operator, it can be inverted directly. Combining Eq. (35) for û and v̂ with a time discretization for ŵ
as in Eq. (33), we obtain a system of the form given in Eq. (34) (with the eG being different, however, than in
the full von-K�arm�an case). The new fixed point system now becomes

û
v̂
ŵ

0@ 1A
nþ1

¼ L
1Nuvðŵnþ1Þ
Nwð~unþ1Þ

� �
;

where Nwð~uÞ denotes a grouping of all the terms involving information at time level n and all non-linear
and forcing terms for the time marching of the ŵ displacement.

To demonstrate the spatial convergence properties of our numerical scheme, we solved both full and

simplified von-K�arm�an systems with the RHS given in previous section, for which the exact solutions are

given by Eqs. (25)–(27). For the full von-K�arm�an system we chose for convenience ĥ ¼
ffiffiffi
6

p
. To monitor the

spatial discretization error, we use a time interval of Dt̂ ¼ 10
5 (which produces temporal errors of less than

10
10), and we plot in Fig. 4 the discrete L1 error (as defined in (29)) for the non-dimensional displacement

ŵ as a function of the space discretization N at the time t̂ ¼ 4.

Observe the straight line obtained indicating an exponential convergence rate.
We were not able to perform extensive temporal convergence tests with the scheme above for the fol-

lowing reason. For the fixed point method to converge, the solution space is required to have a Lipschitz

contraction with a Lipschitz constant which is less than one. We observed through numerical experi-

mentation that in order for this contraction constraint to be met a restriction on the time step was required.

Using a space discretization of N ¼ 13, and a plate of thickness ĥ ¼
ffiffiffi
6

p
(as in the problem above), we

observed that a time step of Dt̂ ¼ 10
5 was required for the fixed point method to converge. When these

conditions were employed, an error of 10
10 was obtained when examining the discrete L1 error of all three
Fig. 4. Discrete L1 error for the non-dimensional displacement ŵðx̂i; x̂j; 4Þ versus the number of grid points used per direction in the

Chebyshev collocation scheme. Data shown is taken for Dt̂ ¼ 10
5. The full and simplified von-K�arm�an systems are denoted by circles

and squares respectively. The full and simplified von-K�arm�an solutions overlap.
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displacement fields at time t̂ ¼ 4. Further decrementing the time step did not show any improvement; an
attempt to show temporal convergence was futile since the accuracy of exact solution coefficients was no

greater than 10
10. The same time step constraint was found in the case of the simplified von-K�arm�an
system also. The same test as outlined above yielded an error of 10
10 in all three displacements also.

When using the Newmark-b/fixed point scheme for the von-K�arm�an system, we observed the following:

• For the full von-K�arm�an system, the time step restriction imposed by the fixed point iteration seemed to

be linearly proportional to the plate thickness. The thinner the plate, the smaller the time step was

required for the Lipschitz constant to be less than one.
• No time singularities have been observed which are attributed to inconsistencies in the initial conditions,

boundary conditions and uniform forcing as discussed in [15] for the heat equation. The thorough study

of this issue is discussed in [16].

• It has been observed that instabilities in time may occur for certain types of discretization of the full von-

K�arm�an system. This is fully explained in [16]. We found that if, at every M steps (where M was deter-

mined empirically), we filter the in-plane displacements û and v̂ using a filtering operator F defined by:

Fðuðxi; xjÞÞ ¼ 1
8
ðuðxiþ1; xjÞ þ uðxi
1; xjÞ þ 4uðxi; xjÞ þ uðxi; xjþ1Þ þ uðxi; xj
1ÞÞ;

where i; j ¼ 1; . . . ;N 
 1, then the scheme converges for all time. A more thorough study of this issue in

the context of the von-K�arm�an system is discussed in [16].
5. Numerical examples––controlling discretization errors

The numerical formulation in the previous section is used for solving the full von-K�arm�an equations
(17)–(19) having clamped boundaries according to Eq. (20). For convenience we chose to use m ¼ 0:3 in our

numerical experiments. Spatial and temporal discretization errors are investigated in the following sections.

5.1. Spatial discretization

The spatial discretization error is first investigated by examining the non-dimensionalized midpoint

deflection after reaching a steady-state, ŵð1; 1; t̂ ¼ 20), when a constant load ĝ ¼ 29:6 is applied, for a plate

of thickness ĥ ¼ 0:1 and ĉ ¼ 1:25. It is obtained for a 9 · 9 grid (N ¼ 9) up to 21 · 21 grid (N ¼ 21), and
because an exact solution to the problem is unknown, we present in Fig. 5 the relative difference compared

to the midpoint solution obtained with N ¼ 21, versus N , on a log-linear scale.

Relative difference ¼ jŵN ð1; 1; 20Þ 
 ŵN¼21ð1; 1; 20Þj
jŵN¼21ð1; 1; 20Þj

:

The relative difference for all N �s lie along a straight line, demonstrating the spectral convergence of the

numerical scheme. In all computations presented henceforth we use a grid of 13 · 13 points (N ¼ 13), where

the relative ‘‘spatial difference’’ is seen to be �2� 10
4.

5.2. Temporal discretization

The fixed point method applied in conjunction with the Newmark-b scheme is an iterative method for

which a tolerance level has to be specified to determine its convergence and thus terminate the iteration

process. As a stopping criterion we examine the discrete L1 difference between two successive iterates, and

verify that this difference is below a specified tolerance. We first investigate the influence of the tolerance

level on the results obtained by taking the tolerance level to be from 10
8 up to 10
11. Solving the full



Fig. 5. Relative difference between the steady-state (̂t ¼ 20) value of the midpoint displacement ŵN ð1; 1; 20Þ for varying spatial res-

olution N and the midpoint displacement ŵN¼21ð1; 1; 20Þ for N ¼ 21. Dt ¼ 10
5, ĥ ¼ 0:1, ĉ ¼ 1:25, ĝ ¼ 29:60, fixed point convergence

tolerance 10
10, filtering every 1000 time-steps.

Fig. 6. Time history of the relative difference in the non-dimensional midpoint displacement ŵ for different values of the fixed point

iteration tolerance. The base line case is a fixed point tolerance of 10
11. The solid line denotes a tolerance of 10
8, the dashed line

denotes a tolerance of 10
9 and the dash-dot line denotes a tolerance of 10
10. ĥ ¼ 0:01, N ¼ 13, Dt ¼ 10
6, ĉ ¼ 1:25, ĝ ¼ 29:60, fil-

tering every 1000 time-steps.

R.M. Kirby, Z. Yosibash / Comput. Methods Appl. Mech. Engrg. 193 (2004) 575–599 589
von-K�arm�an system for a constant load of ĝ ¼ 29:60, for a plate of thickness ĥ ¼ 0:01, and a time step of
Dt ¼ 10
6, we present in Fig. 6 the relative difference between ŵð1; 1; t̂Þ for each fixed point tolerance level

and the solution using a tolerance level of 10
11.

The maximum relative difference in Fig. 6 is tabulated in Table 1.

Fig. 6 and Table 1 clearly demonstrate that the fixed point tolerance level of 10
10 suffices, and is used in

all following reported results.



Table 1

Maximum relative difference between a given fixed point tolerance and a tolerance of 10
11

Fixed point tolerance Maximum relative difference

1.0· 10
8 2.99· 10
8

1.0· 10
9 2.81· 10
8

1.0· 10
10 3.25· 10
8

Fig. 7. The midpoint non-dimensional displacement ŵ as a function of t̂ for different plate thicknesses. Dashed line denotes ĥ ¼ 0:1,

dash-dot line denotes ĥ ¼ 0:01 and solid line denotes ĥ ¼ 0:001. N ¼ 13, Dt ¼ 10
7, ĉ ¼ 1:25, ĝ ¼ 29:60.

Table 2

Steady-state (̂t ¼ 20) non-dimensional midpoint displacement ŵð1; 1; 20Þ with varying values of the plate thickness ĥ. N ¼ 13,

D̂t ¼ 10
7, ĉ ¼ 1:25, ĝ ¼ 29:60

Plate thickness ĥ Steady-state midpoint displacement ŵ Filtering every

0.1 0.5234888765 1000 time-steps

0.01 0.5231970397 1000 time-steps

0.01 0.5234448223 100 time-steps

0.001 0.5231718713 100 time-steps
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To further investigate the temporal discretization error, which is accumulated after each time step, we
examine the ‘‘steady-state’’ midpoint non-dimensional deflection (this is taken to be at t̂ ¼ 20 when

ŵð1; 1; t̂Þ almost does not change as t̂ increases––see Fig. 7) for different time steps used.

Dynamic solution and the steady-state solution: The steady-state midpoint non-dimensional solution

incorporates both temporal and spatial numerical errors, and may be compared against the static solution

available in several references (e.g. [1,3]). Using ĉ ¼ 1:25, we monitor ŵ at the plate midpoint, noticing that

for t̂ > 12 the steady-state is achieved––see Fig. 7.

The numerical values of the steady-state (taken at t̂ ¼ 20) midpoint non-dimensional displacement for

the different plate thicknesses are given in Table 2. In view of Eqs. (17)–(19), the exact steady-state solution
should be independent of the plate thickness (this is because ðĥÞ2 multiplies only terms which involve time

derivatives). The values in Table 2 do show this trend. The steady-state midpoint displacement serves to

quantify numerical errors when compared to static displacements computed using the time independent
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von-K�arm�an equations, as well as modeling errors associated with neglecting terms in the system of
equations, and when compared to the fully three-dimensional static solutions (which will be discussed in the

next section).

To further quantify the temporal discretization error, we examine the non-dimensional midpoint dis-

placement as Dt̂ ! 0, and its connection to the plate thickness. Although the Newmark-b scheme employed

is unconditionally stable for linear problems, due to the fixed point iteration used for the von-K�arm�an
system, one needs to decrease the time step as the plate thickness decreases so that the fixed point iterative

scheme converges. As Dt̂ ! 0, we of course expect to obtain ŵð1; 1; t̂Þ which tends to a given limit.

Examining three different plate thicknesses, i.e. ĥ ¼ 0:1, 0.01, 0.001, we present ŵð1; 1; t̂Þ for Dt̂ ¼ 10
5 up to
Dt̂ ¼ 10
8 in Fig. 8.

One may observe that for all ĥ the results for the different Dt̂ are indistinguishable.
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Fig. 8. Time history of the non-dimensional midpoint displacement ŵð1; 1; t̂Þ for varying values of plate thickness ĥ and time step D̂t.
N ¼ 13, ĉ ¼ 1:25, ĝ ¼ 29:60. (a) ĥ ¼ 0:1, lines-dashed: Dt̂ ¼ 10
6, dash-dot: D̂t ¼ 10
7; filter every 1000 steps. (b) ĥ ¼ 0:01, lines-

dashed: Dt̂ ¼ 10
6, dash-dot: D̂t ¼ 10
7; filter every 100 steps. (c) ĥ ¼ 0:001, lines-dash-dot: D̂t ¼ 10
7, solid: D̂t ¼ 10
8; filter every 100

steps.
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6. Numerical examples––modeling errors

There are several sources of modeling errors (also known as idealization errors), some of which will be

quantified in this section. These are associated with the following assumptions:

(1) Quadratic terms of the form oiuoju and oivojv are negligible with respect to o1wo2w in (3). As we shall

demonstrate, this assumption is not violated for ‘‘reasonable’’ values of g.
(2) The von-K�arm�an plate model is based on the Kirchhoff–Love displacement field assumption, assumed

to be valid for h=a < 0:07 and for w=h < 2 (see [1, p. 20]). These modeling errors will be quantified by

comparing the steady-state solution with the static large-deformation/large-strain three-dimensional

elastic solution obtained by p-version finite element methods, and to the von-K�arm�an static solution

obtained by [1] using series expansion (believed to be accurate within 2%).

Another modeling assumption further implied is from neglecting the terms associated with time deriv-

atives of û and v̂ in Eqs. (18) and (19). Neglecting these terms is based on the heuristic assumption that these

are negligible (they are of order ĥ2) compared to the other order one terms. Examination of the full set of
Eqs. (17)–(19), for different ĥ ! 0 provides a quantitative measure for the heuristic approach, and as will be

shown, the heuristic assumption is well justified.

6.1. Modeling errors because of neglecting quadratic derivatives of u and v

The derivation of the von-K�arm�an plate model assumes that quadratic space derivatives of in-plane

displacements are negligible with respect to the space derivatives of w. To quantify this assumption we

consider for example the discrete L2 ratio:

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

PN
j¼1 ðo1uðx1i; x2jÞÞ2 þ ðo2uðx1i; x2jÞÞ2
� �r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

PN
j¼1 o1wðx1i; x2jÞ

� �2 þ o2wðx1i; x2jÞ
� �2� �r ; ð36Þ

and in terms of the non-dimensionalized quantities reads:

R ¼ ĥ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

PN
j¼1

�
ðo1̂ûðx̂1i; x̂2jÞÞ

2 þ ðo2̂ûðx̂1i; x̂2jÞÞ
2
�r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

PN
j¼1

�
ðo1̂ŵðx̂1i; x̂2jÞÞ

2 þ ðo2̂ŵðx̂1i; x̂2jÞÞ
2
�r : ð37Þ

The ratio R expressed in percentage is examined for the plates with thickness ĥ ¼ 0 and 0:01 and is plotted

in Fig. 9 as the loading ĝ is increased for the steady-state solution (̂t ¼ 20).

As noticed, the quadratic terms of in-plane spatial derivatives of u are indeed negligible compared to the

quadratic spatial derivative of the deflections w, thus this modeling assumption does hold. We performed

the same check for spatial derivatives of v compared to w, leading to the same conclusions. We may

conclude that the von-K�arm�an model is consistent with respect to the assumptions in (3), introducing an

error on the order of less than 1%.

6.2. Modeling error because of dimension reduction

In order to quantify modeling errors associated with the Kirchhoff–Love displacement field assumption

(dimension reduction modeling errors), we performed a static non-linear elastic analysis of a three-

dimensional plate of thickness ĥ ¼ 0:01, for a loading varying from ĝ ¼ 0 to 100. The p-version finite



Fig. 9. The L2 discrete ratio (%) for the steady-state solution as defined by (37) versus loading ĝ. Circles denote ĥ ¼ 0 and squares

denote ĥ ¼ 0:01. Computation are done with N ¼ 13, D̂t ¼ 10
6, ĉ ¼ 1:25, filtering every 100 steps.

Fig. 10. Three-dimensional p-FEM mesh and typical deflection.
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element program StressCheck 2 has been used, with a mesh consisting of 50 hexahedral elements, having
two layers of elements in the thickness direction, and graded refinements toward the lateral boundaries to

account for the boundary layers. The p-level has been increased in the linear analysis from 1 to 8 over each

element (at p ¼ 8 there are close to 1000 degrees of freedom per element) and a non-linear analysis using

p ¼ 8 has been performed using a tolerance level of 1% in stresses for the non-linear iterative solution. A

top-view of the finite element mesh and a typical w displacement is presented in Fig. 10.
2 StressCheck is trademark of Engineering Software Research and Development, Inc., St. Louis, MO, USA.
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The steady-state non-dimensional displacements, the solution of (17)–(19), for plate of thickness
ĥ ¼ 0:01 with N ¼ 13, Dt ¼ 10
7, ĉ ¼ 1:25, are provided in Fig. 11.

The steady-state non-dimensional displacement obtained by the full von-K�arm�an system is compared to

displacement obtained by the 3-D p-FEM analysis for varying loading ĝ in Fig. 12. For comparison

purposes, we present on same plot the steady-state solutions obtained by other investigators. The steady-

state solution of Way presented in [1] is for the static von-K�arm�an equations, involving no time-derivatives,

so it is independent of the plate thickness.

We also solved the simplified von-K�arm�an system (as if ĥ ¼ 0), and the steady-state solutions obtained

are virtually identical to the full system, as shown in Fig. 12. As clearly visible, the steady-state midpoint
displacement ŵ agrees very well with this obtained by the 3-D static FE analysis, and the lines are on top of

each other so that no difference is observed.

The results of Nath and Kumar are lower compared to those of the 3-D p-FEM, and may be attributed

to the slight error in their equations (see Remark 4), and a temporal discretization error using a relatively

large time step of 8 · 10
3.
Fig. 11. Steady-state displacement fields û (left), v̂ (right) and ŵ (bottom) for a plate of thickness ĥ ¼ 0:01. N ¼ 13, D̂t ¼ 10
7, ĉ ¼ 1:25,

ĝ ¼ 29:60.



Fig. 12. Steady-state midpoint non-dimensional displacement ŵ versus the loading ĝ. Solid line with circles denotes solution of full and

simplified von-K�arm�an system; Dashed-line with squares denote 3-D p-FEM solution––both for h ¼ 0:01. Dashed-dot line with xs
denote the solution of Nath and Kumar [3]; and triangles denote the solution of Way in [1].
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6.3. Modeling error because of neglecting the in-plane dynamic terms

It is a common assumption in most prior publications addressing the solution of full von-K�arm�an
equations to neglect the in-plane dynamic terms in Eqs. (18) and (19): ‘‘In most engineering application of

thin plates...inplane inertial effects can be neglected.’’ [1, p. 18], ‘‘. . .is the assumption that in-plane acceler-

ations u00 and v00 may be neglected.’’ [6, p. 19], ‘‘Neglecting the in-plane and rotary inertia. . .’’ [3]. These are

based on the observation that the in-plane dynamic terms are multiplied by the square of the normalized

plate thickness, so are considerably small compared to the other terms in Eqs. (18) and (19). However,

because von-K�arm�an is a non-linear system of three equations, the influence of these terms on the solution

will be quantified herein.
From the mathematical view point, on the other hand, the full system of dynamic von-K�arm�an equation,

taking into account the in-plane acceleration terms, was considered and global existence and uniqueness of

solutions are proven, see e.g. [17] and references therein. These works however do not provide an explicit

solution to the von-K�arm�an system, and one cannot quantify the modeling errors because of neglecting the

in-plane dynamic terms.

In view of Eqs. (18) and (19), one may observe that at the limit of ĥ ! 0, the full system which is solved

herein becomes the simplified von-K�arm�an set. In order to quantify the influence of neglecting these terms,

we solve Eqs. (17)–(19) for three different ĥ ¼ 0:1, 0.01 and 0.001, ‘‘freezing’’ ĝ ¼ 29:60, ĉ ¼ 1:25, and
discretization parameters: N ¼ 13, Dt̂ ¼ 10
7. The time history of the midpoint non-dimensionalized dis-

placement ŵ, for the three values of plate thickness are plotted in Fig. 13.

One may notice that for plate thicknesses in the range of 0:1 to 0, the influence of the dynamical terms in

(18) and (19) is negligible, and the simplified von-K�arm�an system solution is an excellent approximation to

the full von-K�arm�an system when the deflection is of interest.

To further investigate this type of modeling error, we compare our time dependent solution for ĥ ¼ 0:01
and 0:001 to that reported by Nath and Kumar [3] (the only time-dependent solution known to us), in

which the dynamic in-plane terms are neglected. In our computations the loading is taken to be ĝ ¼ 29:14
(as reported in [3]), and two different viscosity coefficients are chosen ĉ ¼ 1:25, 5. The discretization



Fig. 13. Time history of the non-dimensional midpoint displacement ŵ for varying values of plate thickness ĥ (left). Relative differences

with respect to ĥ ¼ 0:001 (right). Dashed line: ĥ ¼ 0:1, dash-dot line: ĥ ¼ 0:01 and solid line: ĥ ¼ 0:001. N ¼ 13, Dt̂ ¼ 10
7, ĉ ¼ 1:25,

ĝ ¼ 29:60.

Fig. 14. Time history of the non-dimensional midpoint displacement w versus time for ĉ ¼ 1:25. Comparing our full von-K�arm�an

solution with that of Nath and Kumar [3]. Blue solid line with circles [3]. Left graph-black dashed line: full von-K�arm�an solution

ĥ ¼ 0:01, black solid line: ĥ ¼ 0:001. N ¼ 13, Dt̂ ¼ 10
7. Right graph-black solid line: simplified von-K�arm�an solution N ¼ 13,

D̂t ¼ 10
6.
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parameters are N ¼ 13, Dt̂ ¼ 10
7. For comparison purposes, we solved also the simplified von-K�arm�an
system. Figs. 14 and 15 present the midpoint non-dimensionalized displacement ŵ for ĉ ¼ 1:25 and 5

respectively.

As anticipated, the full von-K�arm�an solution for different plate thicknesses are very similar, and close to

that reported in [3]. The discrepancies are attributed to the errors in the von-K�arm�an system in [3] (see

Remark 3).



Fig. 15. Time history of the non-dimensional midpoint displacement w versus time for ĉ ¼ 5. Comparing our full von-K�arm�an

solution with that of Nath and Kumar [3]. Blue solid line with circles [3]. Left graph-black dashed line: full von-K�arm�an solution

ĥ ¼ 0:01, black solid line: ĥ ¼ 0:01. N ¼ 13, Dt̂ ¼ 10
7. Right graph-black solid line: simplified von-K�arm�an solution N ¼ 13,

Dt̂ ¼ 10
6.
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6.4. Structural viscosity coefficients effects

Another parameter which strongly influences the solution is the structural viscosity coefficient ĉ. A non-

damped (ĉ ¼ 0) plate is expected to oscillate under an applied constant load indefinitely. To investigate the

behavior of the von-K�arm�an system with respect to the parameter ĉ, we plot in Fig. 16 the time history of
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Fig. 16. Time history of the non-dimensional midpoint displacement ŵ for different values of structural damping. Top: ĉ ¼ 0, middle:

ĉ ¼ 0:01, bottom: ĉ ¼ 0:1. D̂t ¼ 10
6, N ¼ 13, ĥ ¼ 0:1.
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the non-dimensional midpoint displacement ŵ for three different values of structural viscosity coefficients
ĉ ¼ 0, 0.01 and 0.1, for a plate of thickness ĥ ¼ 0:1.

Indeed for ĉ ¼ 0 the solution oscillates indefinitely. An interesting observation is the fact that the crests

and the troughs are not of constant values, but these have also an oscillatory behavior. This behavior is

attributed to the IC/BC incompatibility for a step function constant loading and is investigated further in

[16]. As ĉ is increased, the oscillation amplitude decreases as expected.
7. Summary and conclusions

Herein, the von-K�arm�an nonlinear, dynamic, partial differential system of three equations, involving

fourth order differential operators has been addressed for clamped lateral boundary conditions. Because of

our interest in rectangular domains, the system has been discretized using a Chebyshev-collocation method

in space and the implicit Newmark-b scheme in time. The pseudo-spectral methods presented can be ap-

plied for plates of general geometry using the methods presented in [8,18,19]. Both spatial and temporal

discretizations have been rigorously investigated by numerical experimentations, and the discretization

errors have been quantified. We have shown by numerical experiments that a spectral convergence rate in
space is obtained, and using the fixed point iteration method for solving the Newmark implicit time

marching scheme, the spatial discretization error may be controlled as well. Although the Newmark scheme

is unconditionally stable and second-order for linear systems, it is well known that due to the non-linearities

in our system, a restriction on the time step is necessary so that the fixed point iteration algorithm con-

verges.

Once the discretization errors have been resolved, in the second part of this paper we quantified several

sources of idealization errors. We have provided numerical evidence that neglecting quadratic in-plane

spatial derivatives and retaining only quadratic spatial derivatives for ŵ in the expression of the large-
strains is justified. Also, neglecting the dynamic in-plane terms, as done in many previous works, lead to

results which are almost identical to the full system for thin, yet finite plate thicknesses.

We have also showed that the steady-state deflections obtained by the von-K�arm�an system are in

excellent agreement compared with these obtained by a three-dimensional high-order non-linear finite

elements.

This work has been motivated by a broader research project in which a fluid–structure interaction of a

plate embedded in a flow field has to be investigated (see e.g. [4,5]). Towards this end, we have demon-

strated that using the simplified von-K�arm�an system, thus enabling a large time step to be used, is justified
and introduces minor modeling errors. Furthermore, several topics mentioned in this paper will be further

investigated and reported in a future publication [16], namely: (a) Singularities due to incompatible

boundary and initial conditions associated with a constant loading, (b) time instabilities associated with the

full von-K�arm�an system, and its implication on the time-step and filtering restriction and, as a consequence,

(c) the necessity to filter the solution.

Other topics as broadening the type of boundary conditions considered to include ‘‘pinned’’ boundary

conditions and alike and investigating modeling errors associated with correctly interpreting three-

dimensional boundary conditions remains open for future investigation.
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