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Abstract Smoothness-increasing accuracy-conserving (SIAC) filtering has demonstrated
its effectiveness in raising the convergence rate of discontinuous Galerkin solutions from
order k + 1

2 to order 2k + 1 for specific types of translation invariant meshes (Cockburn et
al. in Math. Comput. 72:577–606, 2003; Curtis et al. in SIAM J. Sci. Comput. 30(1):272–
289, 2007; Mirzaee et al. in SIAM J. Numer. Anal. 49:1899–1920, 2011). Additionally, it
improves the weak continuity in the discontinuous Galerkin method to k − 1 continuity.
Typically this improvement has a positive impact on the error quantity in the sense that
it also reduces the absolute errors. However, not enough emphasis has been placed on the
difference between superconvergent accuracy and improved errors. This distinction is partic-
ularly important when it comes to understanding the interplay introduced through meshing,
between geometry and filtering. The underlying mesh over which the DG solution is built is
important because the tool used in SIAC filtering—convolution—is scaled by the geometric
mesh size. This heavily contributes to the effectiveness of the post-processor. In this paper,
we present a study of this mesh scaling and how it factors into the theoretical errors. To ac-
complish the large volume of post-processing necessary for this study, commodity streaming
multiprocessors were used; we demonstrate for structured meshes up to a 50× speed up in
the computational time over traditional CPU implementations of the SIAC filter.
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1 Introduction and Motivation

Smoothness-increasing accuracy-conserving (SIAC) filtering has demonstrated its effective-
ness in raising the convergence rate for discontinuous Galerkin solutions from order k + 1

2 to
order 2k+1 for specific types of translation invariant meshes [7–9]. Additionally it improves
the weak continuity in the discontinuous Galerkin method to k − 1 continuity. Typically this
improvement has a positive impact on the error quantity in the sense that it also reduces
the absolute errors in the solution. However, not enough emphasis has been placed on the
difference between superconvergent accuracy and improved errors. This distinction is par-
ticularly important when it comes to interpreting the interplay introduced through meshing,
between geometry and filtering. The underlying mesh over which the DG solution is built is
important because the tool used in SIAC filtering—convolution—is scaled by the geometric
mesh size. This scaling heavily contributes to the effectiveness of the post-processor. Al-
though the choice of this scaling is straightforward when dealing with a uniform mesh, it is
not clear what the impact of either a global or local scaling will be on either the absolute
error or on the superconvergence properties of the post-processor. In this paper, we present
a study of the mesh scaling used in the SIAC filter and how it factors into the theoretical er-
rors. To accomplish the large volume of post-processing necessary for this study, commodity
streaming multiprocessors in the form of graphical processing units (GPUs) were used; we
demonstrate that when applied to structured meshes, up to a 50× speed up in the computa-
tional time over traditional CPU implementations of the SIAC filter can be achieved. This
shows that it is feasible for SIAC filtering to be inserted into the post-processing pipeline as
a natural stage between simulation and further evaluation such as visualization.

The typical application of SIAC filters has been to discontinuous Galerkin solutions
on translation invariant meshes. The most typical means of generating translation invari-
ant meshes is by constructing a base tessellation of size H and repeatedly tiling in a non-
overlapping fashion the base tessellation until the volume of interest is filled [1, 2]. The
effectiveness of such a translation invariant filter for discontinuous Galerkin solutions of lin-
ear hyperbolic equations was initially demonstrated by Cockburn, Luskin, Shu and Süli [7].
A computational extension to smoothly-varying meshes as well as random meshes, where a
scaling equal to the largest element size was used, was given in [8]. For smoothly-varying
meshes, the improvement to order 2k + 1 was observed. For random meshes there was no
clear order improvement, which could be due to an incorrect kernel scaling. These results
were theoretically and numerically extended to translation invariant structured triangular
meshes in [9]. However, the outlook for triangular meshes is actually much better than those
presented in [9]. Indeed, the order improvement was not clear for filtering over a Union-
Jack mesh when a filter scaling equal H

2 was used (see Fig. 11). In this paper, we revisit
the Union-Jack mesh case, as well as a Chevron triangular mesh and demonstrate that it is
indeed possible to obtain superconvergence of order 2k + 1 for these mesh types when the
proper scaling of the filter, related to the translation invariant properties of the mesh, are em-
ployed. Furthermore we also introduce theoretical proof that these results can be extended
to adaptive meshes that are constructed in a hierarchical manner—in particular, adaptive
meshes whose elements are defined by hierarchical (integer) splittings of elements of size
H , where H represents both the macro-element spacing used in the generation of the mesh
and the minimum scaling used for the SIAC filter.
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To accomplish this study and revisit some of the previous results, we were required to
run exhaustive tests over many meshes with different scaling parameters. Though conceptu-
ally possible using traditional CPU-based solutions, the task of sweeping through the large
number of simulations necessary for such a systematic study seemed daunting. In light of
this, we focused our efforts on the development of a streaming commodity architecture—
graphical processing unit (GPU) version of our SIAC filter. By exploiting the structured
nature of our meshes and the streaming SIMD (single-instruction-multiple-data) nature of
available hardware, we were able to achieve nearly 50× speed up over our traditional CPU
implementation—making the tests presented herein computationally tractable. All results
presented here were run on an NVIDIA C2050 Tesla card using full double-precision. It
consists of 14 Streaming MultiProcessors (SMs), each of which has 32 cores for a total of
448 cores. Each core runs at 1.15 GHz.

This paper addresses these issues in the following manner: in Sect. 2, the necessary back-
ground for the discontinuous Galerkin method and the smoothness-increasing accuracy-
conserving filter is given; Sect. 3 contains the theoretical extension to adaptive meshes;
Sect. 4 discusses the GPU implementation of the post-processor that was used to gener-
ate the results in Sect. 4.2. In that section, an emphasize on the difference between order
improvement and error improvement is discussed through presenting various numerical ex-
amples. Finally, in Sect. 5 we conclude the paper.

2 Background

In this section we discuss the required background necessary to implement the smoothness-
increasing accuracy-conserving (SIAC) filter. This method is specifically applied to discon-
tinuous Galerkin (DG) methods in this paper, which is why it is important to review the
important features of this method and how the solution can be improved. A review summary
of the SIAC filter is then presented.

2.1 Discontinuous Galerkin Methods (DG)

The studies included in this paper concentrate on the linear hyperbolic equation

ut +
d∑

i=1

Ai

∂

∂xi

u + A0u = 0, x ∈ � × [0, T ],

u(x,0) = u0(x), x ∈ �,

(1)

where x ∈ � ⊂ R
d , and t ∈ R. We note that it is possible to extend the studies contained in

this paper to variable coefficient equations as given in [9].
The effectiveness of the SIAC filter was initially established for finite element methods

[5] and extended to discontinuous Galerkin methods in [7]. For an overview of DG methods
see [6]. Here a review of the important properties of the DG solution is given. First, the
discontinuous Galerkin method uses an approximation space of piecewise polynomials of
degree less than or equal to k,

Vh = {
v ∈ L2(�) : v|K ∈ P

k(K), ∀K ∈ Th

}
,

where Th is a tessellation of the domain � and K ∈ Th. Using such an approximation space,
the order of the approximation is k + 1

2 and k + 1 in special cases. Second, the DG method



132 J Sci Comput (2012) 53:129–149

is based upon a variational formulation given by

∫

τe

∂uh

∂t
vh dx−

d∑

i=1

∫

τe

fi(x, t)
∂vh

∂xi

dx+
∫

τe

A0uh(x, t)vh(x, t) dx+
d∑

i=1

∫

∂τe

f̂i n̂ivh ds = 0,

(2)
where fi(x, t) = Aiuh(x, t), i = 1, . . . , d . Lastly, it is important to note that in this formu-
lation, there is only weak continuity imposed at the element interfaces.

2.2 Smoothness-Increasing Accuracy-Conserving (SIAC) Filtering

It is observable that the errors in the discontinuous Galerkin solution are highly oscillatory.
We are able to smooth out these oscillations and increase the order of accuracy through the
use of a smoothness-increasing accuracy-conserving (SIAC) filter. Indeed, the smoothness
will increase to Ck−1 and the order will improve to O(h2k+1). This is possible due to the
superconvergence of the DG solution in the negative-order norm, which gives an indication
of the oscillatory nature of the errors. Because the error estimates for the DG solution in
the negative-order norm are of higher order than the L2-error estimates, applying this SIAC
filter to the DG solution at the final time increases the order of the solution in the L2-norm.
This post-processor was introduced for DG by Cockburn, Luskin, Shu, and Süli [7] based
on the ideas for finite element methods of Bramble and Schatz [5] and Mock and Lax [11].
Background on the SIAC filter can be found in [7, 14] and implementation details in [10].

To introduce the SIAC filter, it is enough to consider the one-dimensional case as the
multi-dimensional kernel is a tensor product of the one-dimensional case. The kernel works
in the following way: Let uh be the discontinuous Galerkin solution at the final time. The
symmetric SIAC filtered solution, used in the interior of the domain, is given by

u�(x) = (
K

2(k+1),k+1
h � uh(·, T )

)
(x), (3)

where the convolution kernel is defined as

K
2(k+1),k+1
h (x) = 1

h

2k∑

γ=0

c2(k+1),k+1
γ ψ(k+1)

(
x

h
− k + γ

)
, (4)

where ψ(k+1) represents a B-spline of order k + 1 and cγ are the kernel coefficients. This
dependence on B-Splines to form the kernel gives it a local support, which also makes it
computationally efficient to implement. Additionally, the coefficients of the kernel are cho-
sen such that the kernel reproduces polynomials of degree less than or equal to 2k. This
ensures that the post-processed solution maintains the current level of accuracy. As the fil-
tered solution is based on convolution, it inherits the continuity from the B-Splines, which
is Ck−1. In the interior of the domain, a symmetric kernel consisting of 2k + 1 B-Splines is
used and near the boundary 4k + 1 B-Splines are used. In the transition regions, a convex
combination of these kernels ensures a smooth transition between the two kernels,

u�
h(x) = θ(x) u�

h,2k+1(x)
︸ ︷︷ ︸

filtering with 2k+1 B-splines

+(
1 − θ(x)

)
u�

h,4k+1(x),
︸ ︷︷ ︸

filtering with 4k+1 B-splines︸ ︷︷ ︸
smooth convex combination

(5)

where θ(x) ∈ [0,1] and has the proper continuity (see [14]).



J Sci Comput (2012) 53:129–149 133

For a uniform, translation invariant mesh, the kernel is scaled by the uniform element
size, h:

u�(x) = (
K

2(k+1),k+1
h � uh(·, T )

)
(x) = 1

h

∑

Ii

∑

Kb

∫
K

(
y − x

h

)
uh(y) dy. (6)

This makes the ideal application of this SIAC filter to uniform quadrilateral or hexahedral
meshes, or structured triangle meshes as shown in [9].

As mentioned previously, for the multi-dimensional kernel, the kernel is given by a tensor
product of the one-dimensional kernel,

Kh(x1, x2, . . . , xd) =
d∏

n=1

Kh(xn). (7)

The filtered solution in 2D is then

u�(x̄, ȳ) =
∫ ∫

R2
K

(
x1 − x̄

�x1
,
x2 − ȳ

�x2

)
uh(x1, x2) dx1dx2, (8)

where

K(x1, x2) = K(x1) · K(x2) =
∑

γ1

∑

γ2

cγ1cγ2 ψ(k+1)(x1 − xγ1)ψ
(k+1)(x2 − xγ2). (9)

Notice that the kernel scaling in the x1 and x2 directions need not be the same. The scaling
only has to be uniform for a given coordinate direction.

3 Theoretical Kernel Scaling

In this section a proof of the superconvergence of the DG solution through SIAC filtering
for h = 1

	
H where 	 is a multi-integer is given. The main theorem is the following:

Theorem 3.1 Let uh be the DG solution to

ut +
d∑

n=1

Aiuxi
+ A0u = 0, x ∈ � × [0, T ],

u(x,0) = u0(x), x ∈ �,

where Ai, i = 0, . . . , d are constant coefficients, � ⊂ R
d . The approximation is taken over

a mesh whose elements are of size h = 1
	
H in each coordinate direction where 	 is a multi-

integer (of dimension equal to the number of elements along one coordinate direction) and
H represents the macro-element size of which any particular element is generated by hier-
archical integer partitioning of the macro-element. Given sufficient smoothness in the initial
data,

‖u − KH � uh‖� ≤ CH 2k+1,

where KH is the post-processing kernel given in Eq. (7) scaled by H .
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Remark 3.1 This theorem is more about geometry than the issues of superconvergence.
Indeed the difference between this estimate and the estimate in [7] has to do with the kernel
scaling, H .

Proof The general estimate for a uniform mesh was proven in [7]. Here, we repeat the
important points for this extension.

First, the error is split into two parts—the error from the design of the filter and the error
from the approximation method used:

‖u − KH � uH‖� ≤ ‖u − KH � u‖�︸ ︷︷ ︸
Filtering exact solution

+∥∥KH � (u − uh)
∥∥

�
.

︸ ︷︷ ︸
Filtering of approximation

(10)

The first part of this error estimate simply uses the fact that the kernel reproduces polynomi-
als of degree less than or equal to degree 2k as well as a Taylor expansion. Details are given
in [7]. Note that it is possible to make the estimate of the first term of arbitrarily high order.
It is therefore the second term, the post-processed approximation, that dominates the error
estimate.

One key aspect of the second error estimate is a property of the B-Splines. That is,

Dα
(
KH � (u − uh)

) = K̃H � ∂α
H (u − uh), (11)

where KH is the kernel using B-splines of order k + 1 + α, K̃H is the kernel using B-
splines of order k + 1, and the operator ∂α

H denotes the differencing operator as defined in
[5]. Another important factor in obtaining the bound on the approximation is the estimate
by Bramble and Schatz [5] that bounds the L2-error by the superconvergent error in the
negative-order norm:

∥∥KH � (u − uh)
∥∥

�
≤ C

∑

α≤|	|

∥∥Dα
(
KH � (u − uh)

)∥∥−	
≤ C

∑

α≤|	|

∥∥∂α
H (u − uh)

∥∥−	
≤ CH 2k+1.

(12)
This superconvergence in the negative-order norm was proven by Cockburn et al. in [7]

for a uniform translation invariant mesh. This is a consequence of the B-Spline property that
allows derivatives to be expressed as divided difference quotients. The divided difference
quotient relationship as expressed in Eq. (11) is only possible for an H -translation invariant
mesh or those meshes in which the mesh element spacings are integer multiples of the
characteristic length H . This occurs automatically for uniform quadrilateral or hexahedral
meshes as well as structured triangular meshes. However, extension to adaptive meshes is
possible by constructing the element spacing h as an integer partitioning of the fundamental
characteristic size, h = 1

	
H, 	 a multi-integer. When this is the case, one can observe that the

translation operator as defined in [5] specified with respect to H can be related to translation
with respect to the actual element size h, i.e. over the DG mesh, as follows:

T m
H v(x) = v(x + mH) = v(x + m	h) = T m	

h v(x). (13)

The error estimate therefore follows as the divided difference operator in Eq. (12), originally
expressed in terms of H can be expressed in terms of its integer multiples. The constant
C in the right-most expression encapsulates the impact of the (integer multiple) adaptive
spacing. �

Remark 3.2 Particular emphasis should be placed on the fact that this makes the SIAC filter
applicable to adaptive meshes, provided the scaling is taken in the correct manner.
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4 Kernel Scaling Results

In this section we outline the extension of the smoothness-increasing accuracy-conserving
(SIAC) filter for computing using GPUs. This is an important step as it speeds up com-
putational costs, allowing for exploring more complicated mesh structures. This extension
allows for a true study of the kernel mesh scaling for various mesh geometries, which in turn
leads to placing emphasis on the distinction between higher-order convergence and reduced
errors.

4.1 Efficient Computing Using GPUs

The upward trends in graphics processor (GPU) performance are impressive, even relative to
progressively more powerful, conventional CPUs [13]. A variety of forces in manufacturing,
marketing, and applications are driving this upward trend, but the growing consensus is
that the streaming architecture embodied in most modern graphics processors has inherent
advantages in scalability.

Stream processing simplifies hardware by restricting the parallel computations that can
be performed. Given a set of data (a stream), stream processors apply a series of operations
(kernel functions) to each element in the data stream with often one kernel function being
applied to all elements in the stream (uniform streaming). This paradigm allows kernel func-
tions to be pipelined, and local on-chip memory and data transmission is reused to minimize
external memory needs. This design paradigm virtually eliminates the need for cache hier-
archies, which allows more space on each chip to be allocated to processing and also allows
for very high bandwidth between processors (e.g. ALUs) and memory used for data streams.

Most current streaming processors rely on a SIMD (single-instruction-multiple-data) pro-
gramming model in which a single kernel is applied to a very large number of data items
with no data dependencies among streams. This paradigm is very amenable to the SIAC
filtering as presented in Sect. 2.2 and as demonstrated in [10] when OpenMP parallelization
was applied. In [10], nearly embarrassingly parallel speed-up was attainable by partitioning
the elements to be post-processed amongst the various processors available. Using that same
strategy, we can exploit the massively SIMD programming model of the GPU. For each el-
ement that requires post-processing, we are able to use the kernel footprint to determine the
neighboring elements needed in the post-processing, and then isolate this computation so
that it can be done in an embarrassingly parallel fashion as illustrated in Fig. 1. In the case
of a structured mesh in which the operations being accomplished to post-process an element
are independent of its position in the mesh and in which the collection of operations are
identical (with only changes in the data on which those operations are accomplished), GPU
parallelization is straightforward.

In Table 1 we present a comparison of the post-processing times (in milliseconds) re-
quired by our CPU and GPU implementations of the SIAC filter for various structured
quadrilateral meshes at different polynomial orders under the assumption of periodic bound-
ary conditions. The CPU machine used in this comparison was an Intel Xeon X7542 running
at 2.67 GHz.

The following observations can be made based upon the data presented in Table 1:

• There is a static amount of overhead associated with running a process on the GPU. This
gives a false impression as to the scaling of computation times at lower mesh resolutions.
The overhead will be hardware/implementation dependent. In this case the trend becomes
more clear for computations that take at least five or more seconds to complete on the
GPU.
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Fig. 1 Each element to be
post-processed and the
neighborhood of elements
dictated by the geometric
footprint of the kernel can be
allocated to a GPU core in an
embarrassingly parallel fashion

Table 1 Wall-clock times (ms) required to post-process a DG solution for various mesh sizes and polynomial
orders. For the GPU case, three different integer multiples m of the kernel scaling parameter H are provided

Test case CPU wall-clock time GPU wall-clock time

m = 1.0 m = 1.0 m = 2.0 m = 3.0

P2-202 5815.7 529.136 436.728 623.297

P2-402 23811.6 743.865 889.147 1440.91

P2-802 98103.7 1749.58 3141.44 5361.63

P3-202 26518.4 924.4 1438.82 2399.03

P3-402 109256.2 2164.72 3937.15 6752.97

P3-802 446857.9 7447.4 15399.6 26756.2

P4-402 343438.2 6904.21 14178 25136.2

P4-802 1396076.3 26744 56831.8 101341

P4-1602 5723912.9 106045 227221 404746

• The majority of the computation times were spent on memory access. As the footprint
of the kernel increases, more neighboring data must be accessed to compute the post-
processed solution at a given evaluation point. Judicious memory layout patterns were
key to achieving significantly improved performance on the GPU.

• As the kernel spacing increases, the GPU wall-clock time increases. This increase comes
as a consequence of the increased width of the kernel footprint induced by the increased
scaling factor. As an increased number of elements surrounding an element are needed
in order to generate the post-processed solution for a particular element, the number of
floating-point operations increases (and hence the total wall clock time).

• The increase in the kernel spacing also dictates how much data from the region surround-
ing an element is necessary to accomplish the post-processing. This increased memory
usage decreases the efficiency of computation per core as more loads/stores are required
to facilitate computation on a GPU core.

Remark 4.1 A multi-GPU version of our SIAC filter was implemented for comparison.
Given the initial cost of initializing multiple GPUs and moving data from main memory
down to the individual GPU memory, we found that only for large meshes was the multi-
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Fig. 2 Example of uniform quadrilateral mesh (a) and diagram of filter spacing used (b)

GPU implementation profitable in terms of wall-clock time. We were able to see over a three
times speed-up over our single GPU performance when using four GPUs for meshes larger
than 1602 elements.

4.2 Numerical Results

In this section we discuss the importance of geometric mesh assumptions for obtaining im-
proved errors versus improved order of accuracy. This is done by inspecting one equation
for different mesh types. That is,

ut + � · u = 0, x ∈ [0,2π ]2 × [0, T ]
u(x,0) = sin(x + y).

An investigation of the filtered DG solution will be performed for meshes that include the
uniform quadrilateral mesh, an adaptive mesh, a structured triangular mesh, a Union-Jack
mesh, and a Chevron mesh. Additionally, for the first time, three-dimensional results over a
hexahedral mesh are also given. Note that similar behavior has been observed for variable
coefficient equations, as predicted by the theory [9]. A particular emphasis will be placed on
the distinction between reduced errors and higher order accuracy for a given scaling of the
SIAC filter.

4.2.1 Uniform Quadrilateral Mesh

The first example presented is a study of the scaling for the SIAC filter for a uniform quadri-
lateral mesh as shown in Fig. 2.

The theory of [7] establishes that the scaling H used by the post-processor should be
the same as used to construct the mesh (i.e. the mesh is of uniform spacing H ). However,
according to Theorem 3.1, a scaling of any integer multiple, mH should also produce su-
perconvergent accuracy. Indeed, in Table 2 the numerical results using different values of m

for the kernel scaling are presented. It can be seen that as long as m ≥ 1 accuracy of order
2k + 1 is obtained. Examining the errors closely, it becomes obvious that the errors are ac-
tually increasing as the kernel scaling becomes greater, even with this 2k + 1 convergence.
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Table 2 Table of L2-errors for various scalings used in the SIAC filter for a uniform quadrilateral mesh

Mesh m = 0.5 m = 0.75 m = 1 m = 2 m = 3

L2 error Order L2 error Order L2 error Order L2 error Order L2 error Order

P
2

202 2.95e–05 – 2.41e–06 – 4.48e–06 – 0.000269 – x –

402 3.75e–06 2.98 2.53e–07 3.25 7.09e–08 5.98 4.45e–06 5.92 4.96e–05 –

802 4.7e–07 2.99 3.06e–08 3.05 1.11e–09 5.99 7.06e–08 5.98 7.99e–07 5.95

1602 5.88e–08 3 3.79e–09 3.01 1.74e–11 6 1.11e–09 5.99 1.26e–08 5.99

P
3

202 1.99e–07 – 1.32e–08 – 1.38e–07 – 3.22e–05 – x –

402 1.27e–08 3.97 1.55e–10 6.4 5.49e–10 7.97 1.38e–07 7.87 3.4e–06 –

802 7.97e–10 3.99 8.05e–12 4.27 2.16e–12 7.99 5.49e–10 7.97 1.4e–08 7.93

1602 4.99e–11 4 4.52e–13 4.15 9.1e–15 7.89 2.16e–12 7.99 5.52e–11 7.98

P
4

402 3.36e–11 – 1.11e–12 – 4.41e–12 – 4.38e–09 – 2.4e–07 –

802 1.06e–12 4.99 3.41e–14 5.02 3.19e–15 10.4 4.41e–12 9.96 2.51e–10 9.9

1602 3.37e–14 4.97 2.69e–15 3.67 2.38e–15 0.421 3.79e–15 10.2 2.48e–13 9.98

A plot of absolute error versus different scalings is given in Fig. 3. This plot demonstrates
that the minimal error actually occurs with a SIAC filter scaling a bit less than the element
spacing H and after this scaling the errors begin increasing, although maintaining the 2k +1
convergence rate. In Fig. 4, contour plots of the errors for N = 40 for P

2 and P
3 polynomial

approximations are presented for scalings of 0.5H , H and 2H . The plots demonstrate that
the errors get much smoother as we increase the scaling from 0.5H to H . The errors using
2H scaling are also smooth, however, the magnitude of the errors are larger.

4.2.2 Quadrilateral Cross Mesh

In this example we consider a variable-spacing quadrilateral mesh. The mesh was designed
in the following manner: let H = 2

N
, where N is the total number of elements in one direc-

tion used in the approximation. We first divide the mesh into a collection of evenly-spaced
quadrilateral macro-elements of size H . In order to generate the final mesh, we further split
some of these quadrilateral elements (more towards the middle of the mesh) into two, four
or more quadrilateral sub-elements, i.e., each element of the new mesh is created by sub-
dividing the macro-element of size H by some integer partition. This type of scaling gives
an adaptive cross mesh as shown in Fig. 5. Note that although this mesh is not uniformly-
spaced, the mesh construction proposed does meet a local hierarchical partitioning property
which we have proven to be sufficient for observing superconvergence when applying the
SIAC filter with a scaling of H .

In Table 3 the errors for mH where m = 0.25,0.5,1.0,1.5,2.0 are given. Notice that
one begins to see the correct superconvergent rate of order 2k + 1 for a scaling of m = 1.0,
as expected. The “x’s” given in the table denote regions in which the chosen scaling of the
kernel makes the kernel support wider than the mesh used in the approximation. In Fig. 6, a
plot of error versus m is given. Observe that the minimum error and the correct convergence
rate occurs at H (m = 1) as predicted by the theory. In Fig. 7, contour error plots are shown
for different scalings of the SIAC filter. Additional tests not reported here in which we split
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Fig. 3 Plots of error versus scaling (m) used in the SIAC filter for a uniform quadrilateral mesh for P
2 (left)

and P
3 (right) polynomial approximations

Fig. 4 Contour plots using a scaling of 0.5H (left) and H (middle) and 2H (right) for a uniform quadrilateral
mesh such as the one in Fig. 2. Top row: P

2, Bottom row: P
3

the quadrilateral-based adaptive mesh into an adaptive structured triangle mesh yield similar
results to those reported here; a filter scaling of size H yields the optimal results in terms of
absolute error.
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Fig. 5 Example of a variable-spacing quadrilateral (cross) mesh (a) and diagram of filter spacing used (b)

Fig. 6 Plots of error versus various scalings (m) used in the SIAC filter for a variable-spacing cross mesh for
P

2 (left) and P
3 (right) polynomial approximations

4.2.3 Structured Triangular Mesh

Once it has been established that superconvergence occurs for various scalings of quadrilat-
eral meshes, it is then interesting to test whether these ideas extend to structured triangular
meshes, as these meshes are also translation invariant. Below are the numerical results for
three different types of structured triangular meshes: a uniform structured triangular mesh,
a Union-Jack mesh and a Chevron mesh.

The uniform structured triangular mesh as shown in Fig. 8 is first examined to ensure the
extension of the main ideas of Theorem 3.1 to this type of mesh. The DG errors together
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Fig. 7 Contour plots using a scaling of 0.5H (left), H (middle), and 1.5H (right) for a variable-spacing
cross quadrilateral mesh such as the one in Fig. 5. Top row: P

2, Bottom row: P
3

Table 3 Table of L2-errors for various scalings used in the SIAC filter for a variable-spacing cross mesh

Mesh m = 0.25 m = 0.5 m = 1 m = 1.5 m = 2

L2 error Order L2 error Order L2 error Order L2 error Order L2 error Order

P
2

202 4.28e–04 – 1.5e–04 – 3.19e–04 – x – x –

402 4.96e–05 3.11 1.83e–05 3.03 6.04e–06 5.72 5.11e–05 – 2.71e–04 –

802 6.04e–06 3.04 2.34e–06 2.97 1.28e–07 5.56 8.52e–07 5.91 4.5e–06 5.91

1602 7.49e–07 3.01 2.95e–07 2.98 4.74e–09 4.75 1.77e–08 5.59 7.21e–08 5.96

P
3

202 4.06e–06 – 1.91e–06 – 3.23e–05 – x – x –

402 1.6e–07 4.66 1.24e–07 3.95 1.38e–07 7.87 3.4e–06 – 3.22e–05 –

802 6.98e–09 4.52 7.92e–09 3.96 5.72e–10 7.92 1.4e–08 7.93 1.38e–07 7.87

1602 3.56e–10 4.3 5e–10 3.99 3.75e–12 7.25 5.56e–11 7.97 5.5e–10 7.97

P
4

402 7.74e–09 – 6.61e–10 – 4.38e–09 – 2.4e–07 – x –

802 2.39e–10 5.02 2.19e–11 4.91 7.87e–12 9.12 2.51e–10 9.9 4.38e–09 –

1602 7.45e–12 5.01 7.6e–13 4.85 3.71e–13 4.4 4.23e–13 9.21 4.38e–12 9.96

with the filtered errors were first presented in [9]. Table 4 presents the ratio of the kernel
size to mesh size for various kernel scalings of mH , m = 0.5,1,2,3,4. It demonstrates
that the ratio becomes larger for increasing polynomial order or increased m values, which
means that the foorprint of the post-processor requires more elements in the computation
and becomes less local. Moreover, Table 5 presents the L2-errors for various scalings. It can



142 J Sci Comput (2012) 53:129–149

Fig. 8 Example of structured triangular mesh (a) and diagram of filter spacing used (b)

Fig. 9 Plots of error versus various scalings (m) used in the SIAC filter for a structured triangular mesh for
P

2 (left) and P
3 (right) polynomial approximations

be seen that the superconvergent accuracy of order 2k + 1 occurs for scalings of mH , m ≥ 1
although the errors increase with increasing m. This is also shown in Fig. 9. In Fig. 10,
contour plots of the errors for scalings of m = 0.5,1,2 are also shown. A scaling of 0.5H

and 2H produce worse errors than that of H . Although scalings of H and 2H also produce
smoothness in the errors.

4.2.4 Union-Jack Mesh

In [9], error results for the Union-Jack mesh were presented with a scaling of H
2 equal to

the uniform spacing of the base quadrilateral mesh. It was noted at the time that the correct
convergence order was not obtained (and from the theory was not expected to be obtained),
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Fig. 10 Contour plots using a scaling of 0.5H (left), H (middle) and 2H (right) for a structured triangular
mesh such as the one in Fig. 8. Top row: P

2, Bottom row: P
3

Table 4 Kernel to mesh ratios
for the structured triangular mesh
cases (uniform, Jack and
Chevron). N2 represents the
number of quadrilateral elements

m P
2

P
3

P
4

0.5 3.5/N 5/N 7.5/N

1 7/N 10/N 13/N

2 14/N 20/N 26/N

3 21/N 30/N 39/N

4 28/N 40/N 52/N

but error improvement was observed. However, as Babuška et al. noted in [2–4, 12], this
mesh is translation invariant in H , as seen in Fig. 11.

In Table 6 errors for scaling of mH , where m = 0.5,1,1.5,2 are presented. It is clearly
seen that the superconvergence is observed for scalings of mH where m ≥ 1. It is interesting
to note that the mesh is not translation invariant in 1.5H but we see the superconvergence
of order 2k + 1. Additionally, the errors begin to worsen after the scaling of H . This is
also seen in Fig. 12 (m = 1). Additionally, in Fig. 13 the differences in the errors between
0.25H scaling, 0.5H , and H are shown. We obtain a much smoother contour plot with the
H scaling.

4.2.5 Chevron Mesh

In this example, the structured Chevron mesh presented in Fig. 14 is examined. Note that the
mesh is translation invariant for H = 2h in the x1-direction and H = h in the x2-direction
where h denotes the spacing of the base quadrilateral mesh. For simplicity in the calcula-
tions, the kernel scaling for the x1 and x2 directions have been taken to be the same and
equal to H = 2h. In Table 7, the errors are presented for various choices of m. The table
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Table 5 Table of L2-errors for various scalings used in the SIAC filter for a structured triangle mesh

– m = 0.5 m = 1 m = 2 m = 3 m = 4

Mesh L2 error Order L2 error Order L2 error Order L2 error Order L2 error Order

P
2

202 1.01e–04 – 4.65e–06 – 2.69e–04 – x – x –

402 1.25e–05 3.01 7.50e–08 5.95 4.46e–06 5.92 4.96e–05 – 0.000269 –

802 1.57e–06 3.00 1.26e–09 5.89 7.06e–08 5.98 7.99e–07 5.96 4.45e–006 5.92

1602 2.28e–07 2.78 1.05e–09 0.259 2.14e–09 5.04 1.36e–08 5.87 7.16e–008 5.96

P
3

202 1.49e–06 – 1.38e–07 – 2.21e–04 – x – x –

402 9.15e–08 4.02 5.50e–10 7.97 1.38e–07 10.65 3.40e–06 – 4.53e–005 –

802 5.70e–09 4.01 2.16e–12 7.99 5.49e–10 7.97 1.40e–08 7.93 1.38e–007 8.36

1602 3.52e–10 4.02 1.64e–13 3.72 2.2e–12 7.97 5.52e–11 7.98 5.49e–010 7.97

P
4

402 7.26e–10 – 4.41e–12 – 4.38e–09 – 3.47e–07 – x –

802 2.24e–11 5.02 1.75e–14 7.98 4.41e–12 9.96 2.51e–10 10.43 4.38e–009 –

1602 5.81e–013 5.27 2.38e–013 −3.77 2.37e–013 4.22 3.53e–013 9.47 4.42e–012 9.95

Fig. 11 Example of a Union-Jack mesh (a) and diagram of filter spacing used (b)

shows mixed results in convergence order for a scaling of m = 0.5, but clear improvement
to the theoretical order for m = 1 and larger. In Fig. 15, the errors versus different scalings
are presented similar to previous examples. Figure 16 depicts the contour plots.

4.2.6 Hexahedral Mesh

The last example that we present is the first example of the extension of this SIAC filter to
three-dimensions. The extension is for a uniform hexahedral mesh of spacing H . In Table 8,
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Fig. 12 Plots of error versus various scalings used in the SIAC filter for a Union Jack mesh for P
2 (left) and

P
3 (right) polynomial approximations

Fig. 13 Contour plots using a scaling of 0.25H (left), 0.5H (middle) and H (right) for a Union-Jack mesh
such as the one in Fig. 11. Top row: P

2, Bottom row: P
3

the errors for the discontinuous Galerkin solution of a three-dimensional DG projection
problem are given along with the improved errors using the SIAC filter for various scalings
mH . We can see that the added dimension does not reduce the order of convergence, and a
superconvergent rate of 2k + 1 is obtained. This is in agreement with the theory [7].
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Table 6 Table of L2-errors for various scalings used in the SIAC filter for a Union-Jack mesh

– m = 0.5 m = 1 m = 1.5 m = 2

Mesh L2 error Order L2 error Order L2 error Order L2 error Order

P
2

202 2.88e–05 – 2.87e–04 – 1.98e–03 – 7.92e–02 –

402 2.39e–06 3.59 5.01e–06 5.84 5.01e–05 5.31 2.70e–04 8.19

802 2.92e–07 3.03 8.81e–08 5.83 8.17e–07 5.94 4.47e–06 5.92

1602 3.66e–08 3 1.65e–09 5.74 1.31e–08 5.96 7.11e–08 5.97

P
3

202 2.39e–07 – 2.23e–04 – 8.64e–02 – 6.90e–02 –

402 9.97e–09 4.59 1.38e–07 10.66 3.40e–06 14.63 4.54e–05 13.89

802 5.89e–10 4.09 5.51e–10 7.97 1.39e–08 7.93 1.38e–07 8.37

1602 3.65e–11 4.01 2.2e–12 7.97 5.52e–11 7.98 5.5e–10 7.97

P
4

402 1.84e–09 – 4.77e–09 – 3.49e–07 – 2.72e–03 –

802 3.11e–12 9.21 5.34e–12 9.80 2.51e–10 10.44 4.38e–09 19.24

1602 2.35e–13 3.73 2.34e–013 4.52 3.51e–13 9.48 4.42e–12 9.95

Fig. 14 Example of a Chevron mesh (a) and diagram of filter spacing used (b). H represents the minimum
translation invariance of the mesh. This value is not necessarily the same for each direction as it is shown
in (b)

5 Conclusions

By implementing smoothness-increasing accuracy-conserving filtering, the errors for the
DG solution can usually be improved from order k + 1 to order 2k + 1 for linear hyperbolic
equations. Additionally, due to the nature of the convolution kernel used in this SIAC filter,
the smoothness of the solution is also improved from only having weak continuity to having
continuity of k−1. However, care has to be taken with the mesh geometry and correct kernel
scalings must be used. The emphasis of this paper has been on the difference between error
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Fig. 15 Plots of error versus various scalings used in the SIAC filter for a Chevron mesh for P
2 (left) and P

3

(right) polynomial approximations

Fig. 16 Contour plots using a scaling of 0.25H (left), 0.5H (middle) and H (right) for a Chevron mesh such
as the one in Fig. 14. Top row: P

2, Bottom row: P
3

improvement versus order improvement in terms of geometry. In all our numerical examples
it has been demonstrated that it is possible to obtain superconvergence with the correct
kernel scaling. However, if the scaling becomes too large the errors worsen and can become
worse than the original DG errors while maintaining superconvergence. We further note
that when the mesh size is large enough, filtering with the true scaling parameter H yields
the optimal results in terms of the magnitude of the error. Moreover, GPU implementation
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Table 7 Table of L2-errors for various scalings used in the SIAC filter for a Chevron mesh

– m = 0.25 m = 0.5 m = 1 m = 1.5 m = 2

Mesh L2 error Order L2 error Order L2 error Order L2 error Order L2 error Order

P
2

202 7.22e–05 – 4.06e–05 – 3.05e–04 – x – x –

402 7.42e–06 3.28 1.46e–06 4.79 5.57e–06 5.77 5.07e–05 – 2.71e–04 –

802 9.05e–07 3.04 1.09e–07 3.74 1.06e–07 5.72 8.34e–07 5.93 4.49e–06 5.91

1602 1.13e–07 3.0 1.29e–08 3.09 2.2e–09 5.58 1.37e–08 5.93 7.17e–08 5.97

P
3

202 1.03e–06 – 1.96e–07 – 2.23e–04 – x – x –

402 6.35e–08 4.02 2.75e–09 6.16 1.38e–07 10.66 3.40e–06 – 4.54e–05 –

802 3.97e–09 3.99 2.82e–10 3.29 6.00e–10 7.85 1.40e–08 7.93 1.38e–07 8.37

1602 2.48e–10 4.0 1.17e–11 4.59 6.27e–12 6.58 5.56e–11 7.97 5.5e–10 7.97

P
4

402 5.32e–10 – 9.49e–11 – 4.38e–09 – 3.48e–07 – x –

802 1.64e–11 5.02 6.01e–12 3.98 7.46e–12 9.20 2.51e–10 10.44 4.38e–09 –

1602 5.97e–13 4.78 4.67e–13 3.68 4.67e–13 4.0 5.38e–13 8.87 4.45e–12 9.94

Table 8 Table of L2-errors for various scalings used in the SIAC filter for a uniform hexahedral mesh

– Original DG error m = 0.5 m = 1 m = 1.5

Test case DG error Order L2 error Order L2 error Order L2 error Order

P
2

202 1.82e–04 – 4.22E-05 – 6.71e–06 – 7.44e–05 –

402 2.28e–05 2.99 5.36e–06 2.97 1.06e–07 5.98 1.21e–06 5.94

P
3

202 3.17e–06 – 1.57e–07 – 2.06e–07 – 5.09E-06 –

402 1.98e–07 3.99 1.00e–08 3.97 8.24e–10 7.97 2.13E-08 7.90

of this SIAC filter was also given. Using GPUs, up to a 50× reduction in computational
costs can be obtained for these translation invariant mesh types. Care must be taken with
the programming of the GPUs to obtain such a reduction. Lastly, numerical results showing
the effectiveness of the SIAC filter for a three-dimensional DG projection problem was
presented. For this equation, superconvergence of order 2k + 1 was obtained, showing that
adding a dimension did not reduce the achieved convergence rate.
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