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Diffusion Tensor Analysis With Invariant Gradients
and Rotation Tangents

Gordon Kindlmann*, Daniel B. Ennis, Ross T. Whitaker, Member, IEEE, and Carl-Fredrik Westin

Abstract—Guided by empirically established connections be-
tween clinically important tissue properties and diffusion tensor
parameters, we introduce a framework for decomposing varia-
tions in diffusion tensors into changes in shape and orientation.
Tensor shape and orientation both have three degrees-of-freedom,
spanned by invariant gradients and rotation tangents, respec-
tively. As an initial demonstration of the framework, we create a
tunable measure of tensor difference that can selectively respond
to shape and orientation. Second, to analyze the spatial gradient in
a tensor volume (a third-order tensor), our framework generates
edge strength measures that can discriminate between different
neuroanatomical boundaries, as well as creating a novel detector
of white matter tracts that are adjacent yet distinctly oriented.
Finally, we apply the framework to decompose the fourth-order
diffusion covariance tensor into individual and aggregate mea-
sures of shape and orientation covariance, including a direct
approximation for the variance of tensor invariants such as frac-
tional anisotropy.

Index Terms—Diffusion tensor magnetic resonance imaging
(MRI), fourth-order covariance tensor, tensor feature detection,
tensor invariants, third-order gradient tensor.

I. INTRODUCTION

DIFFUSION tensor imaging (DTI) enables noninvasive
measurements of microstructural orientation and organi-

zation in biological tissue, such as the central nervous system or
cardiac muscle [1], [2], and has found numerous applications in
neuroscience, medicine, and bioengineering [3]–[10]. Research
in tensor-valued image processing takes on greater significance
in DTI, given the empirically established connections between
mathematical properties of diffusion tensors, and biological
properties of tissue. For example, the average of the tensor
eigenvalues indicates bulk mean diffusivity, used in ischemic
stroke detection [11], [12]. Dissimilarity among the eigen-
values (anisotropy) indicates the strength of microstructural
organization [13], [14]. The principal eigenvector (the direction
of greatest diffusivity) indicates the approximate direction of
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axonal pathways and muscle myofibers [15]–[18]. Ideally, the
same biological connections can inform and enhance research
in diffusion tensor image processing, which uses mathematical
methods of increasing sophistication and abstraction.

A common theme in DTI processing is quantifying differ-
ence and variation of tensors. This includes difference mea-
sures (or equivalently, similarity measures) between two ten-
sors, as well as structure tensors. Difference measures play a
role in a variety of DTI algorithms, for example image registra-
tion [19], [20], edge-preserving filtering [21]–[23], and segmen-
tation [24]–[26]. Local differential structure can also be mea-
sured with a second-order structure tensor, a sum of tensor prod-
ucts of gradients [27]–[29]. Structure tensors of diffusion tensor
components have been used for visually detecting tissue inter-
faces [30], anisotropic interpolation [31], and edge-preserving
filtering [32].

Local variation in diffusion tensor fields can also be measured
by higher-order tensors. The gradient of a smooth second-order
diffusion tensor field is a third-order tensor [33], introduced in
DTI by Pajevic et al. as part of their spline-based tensor interpo-
lation [34]. Such gradients can also figure in tensor-based reg-
istration, to analytically compute the derivative of the optimiza-
tion function [20], [35], and in DTI segmentation, as an edge
strength measure [36]. Alternatively, the covariance of a set of
second-order tensors is a fourth-order tensor, recently used by
Basser and Pajevic to describe tensor distributions from noisy
diffusion-weighted images (DWIs) [37], [38], and by Lenglet et
al. for modeling distributions of tensors on a Riemannian man-
ifold [39].

In our view, some of the previous work above quantifies
tensor differences, gradients, or covariance in an overly broad
manner, by not distinguishing between the different tensor
parameters that make DTI a uniquely powerful modality. Based
upon empirically established connections between diffusion
tensor parameters and underlying tissue attributes, we present in
Section II a novel framework by which diffusion tensor analysis
can be expressed and refined in terms of biologically mean-
ingful quantities. The framework generates an orthonormal
coordinate system around each tensor value, decomposing the
tensor’s six degrees-of-freedom into shape and orientation.
Tensor shape includes mean diffusivity and anisotropy, and
orientation includes the principal diffusion direction. The three
invariant gradients (gradients of invariants) in our framework
describe variations in tensor shape, and the three rotation
tangents capture variations in tensor orientation.

Our framework enables novel decompositions of third-order
diffusion gradient tensors and fourth-order diffusion covariance
tensors, as described in Section III. Specific contributions,
demonstrated in Section IV, include the ability to isolate
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TABLE I
MATHEMATICAL CONVENTIONS AND NOTATION

boundaries in tensor shape and orientation, a detector (“ad-
jacent orthogonality”) of adjacent but orthogonal fiber tracts,
the intuitive visualization of fourth-order diffusion covariance
tensor fields as a 6 6 image matrix, and aggregate measures
of the variance and covariance of tensor shape and orientation.
This paper is a simplified exposition and expanded application
of the framework initially described in [40], leveraging our
previous work on orthogonal invariant sets [41].

II. THEORETICAL AND BIOLOGICAL BACKGROUND

Our notational conventions are as follows (see Table I for ref-
erence). is the set of second-order tensors in three-di-
mensional space [42]. In a basis for , a
typical vector or tensor has matrix representation
or , respectively, or simply or when the
basis is assumed. Our work considers only orthonormal bases

: all of our tensors are Cartesian, with no dis-
tinction between covariant and contravariant indices. The con-
traction of two tensors, analogous to a vector dot product, is

. Tensor norm is the Frobe-
nius norm of matrix . Tensor is decomposed into isotropic
and deviatoric parts, and , respec-
tively. We use Einstein notation: a repeated index within a term
implies summation over that index, e.g., ;
and .

Our framework is based upon the recognition that tensors are
linear transforms, and that linear transforms constitute a vector
space. Linear transforms from to form a vector space
isomorphic to [43]. The tensor product is a linear
transform defined by for all in [33].
Any linear transform can be expressed as a linear combination
of tensor products of orthonormal basis vectors , according
to and . Tensor contraction

is an inner product on , and we say and are
orthogonal when .

denotes the set of symmetric tensors in
. A diffusion tensor is a symmetric linear trans-

form that maps (by Fick’s first law) from concentration gradient
vector to diffusive flux vector [1], [44]. Sym-
metric tensors have real eigenvalues and three orthogonal real
eigenvectors. A principal frame is an orthonormal

basis of eigenvectors of tensor , which diagonalizes the
matrix . The spectral decomposition

is a coordinate-free expression of a tensor in
terms of its eigensystem. Diffusion tensors are also positive-def-
inite [1], the significance of which for diffusion tensor image
processing is discussed in Section V-B.

is a six-dimensional vector space. To demonstrate, we
form an orthonormal basis for from an
orthonormal basis for .

(1)

Tensors in can be decomposed into vector components
by and . We use bold subscripts

to index components of considered as vectors rather
than tensors. We define to serve as a point of comparison for
our framework, and to convert between the components of
matrix and the components of six-vector

(2)
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The tensor norm of equals the vector length of

(3)

Our basic strategy in this work is to create at each tensor
a local orthonormal basis, with basis vectors (or

“basis tensors”) aligned with biologically meaningful de-
grees-of-freedom. These include shape and orientation, which
we distinguish by considering tensor rotation. Given a rotation

in , the group of rotations on , the group action
defines a mapping on by

(4)

The orbit of a tensor is the set of all possible values
of , which is all possible reorientations of

(5)

The group properties of ensure that orbits of partition
into equivalence classes [45]: every tensor is on some

orbit, and two orbits are either disjoint or equal. Orbits of
contain all tensor orientations, so we say that tensors and

have the same shape if they are on the same orbit of .
An invariant is a scalar-valued function

of tensors that is constant on orbits of
. Trace and determinant

are common examples. Invariants are fundamental to DTI
analysis because they measure intrinsic diffusive properties,
irrespective of the coordinate frame of the acquisition. The
gradients of invariants are perpendicular to the orbits, and thus
span local variations in tensor shape, the first half of our frame-
work (Section II-A). The tangents to orbits, which we term
rotation tangents, span local variations in tensor orientation,
the second half of our framework (Section II-B).

A. Invariant Gradients

The gradient of invariant is a second-
order tensor representing the local linear variation of , used in
the first-order Taylor expansion of around [33]

(6)

We use to denote the gradient of a function with respect
to its tensor-valued argument (while gradients with respect to
position in are denoted by the usual )

(7)

(8)

(9)

We use “invariant gradient” to refer generally to the gradient
of an invariant, rather than to some gradient which is invariant.
Formulae for invariant gradients are found by transforming the
expression into the form of (6) [33]. Two invariants

and are orthogonal if for
all . Geometrically, level-sets of two orthogonal invariants are
everywhere perpendicular.

Second-order three-dimensional tensors have three indepen-
dent invariants [46]. There are various ways to parameterize
tensor shape with three orthogonal invariants. We build on our
previous work that advocated two particular sets of three orthog-
onal invariants, notated and [41]

(10)

The mode invariant is [47]

(11)

The and invariant sets are analogous to either cylindrical
or spherical coordinate systems for the three-dimen-

sional space of diagonal matrices [41]. We adopt these invariant
sets because they naturally isolate biologically significant tensor
attributes of size, amount of anisotropy, and type of anisotropy,
as described below. Individual eigenvalues also form an orthog-
onal set, but fail to isolate size and anisotropy. Bahn also de-
scribed an orthogonal coordinate system of tensor invariants, but
used trigonometric functions of eigenvalues rather than standard
tensor analysis [48].

In both invariant sets, the first invariant ( or ) parameter-
izes over-all tensor size, in units of diffusivity. is the trace

(three times bulk mean diffusivity or “ADC”).
is the tensor norm, equal to . Either or
readily distinguishes between the cerebral-spinal fluid (CSF)

and the brain parenchyma, an important anatomical boundary,
because their mean diffusivities differ by a factor of about four
[2]. Rapid detection of ischemic stroke is the most common
application of diffusion-weighted imaging, based on observing
elevated bulk mean diffusivity (that is, changes in ) in the
parenchyma [11], [12].

The second invariant ( or ) parameterizes the amount of
anisotropy. is proportional to the standard deviation of the
eigenvalues (with units of diffusivity) [41]. is the popular
fractional anisotropy (FA) measure, which is dimensionless and
varies between zero and one [13]. FA is fundamental to DTI ap-
plications because differences in diffusive properties attributed
to disease (or other biological processes) are so consistently re-
ported in terms of changes in FA [3], [5], [8], [49]–[52]. It is
thus appropriate to align one axis of a tensor coordinate system
along variation of FA.

The third invariant in both sets is termed mode by
Criscione et al. in a continuum mechanics context [47]. Mode is
a dimensionless parameter of anisotropy type, varying between
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Fig. 1. Illustration of the bivariate space ofFA = R andMode = R = K
for tensors of fixed normR . The space is properly arranged as a right triangle;
this creates orthogonality between the isocontours of FA and Mode.

1 and 1, proportional to eigenvalue skewness [41].1 Negative
mode indicates planar anisotropy (oblateness, two large eigen-
values and one small eigenvalue); positive mode indicates linear
anisotropy (prolateness, one large eigenvalue and two small).
Fig. 1 illustrates the space spanned by tensor mode and FA,
using superquadric tensor glyphs [53], [54]. Mode becomes less
meaningful when or is low.

Tensor mode is significant in at least two contexts. Anal-
ysis of DTI partial voluming shows how adjacent regions
of linear anisotropy along orthogonal orientations can create
planar anisotropy [55], [56]. Planar anisotropy can also arise
in populations of differently-oriented fibers mixing at a scale
below imaging resolution [57]–[59]. Tensor mode may be more
sensitive to noise than other invariants [60], though this also
suggests the value of isolating tensor mode in our framework,
so that it may be selectively utilized or ignored.

The tensor-valued gradients of and form the first half
of our framework. They are derived in [41]

(12)

where . Orthogonality was proven in [41]

(13)

(14)

Note that [41].
That is, the two most popular invariants, bulk mean diffusivity

1Skewness is the third standardized moment � =� , where � is the third
central moment and � =

p
� is the standard deviation. In the DTI literature,

however, skewness sometimes refers to � .

(“ADC”) and FA, are not orthogonal measures, despite their fre-
quent paired use. The choice between and may de-
pend on the application, though our initial experience suggests
that results are similar with either set. Detecting white matter
structures in the healthy brain, for example, may benefit from
the empirical constancy of bulk mean diffusivity in the
parenchyma [2], [60], leaving and to capture remaining
anisotropy information. If some pathology is indicated by re-
duced , then the set may be more effective.

To create elements of an orthonormal basis, we al-
ways normalize invariant gradients. denotes the unit-norm
tensor-valued gradient of invariant

(15)

A consequence of this normalization for our framework is that
invariants are effectively insensitive to changes in parameter-
ization. For example, relative anisotropy (RA) [13] is in fact
a monotonic reparameterization of FA [48], which implies

. The role of an invariant in our
framework is thus to parameterize some degree-of-freedom
in tensor shape (represented locally by the direction of the
invariant gradient), while the specifics of that parameterization
(encoded in the magnitude of the gradient) are immaterial.

B. Rotation Tangents

In contrast to our definition of invariant gradients (without
reference to tensor eigenvalues), the rotation tangents in the
second half of our framework are defined explicitly in terms of
the tensor eigenvectors , due to their importance in
DTI applications. In nervous tissue, the principal eigenvector
is aligned with the direction of the white matter fiber tracts [2],
[14], [16], which is the basis of most deterministic fiber tracking
algorithms [61], [62].

Let be rotation by angle around . We define
the rotation tangent associated with eigenvector of

as the change in tensor value due to infinitesimal rotations
around . In terms of the group action (4)

(16)

Manipulating matrix representations in the principal frame leads
to a coordinate-free expression for , as shown in (17)
at the bottom of the next page.The other rotation tangents are
similarly derived

(18)

(19)

Like the eigenvectors with which they are defined, the func-
tions have no intrinsic sign. Tensor field measures created with
the (Sections III-A and III-B) must, therefore, be invariant
with respect to the sign of .
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The rotation tangents are mutually orthogonal, and
all are orthogonal to all invariant gradients (see Ap-
pendix A). Unit-norm rotation tangents are defined as

(20)

(21)

(22)

Our framework for tensor analysis is the combination of nor-
malized invariant gradients (either or ) and
rotation tangents . The six mutually orthogonal unit-norm
tensors constitute an orthonormal basis. Unlike the
basis in (1), however, our framework decomposes local tensor
variations in terms of biologically meaningful attributes. Ap-
pendix B describes some subtleties in distinguishing shape and
orientation variation near rotationally symmetric tensors.

C. Example Application: Tunable Difference Measures

Although our primary focus is higher-order tensors, we can
also decompose discrete tensor differences into shape and ro-
tation components. Measuring large-scale differences between
tensor values is a topic addressed in a Riemannian context by nu-
merous authors [39], [63]–[66], although Euclidean differences
also have precedent [19], [25]. A common difference measure of

and is the Frobenius norm of the difference, ,
which can also be expressed via projections of onto
the basis, using (3)

Around the mean , invariant gradients
(or ) and rotation tangents

form a basis to decompose tensor differences. Similar to the ap-
proach of Schultz et al. [67], six weights can tune the signifi-
cance of differences in shape and orientation , shown
in (23) at the bottom of the page. When and for
all then . The values of the weights
can be determined by the biological context of the processing
task. For example, the normalized tensor scalar product (NTSP)
measure of Jonasson et al. [25] is akin to setting (and
other weights to 1), in that it removes sensitivity to differences
in tensor size. Alternatively, the difference measure can be made
more robust by tuning the weights according to the noise sen-
sitivity of the tensor parameters, given the experimental design
[68]. In any case, we note that because the invariant gradients
and rotation tangents are defined locally around the tensor mean,
their suitability diminishes as the tensor difference increases.

III. GRADIENT AND COVARIANCE ANALYSIS METHODS

Our framework permits novel decompositions of third-order
gradient tensors (Section III-A) and fourth-order covariance ten-
sors (Section III-B). Section III-C reviews spline-based tensor
field reconstruction and differentiation. Section III-D describes
two datasets designed to illustrate these methods.

A. Third-Order Diffusion Gradient Tensors

Let be a smooth tensor-valued image, or tensor field

(17)

(23)
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The spatial gradient of is a third-order tensor [33]

(24)

Spatial gradients of tensor fields were first applied to DTI by
Pajevic et al., as part of their spline-based reconstruction [34].
Edges and boundaries in the tensor field may be detected by
increases in the over-all gradient magnitude

(25)

The tensor field gradient can also be decomposed into the gra-
dients of the isotropic and the deviatoric parts, to measure the
magnitude of each separately [34].

Note that given a fixed tensor in , the contraction
is the vector-valued gradient of the scalar

(26)

Thus, contractions of the gradient tensor can access the dif-
ferential structure of attributes of . Invariant gradients and ro-
tation tangents provide the second-order tensors with which we
contract , generating three spatial gradient vectors of tensor
shape, and three spatial gradients of tensor orientation.

The composition of tensor field and
invariant is a scalar field. With the chain rule

(27)

Using normalized invariant gradients from the first half of our
framework, we define the projected gradient of invariant in
tensor field as contracting with the unit-norm

(28)

is an abuse of notation to indicate normalization by tensor
norm , not vector length ; i.e., .

Using the rotation tangents from the second half of our frame-
work, we define three spatial gradients of orientation, one for
each of the tensor eigenvectors

(29)

Fig. 2. Continuous variation between linear, planar, and linear anisotropy char-
acterizes interfaces between orthogonally oriented fiber tracts. Together, rR
and r� can detect these variations.

Note that is also an abuse of notation: there is no scalar field
in which we can measure the spatial gradient. Rather,

indicates the direction (in ) along which the tensor orientation
“ ” around eigenvector varies fastest.

Appendix B describes how and become inter-
changeable near planar anisotropy. This suggests that
and are complementary gradient measures that could
be usefully combined to highlight particular features. Fig. 2
schematically illustrates a configuration that can arise between
two adjacent white matter fiber tracts with orthogonal orien-
tation. With the band-limited nature of MRI enforcing some
partial voluming of tissue boundaries, this configuration creates
intermediate planar anisotropy [55], [56]. As illustrated in
Fig. 2, this configuration is characterized by variations in both
tensor mode and orientation around the minor eigenvector ,
quantified with and , respectively.

We introduce a measure to detect interfaces of orthogonally
oriented anisotropy, called adjacent orthogonality (AO)

(30)

AO responds mostly strongly to interfaces of anisotropy with
orthogonal orientation, but any distinct orientation leads to
nonzero , and some AO response. AO is defined and
demonstrated herein only with gradient magnitudes, but the

and vectors define the interface orientation.

B. Fourth-Order Diffusion Covariance Tensors

The fourth-order covariance tensor of a set of second-order
tensors is a compact description of the shape of the dis-
tribution of . Fourth-order tensors can be understood by
analogy to second-order tensor products of vectors. Recall
(Table I) that the tensor product of two vectors and is
a second-order tensor in for which .
Similarly, for tensors and in , the tensor product

is a fourth-order tensor in for which
. The diffusion covariance tensor is a

weighted sum of tensor products of tensors from the set

(31)

where and . We use
covariance tensors here to summarize a weighted set of given
tensors, rather than to parametrically model a continuous distri-
bution [38], or to generate new tensor samples [39].
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Building on elasticity methods of continuum mechanics [46],
Basser and Pajevic model distributions of tensors from noisy
DWIs with fourth-order covariance tensors, to characterize
diffusion-weighted imaging (DWI) experimental design [37].
More recent work assesses covariance tensor structure with
spectral decomposition, and quantifies and visualizes the vari-
ance of mean diffusivity [38]. Given a noise model for DWIs,
the experimental design, and a tensor estimation method, accu-
rately calculating the fourth-order covariance tensor is a central
problem in error propagation analysis in DTI, recently studied
in the context of weighted linear least-squares tensor estimation
[68]. Related work estimates tensor variability according to
the Hessian of the objective function minimized in nonlinear
least-squares tensor estimation [69]. Other work focuses on
determining (without the fourth-order covariance tensor ) the
variances of the tensor eigenvalues [70], shape invariants [71],
or the full eigensystem [72], from which variances of other
tensor attributes (such as FA) are computed.

Our preliminary work in covariance tensor analysis is based
upon the recognition that assuming the covariance tensor is
known, some of its important properties can be isolated simply
by expressing it in the basis from our framework. Some
details of tensor contraction are first reviewed. Analogous to the
scalar contraction of a second-order tensor

with vectors and , the double contraction of a fourth-order
tensor with second-order tensors and is

. Contraction determines the individual coefficients
of given a basis for

(32)

By the symmetry of , for in we have

(33)

However, knowing that is itself a six-dimensional vector
space (Section II), we can more directly define the coefficients
of relative to a basis, such as defined in (1)

(34)

Recall (Section II) that we use bold subscripts for indices rel-
ative to a basis for , rather than for . Fourth-order ten-
sors in can thus be represented as 6 6 ma-
trices. The various and 2 scalings involved in converting
from to (fully detailed in [38]) are an auto-
matic consequence of (34) and the definition, as were the
scalings in converting between and in (2). As a linear
combination of symmetric tensor products (31), also has the
symmetry [in addition to that of (33)]

(35)

Thus, is represented by a symmetric 6 6 matrix, with 21
degrees-of-freedom.

We express the covariance tensor in a basis at
generated by our framework

(36)

Basis is similarly defined with the invariant gradients.
We stress that these bases are defined around the mean

for each distribution . Individual components of the
covariance matrix are then [compare to (34)]

(37)

The basis from our framework naturally isolates salient
properties of the distribution, in that the components
measure the variances and covariances of all
possible shape and orientation parameters. In particular, certain
covariance tensor components directly estimate the variance of
parameters such as FA. This is based on the Taylor expansion
(6) of around :

(38)

Then, contracting the covariance tensor of with in-
variant gradient approximates the variance of

(39)

In the basis, the covariance tensor component approx-
imates the variance of standard anisotropy measures

(40)

(41)

Our framework organizes analysis along degrees-of-freedom
parameterized by invariants (represented by ), while fac-
toring out the parameterization rate (represented by ).
Thus, the same covariance component underlies the ap-
proximate variance of both RA (40) and FA (41). Contracting

along invariant gradient to estimate the variance of
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an arbitrary generalizes previous covariance tensor analysis
that focuses on the variance of ADC [38], and is more
straightforward than using the covariance tensor to find the vari-
ances of individual eigenvalues, from which variances of invari-
ants (such as RA and FA) are then determined [68].

We can further decompose the fourth-order covariance tensor
into novel aggregate measures of overall shape variance , ori-
entation variance , as well as shape and orientation covari-
ance , defined as follows:

(42)

(43)

(44)

The covariance components can be measured in either the
or the basis from (36). The aggregate covariance mea-

sures maintain total covariance magnitude as

(45)

C. Convolution-Based Reconstruction and Differentiation

We adopt the B-spline tensor interpolation method of Pa-
jevic et al. [34], [73], briefly reviewed here. The interpolation
creates a continuous and differentiable tensor field by
convolving discrete tensor samples with the separable uniform
cubic B-spline kernel , where

(46)

The tensors samples are prefiltered per-component (in the
basis of the scanner), so that subsequent convolution with

interpolates through the tensors originally estimated
from the DWIs [74], [75]. By the linearity of convolution
and differentiation, the partial derivatives of the reconstructed
tensor field are found by convolving with the partial
derivatives of . The reconstructed values and gra-
dients can be computed at arbitrary locations in the field by
evaluating (or its partial derivatives) to determine
weights for corresponding tensor sample locations, within the

sample support of the kernel.

D. Synthetic Datasets

Carefully designed synthetic datasets help illustrate the be-
havior of our tensor analysis methods, and give insight into their
potential applications. We describe two datasets that exhibit par-
ticular features in tensor shape and orientation.

Fig. 3 depicts a synthetic tensor image constructed to demon-
strate edge detection with invariant gradients . There are four
distinct materials: isotropic with low diffusivity, isotropic with

Fig. 3. Synthetic data with tensor shape boundaries. Glyph rendering (of down-
sampled data) in (a) shows the variety of size, anisotropy, and orientation; (b),
(d), (d) show the K invariants. K is essentially noise when K is at or near
zero (regardless of the value ofK ); the important structure ofK in (d) is the
contrast between low and high values ofK whereK is high. (a) Glyph ren-
dering of downsampled synthetic data; (b)K ; (c)K ; (d)K .

high diffusivity, linear anisotropic, and planar anisotropic. As
seen in Fig. 3(a), the orientation of the tensors also changes
smoothly within the anisotropic regions. Interfaces exist be-
tween every pair of materials.

Fig. 4 depicts a synthetic tensor image with gradients in
tensor orientation. The image is divided horizontally into three
regions of rotation, one for each eigenvector. Fig. 4(a) renders
the dataset with glyphs. The glyphs illustrate an implication
of (17)– (19): the effect of rotation on a tensor is modulated
by its symmetries (e.g., rotation around has no effect when

). Eigenvalue mean is held constant throughout the
image, and variance is constant except for isotropic bands
at the top and bottom. Tensor mode varies smoothly from
top to bottom, covering the full range from planar to linear
anisotropy.

IV. RESULTS

Section IV-A presents our results in third-order gradient
tensor analysis, and Section IV-B gives fourth-order tensor
analysis results. Examples use either the or invariants,
but both produce similar results. After Fig. 5, all grayscale
images are inverted for visual clarity.

Besides the synthetic datasets described above, results are
also shown with a DTI scan of a healthy human volunteer.
Single-shot EPI diffusion-weighted images (DWIs) along
30 gradient directions , and five nondiffu-
sion-weighted images, were acquired on a 1.5-T Philips scanner
with parallel imaging (SENSE factor 2.5). The field-of-view,
size of the acquisition matrix, and slice thickness are 240 mm
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Fig. 4. Synthetic data with tensor orientation boundaries. Glyphs in (a) show
the range of anisotropy type and the three regions of rotation, as diagrammed
in (b). (c) and (d) show K and K ; K is constant. (a) Glyph rendering of
downsampled synthetic data; (b) synthetic image layout; (� ; � ; � ) triples
shown by RGB color; (c) K ; (d) K .

Fig. 5. Slice of scan of healthy volunteer, shown with principal eigenvector
colormap (a), and the R invariants (b), (c), and (d), for which the numerical
ranges are [0; 0:006] �mm =s, [0,1], and [�1,1], respectively. Image pixels
correspond one-to-one with DTI volume samples. The map of tensor mode
(d) appears noisy because mode is not well-defined in isotropic regions. (a)
RGB(e ); (b) R = jDj; (c) R = FA; (d) R = mode(D).

240 mm, 96 96, and 2.5 mm, respectively. In-plane reso-
lution was zero-fill interpolated to 128 128. Tensors were fit
by linear least-squares to logarithms of DWIs [1]. Fig. 5 shows
an axial slice of the data with maps of the principal eigenvector
[76] and the invariants. The units of diffusivity
determine the units of gradient strength in Section IV-A (dif-
fusivity over length, mm/s) and covariance in Section IV-B
(diffusivity squared, ).

A. Gradient Tensor Results

Fig. 6 shows gradient magnitudes in the first synthetic dataset
of Section III-D. Previous work decomposes the tensor field gra-

Fig. 6. Gradient magnitudes in first synthetic image. Previous work [34] detects
the deviatoric gradient magnitude (b). Our framework isolates boundaries in
shape (c), as well as in diffusivity (d), amount of anisotropy (e), and type of
anisotropy (f). Numerical ranges on all images are equal. (a) jrFj; (b) jrFj;

(c) � jrK j ; (d) jrFj = jrK j; (e) jrK j; (f) jrK j.

dient into gradients of the deviatoric and isotropic
components [34]. However, and respond to changes in
both orientation and shape, manifested by a smooth gray level in
the anisotropic material interiors in Fig. 6(a) and (b). Our frame-
work detects shape change independently of orientation change
[Fig. 6(c)], and decomposes shape change according to mean
diffusivity [Fig. 6(d)], amount of anisotropy [Fig. 6(e)], and type
of anisotropy [Fig. 6(f)]. Isolating different boundaries in tensor
shape, in terms of biologically meaningful quantities (the or

invariants), while excluding variations in orientation, has not
been previously described.

Fig. 7 shows gradient magnitudes in the second synthetic
dataset. Both shape and orientation changes contribute to
in Fig. 7(a), and shape changes are decomposed into
and in Fig. 7(b) and (c). Fig. 7(d)–(f) illustrates how

, , and successfully isolate rotations around
the individual eigenvectors. This selectivity is not possible
with previous analyses of the tensor field gradient. Note that

smoothly decreases with increasing symmetry around
eigenvector , which is not captured by direct measurements
of eigenvector angles.

Although not used elsewhere in this work, a consequence of
(27) and our measurement (Section III-C) is the ability to
analytically compute the gradient of an invariant in the
continuous tensor field. For non-linear invariants such as FA,
this can differ significantly from pre-computing a scalar field
of the invariant values, and then measuring gradients. Fig. 8
demonstrates analytic gradient measurements of the invari-
ants. The image shows ringing (false edges) around the
ventricles, perhaps the response of the scanner’s zero-fill inter-
polation to the large change in diffusivity (and hence the DWI
value) between CSF and parenchyma.

Fig. 9 demonstrates in acquired DTI data the gradient tensor
analysis with our framework. From the decomposition of the
total gradient magnitude [Fig. 9(a)] into all shape gradi-
ents [Fig. 9(b)] and all orientation gradients [Fig. 9(c)], we see
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Fig. 7 Gradient magnitudes in second synthetic tensor image. The three dif-
ferent bands in (d), (e), and (f) indicate how the jr� j isolates different changes
in orientation. Numerical ranges for (a), (d), (e), and (f) are equal. (a) jrFj; (b)
jrK j; (c) jrK j; (d) jr� j; (e) jr� j; (f) jr� j.

Fig. 8. Analytic evaluation of rR in the continuous tensor field, sampled
at eight times the original data resolution. Numerical ranges for (a), (b), and
(c) are [0,0.0015] mm/s, [0,0.35] mm , and [0,8] mm , respectively. (a)
jrR j = jrjDjj; (b) jrR j = jrFAj; (c) jrR j = jrmodej.

that the shape gradients contribute more than the orientation gra-
dients to the total magnitude, especially at the ventricle (CSF)
boundary. Fig. 9(d) reveals that the CSF edge is well delineated
by , and that variations in dominate the other shape
gradients. Low values inside the parenchyma confirm
that tensor norm is fairly constant across white and
gray matter, mirroring known behavior of bulk mean diffusivity

[2], [60]. The other edge measure of obvious anatomic
significance is in Fig. 9(e), similar to
in Fig. 8(b). The difference is that Fig. 8(b) depicts the gradient
of a particular invariant, FA, whereas Fig. 9(e) more generally
depicts the component of the tensor gradient aligned with
variations in FA, or any other invariant parameterizing the same
degree-of-freedom (e.g., RA).

The gradient magnitudes along the first two rotation tangents,
[Fig. 9(g)] and [Fig. 9(h)], lack similarly obvious

anatomical significance. This suggests either removing these
components of the third-order gradient tensor to increase its
anatomic specificity, or isolating them as indicators of tensor
field noise. Also, the reliance of these measures on sorted eigen-
values (unlike the invariant gradients), combined with noise-
induced sorting bias, may disrupt the depiction of underlying
coherent patterns of orientation change. Space here does not

Fig. 9. Decomposition of jrFj along invariant gradients and rotation tangents.
(a) through (c) have numerical range [0; 1:4]� 10 mm=s; better visual con-
trast for (d) through (i) is given by a smaller range [0; 0:58]� 10 mm=s. (a)

jrFj; (b) � jrR j ; (c) � jr� j ; (d) jrR j; (e) jrR j; (f) jrR j;

(g) jr� j; (h) jr� j; (i) jr� j.

permit a comparison, but for some purposes it may be better
to measure rather than , be-
cause implicit in the pair-wise eigenvalue differences [in the
definition in (17), –(19)] is an anisotropy measure that may use-
fully mask out isotropic areas.

On the other hand, the complementary structure of
[Fig. 9(f)] and [Fig. 9(i)] contribute to the AO measure
(Section III-A), illustrated in Fig. 10. The RGB colormap
[Fig. 10(a)] of the principal diffusion direction depicts multiple
sites of adjacency between distinctly or orthogonally oriented
fiber tracts. Two such locations are highlighted, between the
corpus callosum and cingulum bundle, and in the sequential
arrangement of the tapetum of the corpus callosum, the pos-
terior corona radiata, and the superior longitudinal fasciculus
[77]. Both [Fig. 10(b)] and [Fig. 10(c)] respond
to these interfaces, but each has discontinuities. By combining

and , AO (Fig. 10(d)) successfully delineates the
interfaces between tracts in the indicated regions. Note that
these tissue configurations cannot be described in terms of
tensor shape or orientation alone. Tensor invariant gradients
detect boundaries between different materials, and tensor
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Fig. 10. Adjacent Orthogonality (AO) detects interfaces between orthogonally
oriented tracts. The highlighted regions in the RGB(e ) map (a) are the in-
terface between the corpus callosum (red) and cingulum bundle (blue), indi-
cated with the circle, and between the tapetum (purple), posterior corona radiata
(green), and superior longitudinal fasciculus (blue), indicated with the box on
the right. Each of jrR j (b) and jr� j (c) detect such configurations to some
extent, but AO (d) has more consistent response. (b), (c), and (d) use numerical
range [0; 0:58] � 10 mm=s.

Fig. 11. Relative magnitudes of spatial gradients of shape (jrR j) and orien-
tation (jr� j), after averaging over DTI brain dataset, and relative magnitudes
of all shape versus orientation gradients.

eigenvectors can detect anisotropy orientation. Our framework
puts shape and orientation into a common coordinate frame,
allowing functions like AO to draw on both, delineating white
matter regions that internally have comparable anisotropy
characteristics.

Fig. 11 gives quantitative information about the relative mag-
nitudes of the gradients mapped in Fig. 9. The numbers were
computed by sampling the spatial gradients of shape and
orientation throughout the brain DTI dataset (used pre-
viously) at three times data resolution, averaging the gradient
norms over the field, and then normalizing. On average, the gra-
dient of accounts for about 40% of gradient tensor
magnitude, the gradient of is about 16%, and the
other gradients were all about 10%. The shape and orientation
gradients account for about two thirds and one third of the total
gradient strength, respectively. These statistics quantify the rel-
ative magnitudes visualized in Fig. 9. Also, as discussed in Sec-
tion V-A, this type of summary information can inform how our
framework is applied to DTI analysis.

Fig. 12. Matrix of images of components � of covariance tensor , using
the local AAA basis. Components are identified by basis tensors across the top
and left side. Numerical ranges on all components are equal.

B. Covariance Tensor Results

We first analyze covariance tensors with pixel neighborhoods
from DTI datasets, to illustrate the basic properties of our co-
variance tensor decomposition, and to explore the novel met-
rics , , and . Covariance matrices are computed over

sample neighborhoods, weighted by the (noninter-
polating) cubic B-spline (46). Fig. 12 displays the covariance
tensor components in the first synthetic dataset. For simplicity,
only the absolute value of the components is shown; the rotation
tangent components have ambiguous sign. We believe this is the
first visual depiction of a field of fourth-order diffusion covari-
ance tensors. The variances (along the diagonal) of the in-
variants agree with edge measures seen in Fig. 6, but the off-di-
agonal elements show additional structure.

, for example, highlights points where eigenvalue
mean and variance co-vary, as confirmed by Fig. 3(a).
Likewise, highlights points where

co-varies with rotation around eigenvector . The rotation
variances , , and indicate continuous orientation
change. The individual covariance components are combined to
form the aggregate covariance measures , , and , illus-
trated in Fig. 13. The map of [Fig. 13(c)], for example, dis-
plays all locations where tensor shape and orientation co-vary.

Fig. 14 measures covariance tensors (with the invariants)
in the DTI slice used for previous figures, although to improve
resolution, the data was up-sampled (Section III-C) by a factor
of three in each axis. The images are not as clean as with the
synthetic data, but some results are worth noting. The on-diag-
onal elements and generally agree with the images of
the gradient magnitudes of and in Fig. 8, which high-
light the border between parenchyma and CSF, and the border
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Fig. 13. Shape variance � (a), orientation variance � (b), and shape and
orientation covariance� (c) evaluated on synthetic data. Comparison to Fig. 3.
implies the functions are indeed measuring what their names suggest.

Fig. 14. Covariance tensors measured in DTI data slice, displayed using same
layout as in Fig. 12. “CC” annotation in � points to the boundary highlighted
between CSF and corpus callosum, where R and R do co-vary. Numerical
range of � is [0; 5:6] � 10 mm =s , range for all other components is
[0; 1:4] � 10 mm =s .

between white and gray matter, respectively. The “CC” annota-
tion in the image points out the boundary of white matter
and CSF in the corpus callosum, a location where diffusivity
and anisotropy should in fact co-vary.

The aggregate covariance measures in Fig. 15 reveal other
structural properties. Shape variance [Fig. 15(a)] shows
the major tissue boundaries (black line between CSF and
parenchyma, light gray borders between white and gray
matter), similar to the analogous quantity from the gradient,

[Fig. 9(b)]. Intriguingly, orientation variance
[Fig. 15(b)] faintly indicates [analogously to Fig. 13(b)] the
white matter tract interiors, by the orientation change inside
high curvature paths (such as the genu of the corpus callosum
(“GCC”). Tract interfaces previously highlighted by the AO
measure [Fig. 10(d)] are also clearly marked. For reasons
not yet clear to us, the shape and orientation covariance

Fig. 15. Aggregate covariance measures evaluated on DTI slice: shape variance
� (a), orientation variance � (b), and shape and orientation covariance �
(c). The orientation variance (b) faintly shows the presence of curved fiber tracts
such as the genu of the corpus callosum (“GCC”), as well (more vividly) the tract
interfaces previously detected with Adjacent Orthogonality (AO) measure (Fig.
10(d)). Numerical ranges for (a), (b), and (c) are [0,6.0], [0,1.8], and [0; 1:9]�
10 mm =s , respectively.

Fig. 16. Synthetic data for noise covariance analysis. R = jDj is fixed, FA
(a) and mode (b) vary through [0,1] and [�1,1], respectively. (c) Is a scatterplot
of the brain dataset (in previous figures) in the same tensor shape domain. (a)
R = FA; (b) R = mode; (c) brain scatterplot.

[Fig. 15(c)] also indicates major features like the white and
gray matter interface.

We also apply our covariance tensor analysis to distributions
of tensors estimated from noisy DWIs, and determine general
patterns of covariance via a synthetic dataset sampling all pos-
sible tensor shapes, shown in Fig. 16. Similar to Fig. 1, this
dataset has fixed at 0.0015 (consistent with
eigenvalues in the brain parenchyma [2]), with a constant base-
line T2 value, and and vary over their full
ranges. Fig. 16(c) maps the brain dataset used in previous fig-
ures to a scatterplot spanning the same tensor shape domain, to
illustrate the broad diversity of tensor shapes that constitute typ-
ical datasets. DWIs were simulated using a single baseline and
six icosahedral gradient directions [78] at .
Complex-valued Gaussian noise ( in the baseline
image) was added to the real values synthesized from the stan-
dard single-tensor model [1]. Mea-
surements were simulated 30 000 times and tensors were esti-
mated by log-linear least squares fitting of the magnitude images
[1], generating for each pixel a fourth-order covariance tensor

, and variances of and . The gradients were ran-
domly rotated (as a rigid set) for each measurement, to remove
directional bias [79].

Fig. 17 depicts the results from our experiment. Only the
(shape-related) upper-left corner of the covariance matrix is
shown; orientation-related portions will be presented in future
work. With our experimental design, the variance along

is generally larger than the variance along
or . Note also that and have comparable
values. That is, for all possible tensor shapes (recall Fig. 1),
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Fig. 17. Experimental results for shape-related covariance tensor compo-
nents � . Notably, the variance along tensor mode (R ) is generally no
larger than the variance along FA (R ). Color scale for � shown on right.
Var(R ) is similar to � , but the Var(R ) diverges from � because of
large jrrrR (hDi)j near isotropy. Var(R ) and Var(R ) use separate (and
dimensionless) color scales than those used for the � .

Fig. 18. Experimental accuracy of invariant variance approximation (39). The
approximation is worst near isotropic tensors, where the directions of rrrR and
rrrR vary most rapidly.

the variance along is similar to that along . The
parameterization of , however, makes its variance much
larger than that of [recall (39)], consistent with
earlier descriptions of noise sensitivity in eigenvalue skewness
[60]. Scatterplots of and for invari-
ants and (Fig. 18) illustrate the accuracy of our direct
approximation to the variance of an invariant. The accuracy of
the approximation is entirely determined by the accuracy of the
first-order Taylor expansion. For example, the approximation
fails for FA near isotropic tensors where the FA isocontours
have high curvature [Fig. 16(a)].

V. DISCUSSION

Our framework of invariant gradients and rotation tangents
gives mathematical representation (as an orthonormal coordi-
nate system) to intuitive notions of tensor shape and orienta-
tion, effectively converting questions about shape and orien-
tation into tensor contractions with particular basis tensors in

. For example, the aggregate measure of shape and ori-
entation covariance [(44), Fig. 15(c)] converts the question
“How much are tensor shape and orientation changing simulta-
neously?” to tensor contractions along particular pairs of axes,
creating a direct way to assess a meaningful property of the
otherwise unwieldy fourth-order covariance tensor . With a

multitude of tensor contractions and measures possible, Sec-
tion V-A gives some guidance on various applications. Finally,
Section V-B considers the significance of positive-definiteness
in DTI processing, and the relationship between our work and
recent Riemannian approaches.

A. Future Directions for Application

The quantitative summary in Fig. 11 of the normalized
average gradient strengths throughout the brain is a starting
point for considering applications of our framework. Knowing
from Fig. 5(b) and Fig. 9(b) that indicates primarily the CSF
boundary (not internal white matter structure), yet knowing
from Fig. 11 that creates on average about 40% of the
total gradient magnitude , one may consider omitting
from DTI processing for studying white matter architecture. A
similar argument could be made regarding and . Some
work already employs this strategy of leaving overall tensor
size out of algorithmic processing, such as the normalized
tensor scalar product (NTSP) difference measure of Jonasson
et al. [25], or the use of the tensor deviatoric by Zhang et al. in
tensor registration [35].

More generally, our work provides the means of modulating
the role of tensor size, or any other tensor attribute, in the
context of tensor differences [Section II-C], gradients [Sec-
tion III-A], and covariance [Section III-B], as informed by
anatomical specificity (Fig. 9), overall strength (Fig. 11), or
noise sensitivity (Fig. 17). For example, in many approaches to
nonlinear edge-preserving filtering, some measure of gradient
strength controls the amount of local diffusive smoothing [80].
Fig. 9 suggests a possible way to scale the relative contribu-
tions of the six components of , as decomposed by our
framework: can be scaled down to be comparable to
in magnitude, and could be projected out entirely,
and and could be combined into AO (Fig. 10).
Along these same lines, Schultz et al. leverage our framework
(as described in [40]) to tune the gradient components for
computing structure tensors in DTI, improving the anatomical
relevance of both level-set segmentation and edge-preserving
filtering [67]. Alternatively, in the context of tuning a tensor
difference measure for registering different datasets in a group
study, it may be better to increase the relative significance of
tensor orientation (as parameterized by the rotation tangents),
so that tensor shape differences do not influence registration in
a way that could confound the subsequent comparison of tissue
organization (usually parameterized by anisotropy measures
such as FA).

There are other possible applications of our gradient tensor
analysis. Analytically measuring spatial derivatives of tensor
invariants permits computer vision methods to extract the
anisotropic structure of the tensor field in the continuous
domain. Wherever edge detection or other feature extraction
algorithms call for the image gradient, (27) and Section III-C
provide the means of accurately calculating, for example,

or . Early work along these lines shows that crease
features (ridge and valley surfaces) of FA delimit the major
white matter structures [81]. Also, with some refinements, the
AO measure may help extract anatomical landmarks around
the tract boundaries highlighted in Fig. 10(d). This could
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guide nonrigid registration, given the importance of correctly
registering neighboring yet distinct fiber tracts.

The ability to modulate the relative significance of different
tensor attributes can also help in applications of the fourth-order
covariance tensor. For example, Lenglet et al. [26] use the co-
variance tensor (on a Riemannian manifold) to characterize
regions in level-set DTI segmentation. It may be beneficial to de-
crease the significance of orientation variance relative to shape
variance [measured by (37)], since tensors with sim-
ilar shape but slightly differing orientations can belong to the
same tract. Here too, AO can help detect distinctly oriented
neighboring tracts so that they are not segmented together. Our
image neighborhood covariance measurements (Figs. 12 and
14) may also have utility in brain tumor characterization and
segmentation, where pathology can be characterized by simul-
taneous reductions in anisotropy (due to nervous tissue damage)
and increases in diffusivity (due to edema) [51]; this covariance
is captured exactly by .

We plan to use our covariance decomposition to explore the
effect of noise on tensor estimation, and to study DWI exper-
imental design, as preliminarily demonstrated in Fig. 17. Pre-
vious work studies variances of specific tensor attributes [68],
[69], [71], or the full fourth-order covariance tensor [37], [38].
Our framework blends these approaches by looking at compo-
nents of the covariance tensor along the axes (in ) spanned
by variations in tensor attributes, while avoiding the influence
of the parameterization of those attributes. We can thus more
fundamentally compare relative noise sensitivities along
(measured by ) and tensor mode , independent
of the parameterizations of and . Fig. 17 shows that for
the chosen experimental design, and are not drastically
different, even though the variance of mode can be an order of
magnitude greater than the variance of FA. This suggests that,
properly analyzed, tensor mode could play as significant
a role as FA in quantitative DTI studies. Space does not
permit similar exploration of orientation variance due to noise
[measured separately by (37) or collectively by
(43)], but we are currently developing measures of orientation
variance comparable to those developed for individual eigen-
vectors [68], [72].

B. Relationship to Riemannian Approaches

Our framework is “Euclidean” in that we consider diffusion
tensors as elements of vector space , even though this over-
looks the positive-definiteness of diffusion. This simplifying as-
sumption has established precedent in the DTI literature [37],
[38], [62], even in the context of reconstructing tensors from dis-
crete samples [34], [73]. In an alternative approach to DTI anal-
ysis, tensors are located either implicitly or explicitly on a Rie-
mannian manifold endowed with some metric that effectively
creates an infinite distance between valid tensors and those with
zero determinant [26], [63], [64], [66], [82], [83]. The rela-
tive merit of these approaches (Euclidean versus Riemannian)
is not addressed here, as doing so would require a lengthier
treatment of both Riemannian geometry theory and image pro-
cessing practice than space allows. However, some basic points
bear consideration.

On one hand, tensor invariants can be defined on Riemannian
manifolds, and their gradients can be measured with respect to
the local metric tensor, as can the angles between gradients [84].
In this sense, it is theoretically possible to redefine our frame-
work entirely in a Riemannian context, which is a current topic
of interest for us. On the other hand, the difference between
Euclidean and Riemannian approaches may be viewed simply
as a difference in choosing whether to enforce positive-defi-
niteness solely during data acquisition, or also during analysis.
Positive-definiteness is a fundamental property of Riemannian
tensor analysis, enforced by a particular choice of the man-
ifold metric. Euclidean approaches assume that positive-defi-
niteness has already been enforced after acquisition, and may
use measures that are defined without regard to positive-defi-
niteness. Our tensor data is positive-definite mainly due to high
signal-to-noise imaging, but also by clamping the rare nega-
tive eigenvalue to a machine-precision positive number during
tensor estimation. More sophisticated approaches to positive-
definite tensor estimation have been studied [85]–[88]. We also
note that metrics like trace and FA are defined without respect
to positive-definiteness [both are positive for

], which has apparently not hindered their clin-
ical utility. Finally, apart from the spline-based tensor interpo-
lation [34] (which does not enforce positive-definiteness), our
method focuses entirely on describing differences, gradients,
and sample covariance of given tensors, rather than generating
new tensors, which may mitigate the urgency of enforcing pos-
itive-definiteness.

APPENDIX A
ORTHOGONALITY OF AND INVARIANT GRADIENTS

The rotation tangents (Section II-B) are mutually or-
thogonal: if . For example

This uses the easily verified identity

(47)

To show that invariant gradients are orthogonal to rotation tan-
gents, we first derive an expression for the gradient of an eigen-
value. A related analysis appears in Appendix A of [72]. The
eigenvalues are unsorted in the following. From the spectral de-
composition and (47), for a fixed

(48)
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thus

(49)

Then, assuming a fixed eigenvector , with the product rule

(50)

We can then express the gradient of any invariant by applying
the chain rule to the spectral decomposition

(51)

Then (17)–(19), (47), and (51) imply

(52)

APPENDIX B
SHAPE AND ORIENTATION NEAR ROTATIONAL SYMMETRY

The framework of invariant gradients and rotation tangents is
well defined when the tensor eigenvalues are unequal, as is al-
ways the case in numerical measured data. Certain distinctions
between shape and orientation, however, gradually become am-
biguous as rotational symmetry develops. A two-dimensional
example illustrates this.

Two-dimensional symmetric tensors have three degrees-of-
freedom. The definitions of and in (10) also apply to
two-dimensional tensors, giving two orthogonal invariants that
parameterize tensor shape in terms of size and 2-D anisotropy.
In two dimensions, reduces to

(53)

and then (50) implies

(54)

where is the eigensystem of , and . The
rotation tangent for the single axis of rotation is, as in (22)

(55)

Let be a two-dimensional tensor with eigenvalues
and eigenvectors , which form basis

(56)

Let be the rotation of by

(57)
As the diagonalization of , (57) implies that the eigenvec-
tors of are and .
Then, from (55)

(58)

That is, the invariant gradient at is parallel to the rotation
tangent at . However, by (56) and (57), the distance between

and is arbitrarily small

(59)

In summary, the number of degrees-of-freedom in the tensor
never changes, but near rotational symmetry , the
otherwise clear distinction between variation in shape (along

) and orientation (along ) becomes ambiguous.
Analogous situations arise in three dimensions when tensor

mode [(11) and Fig. 1] approaches its extrema. Invariant gra-
dient and rotation tangent become interchangeable as
tensor mode approaches 1 ( ; rotational symmetry
of planar anisotropy around ). and still span two
degrees-of-freedom, but the orientation of and within
their span is essentially arbitrary. This ambiguity is actually
leveraged in Section III-A for defining the AO measure. Sim-
ilarly, and become interchangeable as tensor mode

approaches 1 ( ; rotational symmetry of linear
anisotropy around ). In addition, when or approaches
zero , and remain stable, though
all other invariant gradients and rotation tangents become inter-
changeable. is constant, but becomes un-
stable when approaches zero (which never happens in diffu-
sive tissue).
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