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 i  g  h  l  i g  h  t  s

We  propose  the  intensity  growth  maps  (IGM)  to perform  segmentation  of one-year  old  data.
The  IGM  captured  intensity  changes  of  20–25%  in  immature  WM  regions.
We  generate  adaptive  tissue  probability  map  of  one-year  old  data  using  IGM.
IGM-EM  has  a dice  error  ratio,  GM:  9.75  and  WM:  12.66.
The  results  of  IGM-EM  show  good  performance  in  temporal  and  prefrontal  lobe  areas.
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eywords:
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xpectation Maximization algorithm
issue segmentation
ntensity growth map

a  b  s  t  r  a  c  t

The  degree  of white  matter  (WM)  myelination  is rather  inhomogeneous  across  the  brain.  White  matter
appears  differently  across  the  cortical  lobes  in  MR  images  acquired  during  early  postnatal  development.
Specifically  at 1-year  of age, the  gray/white  matter  contrast  of MR  T1  and  T2 weighted  images  in prefrontal
and temporal  lobes  is reduced  as compared  to  the  rest  of  the brain,  and  thus,  tissue  segmentation  results
commonly  show  lower  accuracy  in  these  lobes.  In  this  novel  work,  we propose  the  use  of  spatial  intensity
growth  maps  (IGM)  for T1  and  T2  weighted  images  to compensate  for local  appearance  inhomogeneity.
The  IGM  captures  expected  intensity  changes  from  1 to  2 years  of age,  as appearance  homogeneity  is
greatly  improved  by the  age  of  24 months.  The  IGM  was  computed  as  the  coefficient  of a  voxel-wise
linear  regression  model  between  corresponding  intensities  at 1 and  2  years.  The  proposed  IGM method
revealed  low  regression  values  of  1–10%  in GM  and CSF  regions,  as  well  as in  WM regions  at  maturation
artial volume estimation stage  of  myelination  at  1 year.  However,  in the prefrontal  and  temporal  lobes  we observed  regression
values  of 20–25%,  indicating  that the  IGM  appropriately  captures  the  expected  large  intensity  change  in
these  lobes  mainly  due  to myelination.  The  IGM  is applied  to cross-sectional  MRI  datasets  of  1-year-old
subjects  via  registration,  correction  and  tissue  segmentation  of  the  IGM-corrected  dataset.  We  validated
our approach  in  a small  leave-one-out  study  of images  with  known,  manual  ‘ground  truth’  segmentations.

38

39
. Introduction
Please cite this article in press as: Kim SH, et al. Adaptive prior probability a
the  one-year-old human brain. J Neurosci Methods (2012), http://dx.doi.or

Image segmentation methods are widely used in neurodevelop-
ental analyses to study anatomical differences and functionalities

cross all ages (Gilmore et al., 2007, 2010; Hazlett et al., 2011;
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Knickmeyer et al., 2008; Shaw et al., 2006). Many proposed 

methods segment MR  images into tissue classes of white matter 

(WM),  gray matter (GM) and cerebrospinal fluid (CSF). Common
approaches for segmentation include Expectation Maximization 

(EM) (Roche et al., 2011), Artificial Neural Network (Perez de Alejo 

et al., 2003) and fuzzy classification-based algorithms (Shen et al., 
nd spatial temporal intensity change estimation for segmentation of
g/10.1016/j.jneumeth.2012.09.018

2005). These methods work well on images from subjects older 44

than 2 years of age, a point in development when the WM of the 45

brain is mature enough to appear mostly homogenous across the 46

brain. Consequently, volumetric studies evaluating GM and WM 47
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Fig. 1. WM in early postnatal stage undergoes myelination that strongly affects MR
appearance. The intensity of immature WM (red circles) often appears similar to
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aturation changes in full-term children have been conducted
ainly in subjects older than 2 years of age (Caviness et al., 1996;
iedd et al., 1996; Sowell et al., 2004). However, they fail to accu-

ately represent WM around 1 year of age due to the progress of
yelination in WM.  The progress of WM maturation is inhomoge-

eous across the brain, following a pattern of posterior-to-anterior
obes and superior to inferior progression (Colby et al., 2011;
zarouchi et al., 2009). The intensity of late myelinating WM often
ppears similar to GM intensity, strongly affecting MRI  appearance.
onsequently, at 1 year of age, the prefrontal lobes and inferior
emporal pole show a reduced WM/GM contrast as compared to
ther lobes (Fig. 1). Not surprisingly, standard tissue segmentation
ethods, which assume homogeneous within-class appearance

cross the image produce incorrect results within the prefrontal
nd temporal lobes even after correcting intensity nonuniformity.
ommonly, white matter is under-segmented in inferior tempo-
al and prefrontal lobe. In order to address this issue, the addition
f a mixed WM/GM class or the use of regional/lobar atlases was
reviously proposed, often with limited success, unless paired lon-
itudinal datasets existed (Merisaari et al., 2009; Shi et al., 2010a,b).
or the reminder of this paper, WM regions that are comparatively
nder-myelinated will be called immature WM.

.1. Related studies

There are two main categories for methods compensating of
mmature WM in MRIs of 1-year-olds: a classifier-based approach
nd an atlas-based approach. Claude et al. (2004) proposed a
lassifier-based approach by segmenting immature WM parts of
remature brain using a semi-automatic strategy including the
ixel-wise region growing method and a novel method of image

ntensity gradient generation. The myelination intensity correction
nside the WM was used to update Gaussian mixture model param-
ters for the WM cluster computation. After myelination correction,
egmentation is achieved via combining several segmentation
ethods from a watershed segmentation-based method, rigid

ransformation and combination with prior probability images in
he SPM2 package, and a Hidden Markov Random Field method.
his method and most such classifier-based segmentation meth-
ds tend to overestimate the intensity compensation due to local
ver-fitting.

To reduce such overestimation, atlas-based approaches define
patial tissue priors for white matter regions at different stage
Please cite this article in press as: Kim SH, et al. Adaptive prior probability a
the  one-year-old human brain. J Neurosci Methods (2012), http://dx.doi.or

f white matter maturation in a known brain atlas space. Such a
rain atlas represent typical subjects at similar developmental age
ith a large number of often manually determined regional tissue

lass priors. The brain atlas image template, as well as the tissue
 PRESS
e Methods xxx (2012) xxx– xxx

priors, are registered and transferred to the subject image being 

segmented. In Weisenfeld and Warfield (2009),  which focused on 

newborn MRI  scans, the registration of atlas and priors are used to 

automatically learn subject-specific class-condition density func- 

tions, which are then fused to form an optimal estimate of the 

targets’ segmentation. Shi et al. (2010a) applied an approach using 

atlas-based segmentation from a later time-point image of the same 

subject also for neonatal brain segmentation. This approach takes 

advantage of the fact that brain gyrification remains mainly stable 

during postnatal development for full-term infants. However, these 

segmentation results fully depend on availability of longitudinal 

datasets. To overcome this limitation Shi et al. (2010b) proposed 

a multi-region-multi-reference framework for atlas-based neona- 

tal brain segmentation parcellating the average atlas into multiple 

regions, and applying an exemplar for image clustering into differ- 

ent sub-populations.

1.2. Motivation of current study 

The white matter maturational process in the first few years of 

postnatal human life shows a relatively large degree of regional 

inhomogeneity (Murakami et al., 1999). At one year of age, the 

white matter in the prefrontal and inferior temporal lobes is at 

a reduced level of myelination and consequently shows reduced 

WM/GM contrast as compared to other cerebral regions. The pur- 

pose of this study is to develop a novel brain tissue segmentation 

method for cross-sectional 1-year-old MRI  datasets using a novel 

spatial intensity growth map  (IGM) that compensates for the white 

matter intensity appearance inhomogeneity. The proposed method 

is evaluated on selected T1-weighted images of 1-year-old subjects 

with manual ‘ground truth’ segmentations. 

2. Method 

The proposed segmentation procedure is based on a local inten- 

sity changes that captures expected intensity changes from 1 to 

2 years of age (see Fig. 2 for an overview of the methods), The 

IGM is applied to MRI  images by deformable registration and sub- 

sequent intensity correction (Section 2.3). The modified image is 

then segmented with an enhanced EM-based tissue segmentation 

method (Section 2.4). In order to achieve optimal tissue priors, we 

further employed an EM-like optimization of existing prior tissue 

probability maps to fit known expert rater segmentations (Section 

2.5). 

2.1. Training data 

The subject population employed for the creation of the pro- 

posed IGM method consisted of fourteen subjects with paired 

longitudinal T1-(160 slices with TR = 2400 ms,  TE = 3.16 ms,  flip 

angle = 8, field of view 256 × 256) and T2-weighted (160 slices with 

TR = 3200 ms,  TE = 499 ms,  flip angle = 120, field of view 256 × 256) 

MR  scans at 12 and 24 months. The subject scans were selected from 

scans acquired as part of the IBIS (Infant Brain Imaging Study) net- 

work (http://www.ibis-network.org) at 4 different sites (University 

of North Carolina, University of Washington at Seattle, Washington 

University at Saint Louis and the Children’s Hospital of Philadel- 

phia). All datasets were acquired on 3T Siemens Tim Trio scanners 

at 1 mm × 1 mm × 1 mm resolution. 

2.2. Preprocessing 
nd spatial temporal intensity change estimation for segmentation of
g/10.1016/j.jneumeth.2012.09.018

The fourteen-paired T1- and T2-weighted images were first sep- 147

arately corrected for geometric distortions (Fonov et al., 2010) as Q2 148

well as intensity non-uniformity (Sled et al., 1998). All T2-weighted 149

images were rigidly registered to the corresponding T1-weighted 150

dx.doi.org/10.1016/j.jneumeth.2012.09.018
http://www.ibis-network.org/
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ig. 2. Overview of proposed IGM based segmentation method. T1 and T2 images un
nto  common space with affine transformation and skull stripping. The IGM was c
robability obtained from a deformably mapped 4-year-old atlas was adapted. The

mages via mutual information registration. For cases where the
utomatic co-registration failed we manually initialized the reg-
stration procedure. Then both T1 and T2 were transformed to
tereotaxic space based on the registration of the T1 scan. Intensity
istogram equalization to reference image, 1-year-old template,
as then performed on these registered images (Nyul et al., 2000).
ext, the skull was extracted using FSL’s BET (Brain Extraction
ool) on all T1w images (Smith, 2002), The computed T1 brain
ask was applied to the T2 image. Corresponding 1 and 2-year-old

kull-stripped T1w images were next aligned with nine parame-
ers similarity registration. The 1-year-old T1 data was then aligned
ith an affine followed by a thin-plate spline based deformable reg-

stration into a prior 1-year-old template data set (Collins et al.,
994; Fonov et al., 2011). Finally, the concatenated registration
ransformation matrix was applied to each of the T2-weighted 1-
ear-old image and the T1- and T2-weighted 2-year-old images.
he prior atlas space employed here is an unbiased, age-appropriate
1-year) atlas template computed via joint deformable registra-
ion that simultaneously minimizes the differences of intensity
nd transformation from 104 training images from the 1-year-old
ataset within the IBIS study (Fonov et al., 2011).

.3. Spatial prior intensity growth map (IGM) generation

While MRI  images of 1 year old subjects exhibit myelination
elated regional WM intensity inhomogeneity, by 2-years of age,
he white matter has almost reached maturity and exhibits less
ntensity variation on MRI. We  propose to compute a spatial prior
ntensity growth map  (IGM) that aims at capturing this change in

R  intensity from 1 to 2 years. In the preprocessing described above
Please cite this article in press as: Kim SH, et al. Adaptive prior probability a
the  one-year-old human brain. J Neurosci Methods (2012), http://dx.doi.or

e established voxel-wise correspondence across subjects at 1 year
f age as well as within subjects from 1 to 2 years of age in the aver-
ge template space. Employing this voxel-wise correspondence, we
ompute the IGM in template space as the local coefficient map
ent several preprocessing steps such as correction of non-uniformities, registration
ted via regression on the paired and aligned voxels (left shaded box). Initial prior
rs were finally employed for the final IGM-EM segmentation method.

from a voxel-wise linear regression model between the local inten-
sity changes at the paired 2 year and 1-year-old data in each voxel. 

While the common linear regression model also includes a constant 

term, we  did not consider such a constant, as we assume consistent 

zero intensity for the image background at both ages. 

6∑
j=0

Yj
v = ˛v

6∑
j=0

Xj
v

‘Yv’ denotes the intensity at 2-years of age, and ‘Xv’ at 1-year. The 

estimated local regression coefficients, ˛v, voxel v were computed 

over their six connected neighborhood, j, to reduce variability of 

the regression coefficients due to registration errors. It is notewor- 

thy, that the proposed IGM is not directly applied as part of the 

tissue classification step, but rather serves as a correction factor of 

the original image intensities. Thus, each local coefficient was  esti- 

mated voxel-wise from 7 (6 + 1) voxels and 14 datasets with a total 

of 98 samples. For T1w images, the coefficient ˛v is expected to 

show high values in areas of high intensity change and low values 

for those regions of moderate intensity change from 1- to 2-years 

of age (see Figs. 3 and 4). The results for T2 images are expected to 

show the inverse behavior. 

2.4. Enhanced EM-segmentation via IGM and WM
skeletonization (IGM-EM) 

The overview of proposed IGM segmentation method is shown 

in Fig. 5. Like most atlas based segmentation approaches, our EM 

segmentation registers a prior atlas template to a new subject’s 

T1 or T2 datasets and maps the atlas tissue priors to the subject
nd spatial temporal intensity change estimation for segmentation of
g/10.1016/j.jneumeth.2012.09.018

space. Registration is achieved via a deformable, b-spline based 208

registration optimizing local mutual information (Collins et al., 209

1994). In our approach, we  also map  the IGM map  into the sub- 210

ject image space. The mapped T1 and T2 IGMs are then multiplied 211

dx.doi.org/10.1016/j.jneumeth.2012.09.018
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ig. 3. Regression plots from three selected voxels. Low coefficient values are observ
-  and 2-year-olds, whereas high coefficient values are found in immature WM are
eferred to the web  version of the article.)

ith each T1 and T2 weighted image to yield intensity corrected
1 and T2 images to serve as input to our EM-based tissue seg-
entation (Delignon et al., 1997). The EM framework was applied
ith the mapped tissue probability priors to the subject’s T1 and T2
eighted images after voxel-wise multiplication with the local IGM

oefficients. The expectation step started with given P(0)
k

, m(0)
k

, �(0)
k

rom the mapped 1-year-old atlas, and we compute the prob-
bility density as Gaussian mixture model with 4 classes (WM
mature + immature WM),  GM,  CSF and background).

T1
v = IT1

v × ˛T1
v

T2
v = IT2

v × ˛T2
v

or X = (X1, X2,. . ..,XN) is a sample of N independent observations
rom a mixture of two multivariate Gaussian model (Van Leemput
t al., 1999).

(i)(k|v) = P(i)
k

g(Xv; m(i)
k

, �(i)
k

)∑k
m=1P(i)

k
g(Xv; m(i)

k
, �(i)

k
)

here class is represented by k (k = 1,2,3,4) at EM iteration (i). This
tep is iterated until convergence to a local maximum of the likeli-
ood function (D = dimension):
Please cite this article in press as: Kim SH, et al. Adaptive prior probability a
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(i+1)
k

=
∑N

v=1P(i)(k|v)Xv∑N
v=1P(i)(k|v)

(i+1)
k

=
√

1
D

∑N
v=1P(i)(k|v)||Xv − m(i+1)

k
||2∑N

v=1P(i)(k|v)

255

256

257

258
gray matter areas (in green) and fully developed white matter areas (blue) between
d). (For interpretation of the references to color in this figure legend, the reader is

P(i+1)
k

= 1
N

N∑
v=1

P(i)(k|v) 

In addition to the posterior WM,  GM and CSF probability maps, 

our EM segmentation approach also provides a partial volume esti-
mation (PVE) map  for each tissue type (Tohka et al., 2004). As the 

WM is often thin and highly variable in the temporal pole and
posterior occipital lobes, the application of the proposed IGM  can 

leave those WM areas under-segmented and can lead to discon- 

nected WM parts. To correct for this, we employed a thinning-based 

1D-skeleton of the WM-PVE map binarized at an empirical thresh- 

old of 40% to further enhance the posterior WM probability by 

setting the WM posterior probability at the WM-PVE-skeleton Sv
to 1 (Fig. 6). This process did little to the overall volume (less 

than 1% change), but provided considerable enhancement to any 

potential cortical thickness analysis following the tissue segmen- 

tation. 

Since the topology of cerebral WM is assumed to be sim- 

ply one-connected, i.e., of spherical topology, when disregarding 

subcortical structures, we further eliminated isolated WM voxel 

regions. We  also observed that ringing artifacts due to motion com- 

bined with the expected, reduced GM/WM  contrast in 1-year olds 

could lead to over-corrections during the intensity non-uniformity 

pre-processing step, which subsequently resulted in WM being 

over-segmented in superior cortical regions. To prevent such over- 

corrections, we  employed a conservative, minimal cortex GM+CSF 

mask to reserve a thin layer toward the inside starting at the inner 

skull surface (WM+GM+CSF) only for GM and CSF. The thickness of 

this minimal cortex mask thickness is conservatively set at 3 mm
nd spatial temporal intensity change estimation for segmentation of
g/10.1016/j.jneumeth.2012.09.018

given an expected CSF contribution of 1–2 mm in most cortical 259

regions. Fig. 7 shows the effects of cortex mask. WM segmenta- 260

tion errors are visible in superior parts and lateral temporal areas 261

without the cortex mask. 262

dx.doi.org/10.1016/j.jneumeth.2012.09.018
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ig. 4. The generated spatial intensity growth maps for T1 and T2 images. The dom
GM  shows regression coefficients of about 25%.

Thus, the final hard segmentation map  K(v) was then computed
s follows:

PVEnew WM
v = min(PVEEM

v + Sv, 1) Sv ∈ {0, 1}

if PVECSF(v) > 0&PVECSF(v) > PVEGM(v) → K(v) = CSF,

else if M(v) > 0&PVEGM(v) > 0&PVEGM(v) > PVECSF(v) → K(v)
= GM,

else if M(v) > 0&PVEnew WM(v) > 0 → K(v) = GM,

else if PVEGM(v) > PVEnew WM(v) → K(v) = GM,

else if PVEnew WM(v) > 0 → K(v) = WM,

else K(v) = Background

.5. Optimization of prior tissue probability maps
Please cite this article in press as: Kim SH, et al. Adaptive prior probability a
the  one-year-old human brain. J Neurosci Methods (2012), http://dx.doi.or

As is the case for all atlas based tissue classification methods,
he tissue segmentation result of our IGM-EMS method is strongly
ependent on the prior tissue probability maps defined in the atlas
t intensity changes are observed in the temporal and pre-frontal lobes, where the

template space. In our application, the initial tissue class priors in 

the atlas space were determined by deformable registration of an 

existing 4-year-old atlas (Hazlett et al., 2011) with known proba- 

bility priors into the 1-year-old atlas. Fig. 2 shows an overview of 

generating adapted prior probabilities for the 1-year-old atlas. The 

1-year-old atlas image was  created via an unbiased age-appropriate 

atlas building (Fonov et al., 2011) from 104 subject dataset available 

as part of the IBIS network (see Section 2.1). The 4-year-old atlas 

image was  then registered to this 1-year-old image via Automatic 

Nonlinear Image Matching and Anatomical Labeling (Collins et al., 

1995) and tissue priors were propagated to the 1-year-old atlas 

space. Due to the differences in local image WM/GM contrast at 1 

and 4 years of age, small registration errors resulted in insufficient 

tissue segmentation quality especially in the prefrontal and tem- 

poral lobes. Thus, an additional step was performed to improve the 

prior tissue probability maps using expert manual segmentations 

of additional datasets. 
nd spatial temporal intensity change estimation for segmentation of
g/10.1016/j.jneumeth.2012.09.018

Specifically, we  selected 5 further cases from the same IBIS net- 287

work study to be segmented manually by the same expert (MG) 288

for all cases and form a standard “ground truth” dataset. These 289

segmentation were established by extensive manual adaptation of 290

dx.doi.org/10.1016/j.jneumeth.2012.09.018
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ig. 5. Segmentation pipeline: following skull stripping, the atlas template with it
egistration. After IGM based intensity correction, partial volume estimates (PVEs) 

 thin inner brain mask is employed to compute the final tissue segmentation. The 
Please cite this article in press as: Kim SH, et al. Adaptive prior probability a
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egmentation maps computed with another atlas based EM
egmentation method called ABC (http://www.nitrc.org/projects/
bc/) (Prastawa et al., 2003). Using the interactive segmentation
ool ITK-SNAP (http://www.itksnap.org), the expert determined

ig. 6. Partial volume estimation of WM was enhanced using skeletonization of WM wi
nto  original PVE-WM (b). Blue arrow indicates little changes in temporal areas (c). Ther
keltonization PVE-WM shows accurates segmentation results in mid  temporal areas (e).
e priors and IGM map  is registered into the subject image space using deformable
mputed via adaptive EM segmentation. The skeleton of the binarized PVE map and
brain mask is used to prevent WM over-estimation, especially for superior areas.
nd spatial temporal intensity change estimation for segmentation of
g/10.1016/j.jneumeth.2012.09.018

manual segmentations of WM,  GM and CSF on the T1 weighted 295

images. 296

As the first step though to improve the propagated 4-year- 297

old probability priors, we  employed the proposed IGM-EMS 298

th threshold 40%. The original PVE-WM (a) and the skeletonization of PVE overlap
e are some missing WM areas in mid  teporal lobe (d), but enhaced PVE-WM using

dx.doi.org/10.1016/j.jneumeth.2012.09.018
http://www.nitrc.org/projects/abc/
http://www.nitrc.org/projects/abc/
http://www.itksnap.org/
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Fig. 7. WM over-segmentation example (white arrows) wit

egmentation of the 14 training subjects already employed in the
GM computation. The resulting segmentation maps were mapped
ack in the atlas space, where they were averaged voxel-wise
o represent a first updated prior probability maps. Then, we
mployed the above described ground truth to iteratively improve
he atlas tissue prior maps. For each iteration, we  computed the
GM-EMS segmentations, as well as resulting difference maps to
he ground truth for each tissue class (0 = correct segmentation;
q = false positive; −q = false negative, q was set at 1.0). The dif-
erence maps were transformed back to atlas space, where they
ere voxel-wise averaged across the 5 cases. The updated atlas
rior maps were finally computed by straightforward subtrac-
ion of the difference maps. This procedure was iterated until
he prior maps showed less than 1% cumulative change across all
riors.

.6. Evaluation EM segmentation with IGM

Our proposed IGM-EM segmentation method was evaluated
sing the same five selected datasets with expert segmentations
ground truths). In order to compare our methods against previous

ethods, these images were also segmented with a conventional
M approach (Delignon et al., 1997), FSL-FAST method based on

 hidden Markov random field model and an associated EM algo-
ithm (Zhang et al., 2001), and Artificial Neural Network method
f the constrained Laplacian-based automated segmentation with
roximities (CLASP) pipeline (Kim et al., 2005). The conventional
M method is the same basic EM method that we  employed
ithin IGM-EM (see Section 2.4). To allow for a fair comparison,
e generated optimized prior tissue probability maps by apply-

ng the above method for each method separately. Furthermore,
ll segmentations were computed using a leave-one-out strat-
gy over the prior maps, rendering the proposed evaluation fully
nbiased. Thus, in order to compute the set of segmentations,
e generated separate optimized prior tissue probability maps

or each method and for each image using the expert segmenta-
ions in the remaining ground truth cases only. As the evaluation
riterion we selected the Dice error: 1 − 2 × |X ∩ Y|/(|X| + |Y|) and
animoto error: 1 − |X ∩ Y|/(|X| + |Y| − |X ∩ Y|). Both of these mea-
Please cite this article in press as: Kim SH, et al. Adaptive prior probability a
the  one-year-old human brain. J Neurosci Methods (2012), http://dx.doi.or

urements have been suggested and successfully employed in
ecent segmentation challenges at MICCAI conferences (Heimann
t al., 2009; Styner et al., 2008; van Ginneken and Styner,
007).
inimal cortical mask (a), corrected with cortical mask (b).

3. Results 

3.1. Intensity growth map (IGM) for correcting the intensity in 

immature white matter regions 

As can be seen in Fig. 4, the computed T1 IGM reflects the 

expected maturation-related MR  intensity changes between 1 and 

2 years. Fig. 3 represents different coefficients dependent on tis- 

sue types between 1- and 2-year-old data. GM and CSF regions, 

which should remain mainly unaffected by the myelination pro- 

cess, reveal relatively low regression coefficients ˛v between 1.0 

and 1.1 in the T1 image. In WM regions that already underwent con- 

siderable myelination, we measured a similar coefficient ˛v to those 

in GM and CSF regions. However, in those WM areas that are known 

to exhibit a comparatively lower stage of myelination at 1 year of 

age, we  observe 20–30% intensity differences between 1- and 2- 

year-olds (i.e. coefficients ˛v around 1.25). The IGM coefficients for 

the T2 weighted images provide the same interpretations, although 

inversely related to the T1 weighted IGM values. In both T1 and T2 

IGMs, the superior frontal lobe, inferior temporal lobe and temporal 

pole changed the most. GM maturation occurs throughout the brain 

from inferior to superior and from posterior to anterior (Tzarouchi 

et al., 2009). Also, WM increase and myelination progress follow 

similar pattern of age-related changes (Neil et al., 2002; Xydis et al., 

2006a,b). Finally, IGM corrected MR  images of 1-year-old subjects 

appear visually similar to the appearance of a 2-year-old MR image 

(Fig. 8). 

3.2. Prior probability for the one year old atlas 

The optimized prior GM,  WM and CSF probabilities converged 

within four iterations of the prior probability optimization pro- 

cedure. The coronal view displays the optimized prior probability 

maps in Fig. 9.

3.3. EM segmentation with IGM

We  validated the accuracy of the IGM-EM segmentation meth- 

ods via five datasets with known manual segmentations employing
a leave-one-out scheme for all parts of the validation. In compari- 

son to conventional EM segmentation, a clear improvement in the
nd spatial temporal intensity change estimation for segmentation of
g/10.1016/j.jneumeth.2012.09.018

inferior frontal, temporal and posterior occipital lobes is visible in 375

Fig. 10.  These regions are at a lower stage of myelination and a 376

higher anatomical variation at 1 year of age. The conventional EM 377

without IGM tends to underestimate WM in pre-/superior frontal 378

dx.doi.org/10.1016/j.jneumeth.2012.09.018


ARTICLE IN PRESSG Model

NSM 6465 1–13

8 S.H. Kim et al. / Journal of Neuroscience Methods xxx (2012) xxx– xxx

F ith 24
a

a379

t380

i381

p382

E383

384

s385

w386

m387

i388

W389

o390

391

392

393

394

395

396

397

398

399

F
u

ig. 8. Applied IGM to T1 image of 12 month data (middle column) and compared w
rea  (a) and mid  temporal area (b).

nd inferior temporal areas due to the observed immature myelina-
ion. In contrast, our IGM-EM method appropriately segments WM
n these areas. This is also visible in Fig. 11,  which shows the detailed
erformance of our proposed IGM-EM vs that of the conventional
M, FSL’s FAST and the Artificial Neural Network methods.

Overall, our proposed method provides the lowest error of all
egmentation methods tested in our study. Furthermore, in areas
ith expected comparatively low anatomical variation, Tissue seg-
ented results of IGM-EM have overall low Dice errors such as
Please cite this article in press as: Kim SH, et al. Adaptive prior probability a
the  one-year-old human brain. J Neurosci Methods (2012), http://dx.doi.or

n the frontal (GM: 8.904, WM:  9.052), prefrontal (GM: 8.038,
M:  11.438) and parietal lobes (GM: 9.658, WM:  10.684). On the

ther hand, the occipital lobe (GM: 12.324, WM:  16.668) and the

ig. 9. The average 1-year-old atlas computed from IBIS data (Fonov et al., 2011) with upd
sing  five datasets with known ground truth segmentations.
 month of same subject. The contrast between GM and WM improved in prefrontal

temporal lobe (GM: 9.872, WM:  15.48) show slightly higher error 

scores than the other regions.
The average Dice and Tanimoto error ratio of our proposed 

method has lower mean and standard deviation (GM: 9.75 ± 1.00
and WM:  12.66 ± 0.87) than the other algorithms: conventional 

EM (GM: 18.38 ± 1.76 and WM:  26.41 ± 3.59), FSL’s FAST (GM: 

10.51 ± 1.42 and WM:  14.24 ± 2.34) and neural network (GM: 

10.69 ± 1.21 and WM:  14.06 ± 1.43). FLS’s FAST also provides gen- 

erally good segmentation results, though still often insufficient in 
nd spatial temporal intensity change estimation for segmentation of
g/10.1016/j.jneumeth.2012.09.018

handling immature WM areas. As can be seen in Fig. 12,  while 400

the volumetric measurements from FSL’s FAST are closest to those 401

of the ‘ground truth’ the Dice error is greater than for IGM-EM. 402

ated tissue priors optimized for the proposed IGM enhanced segmentation method

dx.doi.org/10.1016/j.jneumeth.2012.09.018
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Fig. 10. Visual comparison of segmented results. The WM was  under-estimated in prefrontal and inferior temporal lobes using the conventional EM (third column) algorithm
a  First 
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s  compared to the IGM-EM (fourth column) results and the expert ground truth.
roposed IGM-EM obtained more accurate segmentation results in right (a) and lef

obe  (d), right (e) and left (f) occipital lobe.

or the Artificial Neural Network method, relatively low Dice
nd Tanimoto error ratio are observed (as compared to tradi-
ional EM)  with relatively high volumetric measurement errors
hough.

Using paired t-test statistics, we observed that our IGM method
hows significantly higher performance than all other methods in
ll lobar regions except in the temporal lobe where the result of
SL is a similar with that of our proposed method. However, if all
obes are incorporated in the statistical analysis, IGM significantly
utperforms FSL, whether we analyze the performance on WM
p = 0.002) and GM (p = 0.003) separately or jointly (p = 0.00004).
ven though the performance of IGM and FSL is not statistically
ifferent within temporal lobe, this is likely due to the low sam-
le size (n = 5) as IGM has overall higher dice scores, as well as a

ower standard deviation than FSL even within the temporal lobe
see Table 1).

It is important to note that for all approaches evaluated here,
Please cite this article in press as: Kim SH, et al. Adaptive prior probability a
the  one-year-old human brain. J Neurosci Methods (2012), http://dx.doi.or

ncluding our IGM method, the white matter segmentation in the
emporal lobe is the most challenging. In addition, IGM was  addi-
ionally evaluated on 288 datasets from IBIS network study with a
3.3% success rate without need for manual correction. The main
column is the original T1 image and second column shows the ground truth. Our
ferior temporal lobe, right middle/superior temporal lobe (c), left superior frontal

source of errors in this study is motion artifacts leading to segmen- 

tation errors in several lobes.

4. Discussion

Accurate brain segmentation of MR  datasets of subjects at 1 year
of age is an important task. For example, infants, who will be diag- 

nosed with autism at a later age, display early symptoms already at 

1 year of age such as significantly less eye contact or less responsive- 

ness to their name being called, as well as impairments in attention 

behaviors. Recently, researchers have shown that these symp- 

toms closely relate to brain morphometry in lateral–temporal, 

superior–frontal and lateral–frontal areas using lobar volume and 

cortical thickness (Ozonoff et al., 2010; Yirmiya and Charman, 2010; 

Zwaigenbaum et al., 2005). Therefore, brain tissue volume and cor- 

tical thickness measurements, which are main components of most
nd spatial temporal intensity change estimation for segmentation of
g/10.1016/j.jneumeth.2012.09.018

traditional anatomical MRI  studies, need the accurate brain tis- 438

sue segmentations to understand the developed brain changes at 439

this period. However, in postnatal development, such tissue seg- 440

mentation is very challenging. Here, we  propose a correction and 441

dx.doi.org/10.1016/j.jneumeth.2012.09.018
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ig. 11. Dice’s and Tanimoto’s coefficient error ratio was used to validate our results
he  IGM-EM errors are consistently lower than the ones of the other methods. The 
Please cite this article in press as: Kim SH, et al. Adaptive prior probability a
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issue segmentation methodology that allows a standard brain tis-
ue segmentation method to handle areas at comparatively low
tages of myelination in 1-year-old brain MRIs. An advantage of
ur proposed methods is that the effect of such late myelination

ig. 12. Lobe volume differences across the methods. All segmented lobe volumes are q
verage,  FSL’s FAST shows the most similar volume results to those of ground truth. As D
eural  network method, FAST likely compensates false positives with false negative error
 ground truth, and compared with FSL’s FAST and CLASP’s Artificial Neural Network.
bar shows standard error of the mean.
nd spatial temporal intensity change estimation for segmentation of
g/10.1016/j.jneumeth.2012.09.018

is approximately corrected, resulting in more accurate segmenta- 446

tions. 447

The developmental trajectory of WM has been shown to be tem- 448

porally complex and a regionally dynamic function of age. There is 449

uite similar to those of the ground truth even if similarity scores are variable. In
ice’s and Tanimoto’s error ratios for FAST are greater than for IGM-EM or CLASP’s
s.
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Table  1
p  value indicates statistical difference of dice error ratio among the methods.

IGM-EM Conventional EM FSL Neural network

Total brain (GM + WM)  <0.00001 0.00004 <0.00001
Total  GM <0.00001 0.00293 <0.00001
Total  WM <0.00001 0.00214 <0.00001
Frontal GM + WM 0.00001 0.03338 0.00204
Prefrontal GM + WM 0.00003 0.02390 0.00015
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Occipital GM + WM <0.00001 

Parietal GM + WM 0.00002 

Temporal GM + WM <0.00001 

ignificant background information for the development of WM.
n prior DTI studies, inferior areas have displayed lower fractional
nisotropy and higher diffusivity than superior areas, indicating
hat myelination processes follow an inferior to superior and pos-
erior to anterior myelination trajectory (Colby et al., 2011). Similar
atterns are clearly visible in our computed IGMs. This suggests that
he major intensity changes estimated in the IGMs are likely due to
hite matter myelination processes from 1 to 2 years of age.

Even though T1w and T2w images were obtained using same
achine type and MRI  protocol, image intensity variations caused

y image devices itself, radio frequency field and human body
re expected (Axel et al., 1987). These variations have a direct
mpact on any intensity-based analysis, such as the IGM segmen-
ation method. Furthermore, the IGMs were directly calculated by
egressing intensity. Therefore, to generate accurate IGMs, intensity
ormalization is a necessity.

When inspecting the residual errors of the IGM-EM method
Fig. 13),  the thalamic sub-cortical GM regions show relatively large
Please cite this article in press as: Kim SH, et al. Adaptive prior probability a
the  one-year-old human brain. J Neurosci Methods (2012), http://dx.doi.or

rrors. It has been demonstrated by SPECT and perfusion studies in
ull-term infants that the basal ganglia mature earlier than motor
nd sensory cortex (Takahashi et al., 1999; Tokumaru et al., 1999).
n another study, slower development trajectory was  observed in

ig. 13. The difference of segmentation results between ground truth and IGM-EM. Blue 

egions of over-segmentation. The sub-cortical area, especially thalamus areas, shows m
n  this figure legend, the reader is referred to the web version of the article.)
0.01076 0.00296
0.01888 0.00003
0.84185 0.01348

the thalamus compared to the basal ganglia (Tzarouchi et al., 2009).
The IGM map  indicates low values of intensity change from 1 to
2 year of age. Consequently, the mislabeling of thalamic areas in
IGM-EM is unlikely due to a potentially uncorrected myelination
effects, but rather likely due to the ambiguous intensity boundary,
generally present in MR  T1/T2 imagery of the thalamus. 

Since WM maturation changes in full-term children have 

been conducted mainly in subjects older than 2 years of age, 

conventional segmentation approaches commonly show good per- 

formance in that age range, though not at the younger age of 

1-year. While our IGM-method has been developed specifically 

for the appropriate segmentation of immature WM regions in 

MR  images of 1-year-old subjects, a similar approach could be 

employed for the segmentation of datasets in younger ages, poten- 

tially up to 6–8 months. It is though unlikely that this method could 

be straightforwardly extended to even younger ages due the age 

related white-gray matter contrast inversion. 

It further noteworthy, that through the use of a prior atlas with 
nd spatial temporal intensity change estimation for segmentation of
g/10.1016/j.jneumeth.2012.09.018

expected intensity changes, the proposed IGM approach introduces 490

a segmentation bias toward the average brain morphometry. This 491

bias is expected to be present in IGM results in addition to exist- 492

ing biases originating from the standard atlas based EM scheme. In 493

areas highlight regions with white matter under-segmentation and red areas show
islabeling of under-estimation (blue). (For interpretation of the references to color

dx.doi.org/10.1016/j.jneumeth.2012.09.018
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ost current neuroimaging studies, tissue segmentation methods
mploy atlases with its tissue prior probabilities, which introduces

 well-known, inherent bias toward average morphometry, such as
n the widely used FSL and ABC packages. Even small changes to the
issue priors or the atlas anatomical image will result in potentially
onsiderable changes in the segmentations. While the additional
ntensity change prior in IGM provides further bias in a similar
ense, we expect its effects to be considerably smaller than the
nown bias in standard atlas based tissue segmentation methods.
hen we tested IGM vs non-IGM versions of the same EM algo-

ithm, we could not detect (visually) any consistent additional bias
oward the average morphometry.

We  are currently extending the proposed IGM by selectively
pplying an IGM to white-matter only local intensity correction
based on the observed WM posterior) that is incorporated into the
M segmentation loop, as the major contrast changes are limited
o the white matter. Such a scheme would not provide a direct
dditional bias to non-white matter tissue classes, such as CSF and
M.

In summary, we have presented and validated an IGM method
or segmentation in MRIs of 1-year-old. This strategy is a straight-
orward, but effective method. The method is original in that a
rior training map, which was calculated using the paired MRIs,

s applied for the compensation of intensity values in immature
M regions. Novelty is also present in the adaptive morphological

egmentation post-processing designed for 1-year-old MRI.
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