
ASSEMBLING LARGE MOSAICS OF
ELECTRON MICROSCOPE IMAGES USING

GPU
Kannan Umadevi Venkataraju∗†, Mark Kim∗†, Dan Gerszewski†, James R. Anderson‡ and Mary Hall†

∗Scientific Computing and Imaging Institute, University of Utah
†School of Computing, University of Utah
‡Moran Eye Center, University of Utah

Abstract—Understanding the neural circuitry of the retina
requires us to map the connectivity of individual neurons in large
neuronal tissue sections and analyze signal communication across
processes from the electron microscopy images. One of the major
bottlenecks in the critical path is the image mosaicing process
where 2D slices are assembled from scanned microscopy image
tiles. The problem of assembling the tiles is computationally
non-trivial because of distortion of the specimen in the electron
microscope due to heat and overlap between the scanned tiles.
The complexity of the calculation arises from the massive size of
the dataset and mathematical calculations required to calculate
value of each pixel of the mosaic. We propose to use texture
memory lookups to speedup the access to image tiles and data
parallel computing enabled by the GPUs to accelerate this
process. The proposed method results in noticeable improvements
in speed of computation compared to other methods.

Index Terms—Serial-section TEM, image mosaicing, GPGPU,
CUDA, texture

I. INTRODUCTION

Novel imaging techniques are being used to map the
connectivity of individual neurons in large neuronal tissue
sections, to understand the neural circuitry of the retina,
and particularly how signals are communicated across pro-
cesses. Extensive studies have been undertaken using electron
microscopy to create detailed diagrams of general neuronal
structures [1] and their connectivities [2], [3], [4]. The entire
volume of neuronal tissue is scanned as ultra thin slices
(approx. 90nm) sliced using a micro tome and assembled to
reconstruct the 3D volume. The neuronal tissue has to be
scanned at nanoscale resolutions to unambiguously identify
the neurons and synapses and create detailed maps. The
serial-section Transmission Electron Microscope (TEM) is the
preferred imaging modality for capturing large sections (0.25
mm2) of neuronal tissues with synaptic and gap junction
at high resolutions (2.18nm/pixel). Rarely do we find an
electron microscope that can capture at the required nanoscale
resolution and such a wide field of view. Thus the sample
of interest is imaged as a sequence of tiles (Figure 1) with
some overlap. The imaging of these tiles using TEM requires
the sample to be suspended over a high energy beam of
electrons causing it to heat up and subsequently distort. Since
distortion is not uniform among tiles they have to be unwarped
individually. Thus, reconstructing the image from the set of

(a) (b)

Fig. 1. Example serial-section TEM images: (a) Sample electron microscope
scanned tile of neural tissue of mice and (b) Tile with triangle mesh overlay

tiles, called image mosaicing, involves significant computation
to identify and handle tile overlap and correct nonuniform
distortions. A typical neuronal section is 2500 microns in
diameter and scanned as 1000 tiles. Currently, researchers
assemble the volume from the scanned tiles using a multi-
threaded tool chain [5], but this computation is one of the
bottlenecks in the critical path to reconstruct the volume since
it is estimated to take around 90 days to assemble full mosaic
images for 340 mosaics.

Image mosaicing is the process of stitching multiple images
into a single mosaic image such that the corresponding points
of the individual images match. In our problem, we use
deformable transforms [7] to model the nonuniform distortions
in the image tiles. Bui et al. [6] have shown that GPUs give
good speed up on similair image registeration tasks.

The method proposed in this paper improves upon previous
work by utilizing GPU as computational unit. In this paper, we
describe our experiences using GPUs to accelerate this compu-
tation. Because of the inherent parallelism of the computation,
the roughly identical computation at each pixel, and the data
locality across neighboring tiles, our initial observation was
that this computation ought to achieve high speedup if we can
effectively harness the arithmetic and bandwidth capabilities
of the GPU. The remaining sections of the paper gives an
overview entire computation, details of the implementation
finally followed by a discussion on results.



II. METHODS

In this section we introduce the mosaicing algorithm. The
deformable transformation undergone by the tile is modeled as
an uniform grid transform. The control points of the image tile
are calculated by sampling the image by an uniform grid. The
location of the control points’ correspondences on the final
mosaic are determined by an image registration process and
stored in a transform file [7]. Our implementation reads in the
transform file and creates a triangle mesh out of the control
points for every tile in the mosaic as shown in Figure 1.

The application then calculates the span of the mosaic and
calculates the pixel Grey value for every pixel of the mosaic
image as described below.

1) The image tiles contributing to pixel are determined.
2) Every triangle (from all contributing tiles) in the mesh

contributing to the point is determined.
3) Using barycentric co-ordinate system the location of the

point on the deformed tile is calculated.
4) If there are multiple image tiles contributing to the pixel

then the final pixel value is calculated by a convex blend
of these values. This is known as feathering

Thus we see that the computation intrinsically has high
data level parallelism. NVIDIA’s CUDA has the ability to
perform such non-graphics data-parallel computation on the
GPU easier without the need of mapping the computation
to graphics APIs. The following section describes the CUDA
implementation of the application.

III. IMPLEMENTATION

In this section firstly, we discuss the computations im-
plemented as CUDA kernels. Then we discuss the major
optimizations used to achieve the speedup.

A. Kernels

The data-parallel portions of the algorithm were identified
and implemented as CUDA kernels.

1) Triangle search: This kernel does a linear search on all
the deformed triangles to determine if the point of interest lies
within the the triangle. This is verified by determining if the
point lies within the convex hull formed by the three vertices
as described below.

a =
det(vv2)− det(v0v2)

det(v1v2)
, b =

det(vv1)− det(v0v1)
det(v1v2)

(1)

where,

det(uv) = u× v = uxvy − uyvx (2)

and v0 is a vertex, v1, v2 are vectors from v0 to other two
vertices and v is the point of intrest.

If a,b > 0 and a+b < 1, then the point lies inside the
triangle [8].

2) Projection: Once the triangle containing the point P is
determined, the point is projected to the undeformed triangle
by a barycentric coordinate system as follows. Let the unde-
formed traingle be 4 ABC and P be the point inside. Let the
corresponding deformed traingle be 4 A′B′C ′ and P ′ be the
point inside. The projected point P ′ is given by the following
equation

P ′ = λ1A
′ + λ2B

′ + λ3C
′ (3)

where,

λ1 =
Area(4PBC)
Area(4ABC)

, λ2 =
Area(4APC)
Area(4ABC)

(4)

λ3 =
Area((4ABP )
Area((4ABC)

(5)

3) Interpolation: Once the point location is calculated, the
Grey value of the pixel at that point is determined by nearest
neighbor interpolation. The texture memory to used to speed
up this interpolation.

B. Optimizations

In this section we first discuss how the interpolation is
accelerated, followed by mechanism used to streamline the
image data transfer between CPU and GPU.

1) Texture optimization: One of the most effective schemes
to get the most performance out of CUDA is coalesced
memory reads from global memory to shared memory. Once
data is in shared memory, accessing and manipulating the data
in shared memory has the same access time as a register [9]. In
the case of our mosaicing algorithm, coalescing memory reads
proves to be difficult due to the nature of the the algorithm
itself. Coalesced data reads requires that the data fetched from
global memory be accessed in a linear fashion on particular
memory boundaries. However, when we fetch multiple pixel
values from an image tile, there is no guarantee that the
pixels accessed by the warp will be in a linear fashion. In
fact, although the pixels fetched would have a strong locality,
because of the transformation the locality is in two dimensions,
which ruins the access pattern for global memory.

Instead of using global memory, we used texture memory.
Texture memory is very similar to global memory with one
crucial difference: texture memory has an 8KB cache separate
from registers or shared memory. Also, the caching scheme is
optimized for 2D spatial locality [9]. As stated before, the ac-
cess pattern for our algorithm has strong spatial locality in two
dimensions and the texture cache handles this automatically.
Further, because we are not changing the data within a tile,
texture memory is a good choice as well. The texture memory
paradigm does not allow for writing to texture memory and
then accessing it again within the same kernel call. Since we
do not do this, texture memory is a good choice. Thus, texture
memory is strongly suited for our particular algorithm.



2) Texture queue: The use of a queue has a two fold pur-
pose. First, the most memory available on a single processing
card is currently 4GB [10]. Obviously on a fullsized mosaic,
4GB would be woefully insufficient. The queue enables us to
only put into texture memory the image tiles that are currently
worked on and not worry about squeezing all 1000 image
tiles onto the card. Further, because of the overlap, multiple
image tiles may be required for calculating value of one pixel.
The queue allows us to consider the transformed triangles
and place into texture memory the correct image tiles that
are needed by the currently processed triangle. Depending on
the amount of memory available on the processing card, this
also allowed us to create a multi-pass mosaicing system: if
available memory is less than the total amount required for
the number of image tiles needed for the triangle processed,
then we process however many image tiles fit into memory
and then run the algorithm again and load up the remaining
image tiles to be processed. This allows us to be flexible with
the types of cards that can be used.

IV. RESULTS

The mosaicing application was benchmarked against other
applications using a mice neural tissue dataset. The final
mosaic is 13783×13686 pixels in size. It is made up of 16 tiles
of size 4080x4080 pixels each. The control point grid is 8×8 in
size. The mosaic image along with few deformed tile images is
shown in Figure 2. The CUDA application was benchmarked
against a single threaded equivalent, multi threaded application
(using OpenMP) and finally against a highly optimized ITK
based multithreaded application [5]. It was run on a Intel
Core 2 Quad CPU Q9550 @ 2.83 GHz PC running 64-bit
SuSE linux. The CUDA application was run on the same
PC on its NVIDIA GeForce GTX 280 graphics card. From
the benchmarking results are shown in Table I, we can infer
that the GPU based acceleration is highly suitable this specific
image mosaicing operation and for complex image processing
applications in general.

Fig. 2. Mosaic image and few tiles

V. CONCLUSION

The proposed method utilized the GPU architecture to speed
up the image mosaicing process. Along with the texture lookup

TABLE I
BENCH MARKING RESULTS

Programming model Time
elapsed(in
seconds)

Speed Up

Single threaded C 2022.3 N/A
OpenMP multi threaded (16
threads)

1140.46 1.77x

ITK based multi threaded [5] 120 16x
NVIDIA CUDA 10.8 187.23x

and streamlined data transfer between GPU and CPU, this
program provides better acceleration. Thus one can expect
similair speed up on larger datasets. However, the usage of
unsigned char as the image data type, the method is limited to
use nearest neighbor interpolation. This may result in slightly
inaccurate calculation of the pixel values in the mosaic. This
problem could be avoided by using float data types and other
smoother interpolation techniques like bilinear, bicubic or
spline methods. Future work would address these problems
in pixel value calculation.

ACKNOWLEDGMENT

The authors would like to thank the members of the Col-
laborative Research in Computational Neuroscience (CRCNS)
group at the Scientific Computing and Imaging Institute and
the Marc Lab for the useful comments on the project. We also
like to thank NIH R01 EB005832 (PI Tasdizen) grant, DOE
VACET, KAUST GPR: KUS-C1-016-04, NSF: CNS-0615194,
CNS-0551724, CCF-0541113, and IIS-0513212 for enabling
us to do this work.

REFERENCES

[1] J. C. Fiala and K. M. Harris, “Extending unbiased stereology of
brain ultrastructure to three-dimensional volumes,” J. Am. Med. Inform.
Assoc., vol. 8, no. 1, pp. 1–16, 2001.

[2] J.G. White, E. Southgate, J.N. Thomson, and F.R.S Brenner, “The
structure of the nervous system of the nematode caenorhabditis elegans,”
Phil. Trans. Roy. Soc. London Ser. B Biol. Sci., vol. 314, pp. 1–340, 1986.

[3] Kevin L. Briggman and Winfried Denk, “Towards neural circuit
reconstruction with volume electron microscopy techniques,” Curr.
Opin. Neurobiol., vol. 16, no. 5, pp. 562–570, Oct. 2006.

[4] J.R. Anderson, B.W. Jones, J.-H. Yang, M.V. Shaw, C.B. Watt, P. Ko-
shevoy, J. Spaltenstein, E. Jurrus, Kannan U.V., R.T. Whitaker, D. Mas-
tronarde, T. Tasdizen, and R.E. Marc, “A computational framework for
ultrastructural mapping of neural circuitry,” PLoS Biology, vol. 7, no.
3, pp. e74, 2009.

[5] P. Koshevoy, T. Tasdizen, R.T. Whitaker, B. Jones, and R. Marc, “Assem-
bly of large three-dimensional volumes from serial-section transmission
electron microscopy,” in Proceedings of 2006 MICCAI Workshop on
Microscopic Image Analysis with Applications in Biology, October 2006.

[6] Peter Bui and Jay B. Brockman, “Performance analysis of accelerated
image registration using gpgpu,” in GPGPU, 2009, pp. 38–45.

[7] L. Ibanez, W. Schroeder, L. Ng, and J. Cates, The
ITK Software Guide, Kitware, Inc. ISBN 1-930934-15-7,
http://www.itk.org/ItkSoftwareGuide.pdf, second edition, 2005.

[8] “Triangle interior,” http://mathworld.wolfram.com/TriangleInterior.html.
[9] “Nvidia cuda compute unified device architecture programming

guide,” http://developer.download.nvidia.com/compute/cuda/2 2/toolkit/
docs/NVIDIA CUDA Programming Guide 2.2.pdf.

[10] “Nvidia tesla c1060 computing processor,” http://www.nvidia.com/
object/product tesla c1060 us.html.


