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ABSTRACT
Neuroscientists are developing new imaging techniques and
generating large volumes of data in an effort to understand
the complex structure of the nervous system. To aid in
the analysis, new segmentation techniques for identifying
neurons in these feature rich datasets are required. How-
ever, the extremely anisotropic resolution of the data makes
segmentation and tracking across slices difficult. This pa-
per presents a complete method for segmenting neurons in
electron microscopy images and visualizing them in three-
dimensions. First, we present an advanced method for iden-
tifying neuron membranes, necessary for whole neuron seg-
mentation, using a machine learning approach. Next, neu-
rons are segmented in each two-dimensional section and con-
nected using correlation of regions between sections. These
techniques, combined with a visual user interface, enable
users to quickly segment whole neurons in large volumes.

1. INTRODUCTION
Neural circuit reconstruction is an important method for
studying neural circuit connectivity and its behavioural im-
plications. The differences between neuronal classes, pat-
terns and connections are central to the study of the nervous
system and critical for understanding how circuits process
information. Electron microscopy (EM) is a useful method
for determining the anatomy of individual neurons and their
connectivity because it has a resolution that is high enough
to identify features, such as synaptic contacts and gap junc-
tions. These features define connectivity, and therefore are
required for neural circuit reconstruction. Manual analysis

of this data is extremely time consuming. Early work in
mapping the complete nervous system of the relatively sim-
ple C. elegans, took many years [14]. Several researchers
have undertaken extensive EM imaging projects in order to
create detailed maps of neuronal structure and connectiv-
ity [5, 3, 13]. In comparison, newer imaging techniques are
producing much larger volumes of very complex organisms,
with thousands of neurons and millions of synapses [4, 2].
Thus, automating the reconstruction process is critical in
the understanding of these large systems. Recent research
using new imaging techniques and automated segmentation
methods are enabling more rapid reconstructions of neural
circuits.

2. METHODS
The overall method proposed in this paper for reconstruct-
ing whole neurons consists of two steps. First, neuron mem-
branes are segmented in 2D and neuronal cross-sections are
identified. Second, the regions are linked across all the sec-
tions to form 3D renderings. The initial neuron segmen-
tation used for each 2D section incorporates previous work
which uses a series of artificial neural networks (ANNs) to
detect neuron membranes. This paper presents a method
for improving the detection by incorporating learned mem-
branes from sequential sections into another ANN. Also draw-
ing from previous work, we incorporate an optimal path al-
gorithm to connect similar regions through the volume to
form complete 3D segmentations. This paper combines all
of the above techniques into an interactive tool, called the
Neuron Reconstruction Viewer (NeRV), that lets the user
view large datasets, evaluate the segmentations, and make
corrections to both the 2D membrane detection and the join-
ing of regions through the sections to segment a neuron in
3D.

2.1 2D Membrane Detection
The method developed here for neuron membrane detection
extends previous work, which uses a series of ANN classifiers
and image stencil neighborhood feature vectors to detect



neuron membranes in 2D images [7]. In that paper, mem-
brane detection was limited to features within a 2D section.
This work has been extended to train on information from
neighboring sections, using the confidence from sequential
sections. Given the anisotropic nature of the data, sequen-
tial sections have very poor membrane correspondence. To
account for this, classified results representing the membrane
probability image are registered and a 3D stencil that spans
3 sections is formed for training. Finally, tensor voting, a
method for closing remaining gaps, is used. This provides
significantly improved segmentation results over the original
method [7].

Serial Neural Network Architecture. In previous work,
a serial classifier architecture was implemented that used a
series of classifiers, each operating on input from the pre-
vious classifier, to incrementally gain knowledge of a large
neighborhood [7, 11]. This architecture is novel for two rea-
sons. First, the data used for training requires no prepro-
cessing with filter banks or statistics, and the classifier is
trained directly on sampled image intensities. Second, by
applying several classifiers in series, each classifier uses the
classification context provided by the previous network to
improve membrane detection accuracy. To initialize this ar-
chitecture, the first classifier is trained only on image in-
tensities. Each remaining classifier in the series then uses
an input vector containing samples from the original image
appended with the values from the output of the previous
classifier, yielding a larger feature vector. While the desired
output labels remain the same, each classifier is dependent
on the information from the previous network and therefore
must be trained sequentially. The output from each network
is used to generate an image that represents the membrane
probability map at that stage.

Sequential Section ANN Architecture. Sequential sections
from EM data often contain similar structures that we would
like to use to improve the quality of the 2D segmentation.
One way to do this would be with a stencil that spans mul-
tiple sections. However, the membrane locations between
sections have poor correspondence. This is partly because
of the anisotropic nature of the data, which often results in
large movement of membranes between sections, and mem-
branes sometimes do not run perpendicular to the cutting
plane causing membranes to have low contrast and appear
fuzzy. Membranes in sequential sections are near each other,
but they do not correspond well enough to use them directly
in a 3D stencil that would span multiple sections. To correct
for this, we propose a novel approach which aligns sequen-
tial membrane probability map images using a correlation-
based nonlinear registration. We prefer to register only the
membrane probability images because the classification pro-
cess has removed many of the internal structures that would
make an extremely fine-scale nonlinear registration on raw
image data difficult. More specifically, after the membrane
detection is complete for each section using the serial ANN
architecture, images are registered to each other and used,
as input, for the ANN. The registration method proposed is
a B-spline deformable registration [6]. Once registered, a 3D
stencil that spans 3 adjacent sections samples the classifica-
tion results from the previous stage and provides information

to be used in the final classification step. The final feature
vector used to train one last ANN contains the original in-
tensities from the raw image and values from the registered
learned membranes sampled using the 3D stencil.

Tensor Voting. Tensor voting [10] is the final algorithm
used in our method for closing small gaps in the membrane
detection. In tensor voting, a structure tensor casts a vote
in a regional area around itself where the voting field is de-
termined by the orientation and the stick-ness of the tensor
as determined by the ratio of the eigenvalues. Tensor vot-
ing strengthens salient curvilinear structures, while remov-
ing noise and blobby artifacts [9].

2.2 Neuron Region Linking
For this paper, neuron identification across a stack of EM im-
ages is formulated as an optimal path problem with a graph
data structure [8]. The vertices of the graph are defined as
the regions obtained by 2D segmentation of the individual
sections. Edges in the graph represent possible linkages be-
tween regions in neighboring sections. Linking together the
neuron regions in the graph is performed using Dijkstra’s
shortest path algorithm. The resulting path through the
graph is used to reconstruct the neuron in 3D.

2.3 Neuron Reconstruction Viewer
The automatic methods described up until this point all
work fairly well on their own, but in the end, require the
ability for viewing and editing of the segmentation results.
The Neuron Reconstruction Viewer (NeRV) (shown in Fig-
ure 1) attempts to bridge these two requirements by provid-
ing an interface to large volumes of EM images and viewing
of neuron segmentations, with the option to make correc-
tions, which will, in the long term improve the segmenta-
tion. Primarily, NeRV is an interface for the user to view
the raw image data and the 3D reconstruction. Interact-
ing with the image data and the rendered neuron provides
insight for the scientist on the arrangement of the neurons
within the data. The pane on the left, in Figure 1, is mainly
a slice viewer. The user can view the membrane detection,
the region segmentation, and the raw data all in one viewer.
Spheres highlight the paths neurons take through the vol-
ume. The keyboard arrow keys or the slider in the middle
lets the user scroll through the sections. The pane on the
right, is a 3D viewer of the reconstructed neuron. Raw im-
age data can be turned off and on in this view, and users
can select other sections simply by clicking on the area of
the neuron.

3. RESULTS
Two EM datasets are segmented using the proposed meth-
ods. The first dataset is a stack of 400 sections from the ven-
tral nerve cord of the C. elegans worm. The second dataset
is a stack of 400 sections from the mouse neuropil. These
datasets contain very different types of neural cells. The
C. elegans data has a resolution of 6nm×6nm×33nm and
each 2D section is 4008×2672 pixels, whereas the mouse neu-
ropil data has a pixel resolution of 10nm×10nm×50nm and
each 2D section is 4096×4096 pixels. Figure 2(a) shows im-
ages from each of these datasets. Note that the membranes
in the mouse and worm images, are very different, varying



Figure 1: [color] Screen capture of NeRV displaying
the automatic segmentation results on the C. elegans

ventral nerve cord for a portion of the data.

in their signal to noise ratio and membrane thickness and
contrast.

3.1 C. elegans Ventral Nerve Cord
The nematode C. elegans is an important organism for neu-
ral circuit reconstruction because it is the only organism for
which the connectivity has been determined [14, 13]. To
segment the membranes in this dataset and create a 3D re-
construction, we first had to align all the ssTEM images
into a volume. We performed a ridged alignment using a
brute-force search for the unknown rotation and translation
between adjacent pairs of sections [12]. For validation, we
had experts segment 40 selected images from the first 400
sections. Each expert placed a one pixel wide line along the
membranes of the neurons, which we dilated using a 5 pixel
wide structuring element, to cover most of the membrane
pixels. For the training data, 30 images were randomly se-
lected for training and the remaining 10 were used for valida-
tion. From those images, 1 million samples were randomly
selected from the manually marked images. Because of the
relatively small percentage of positive examples (represent-
ing membrane pixels), these 1 million samples were chosen
to contain 1

3
positive and 2

3
negative examples.

Figure 2(a), left column, shows one section from the C. el-

egans dataset. The final membrane detection with the pro-
posed method is shown in Figure 2(e). The sequential sec-
tion ANN uses information about membranes also detected
in neighboring sections to improve the current segmentation.
The tensor voting uses, as input, the final classification and
closes remaining gaps.

Figure 3(a) shows the 3D reconstruction of 10 neurons thr-
ough the first 300 sections of the C. elegans ventral nerve
cord. Building this reconstruction was a two part processes.
First, we identified 6 significant breaks in the image volume
where there was missing data due to lost or badly imaged
sections. To completely reconstruct these paths through the
whole 300 sections, NeRV was used to manually merge neu-
rons in sequential sections, forming complete reconstructions
through the whole volume.

(a)

(b)

(c)

(d)

(e)

Figure 2: [color] Output of the method on test im-
ages. (a) is the raw image, (b) is the output from
the final stage of the series ANN (Section 2.1), (c)
is the output from the sequential section ANN (Sec-
tion 2.1), (d) is the output after tensor voting (Sec-
tion 2.1), and (e) are the final segmentations of the
neuron regions from a flood fill (left) and watershed
segmentation algorithm (right).



(a) (b)

Figure 3: [color] (a) 10 neurons spanning 300 sec-
tions of the ventral nerve cord of the C. elegans.
(b) 14 fully automatically segmented parallel fibers
spanning 400 sections of the mouse neuropil. The
larger 3 structures, Purkinje cells, were segmented
manually using the NeRV interface.

3.2 Mouse Neuropil
Understanding the connectivity, types of connections, and
roles of different cells in the mouse neuropil is an increasingly
more common area of study. The entire neuropil dataset
is 4096×4096×400. To train and validate our neural net-
works, a subset of this data (700×700×270) was manually
segmented using Amira [1] by an expert. From that set, 42
images were randomly selected and used for training in our
classifier. The training set contained 4.5 million examples.
To decrease training time, the ANN was trained first on 1
million examples for 50 iterations. The weights from this
network were used to initialize the ANN for the 4.5 million
training examples. The ANN contained one hidden layer of
10 nodes.

Figure 2, right column, shows the segmentation results on
one section form the neuropil. Final reconstruction of the
volume on the entire dataset turned this task into a large
data challenge, since the actual size of the full volume is
much larger than the training data. NeRV easily handles the
size of this data because it only loaded into memory what
was requested by the user. Finally, users can easily select
the neurons they want to view in the volume. The final 3D
visualization of this dataset can be seen in Figure 3(b).
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