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Study of nervous systems via the connectome, the map of connectivities of all neurons in that system, is a
challenging problem in neuroscience. Towards this goal, neurobiologists are acquiring large electron
microscopy datasets. However, the shear volume of these datasets renders manual analysis infeasible.
Hence, automated image analysis methods are required for reconstructing the connectome from these
very large image collections. Segmentation of neurons in these images, an essential step of the recon-
struction pipeline, is challenging because of noise, anisotropic shapes and brightness, and the presence
of confounding structures. The method described in this paper uses a series of artificial neural networks
(ANNs) in a framework combined with a feature vector that is composed of image intensities sampled
over a stencil neighborhood. Several ANNs are applied in series allowing each ANN to use the classifica-
tion context provided by the previous network to improve detection accuracy. We develop the method of
serial ANNs and show that the learned context does improve detection over traditional ANNs. We also
demonstrate advantages over previous membrane detection methods. The results are a significant step
towards an automated system for the reconstruction of the connectome.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Neural circuit reconstruction, i.e. the connectome (Sporns et al.,
2005), is currently one of the grand challenges facing neuroscien-
tists. Similarly, the National Academy of Engineering has listed re-
verse-engineering the brain as one its grand challenges.1 While
neural circuits are central to the study of the nervous system, rela-
tively little is known about differences in existing neuronal classes,
patterns, and connections. Electron microscopy (EM) is an unique
modality for scientists attempting to map the anatomy of individual
neurons and their connectivity because it has a resolution that is
high enough to identify synaptic contacts and gap junctions. These
are important indicators for types of neuron topology and are re-
quired for neural circuit reconstruction. Several researchers have
undertaken extensive EM imaging projects in order to create
ll rights reserved.
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detailed maps of neuronal structure and connectivity (Fiala and
Harris, 2001; Briggman and Denk, 2006a). Early work in this area,
by White et al. (1986), includes the complete mapping of the nema-
tode Caenorhabditis elegans nervous system. This is a simple organ-
ism, containing just over 300 neurons and 6000 synapses, yet it
took nearly a decade to identify all the relevant structures and recon-
struct the connectivity.2 In comparison, newer imaging techniques
are producing much larger volumes of very complex organisms, with
thousands of neurons and millions of synapses (Briggman and Denk,
2006b; Anderson et al., 2009). Thus, automating the reconstruction
process is of paramount importance.

The ability to reconstruct neural circuitry at ultrastructural res-
olution is of substantial clinical importance. Retinal degenerative
diseases, including pigmentosa and macular degeneration, result
from a loss of photoreceptors. Photoreceptor cell stress and death
induces subsequent changes in the neural circuitry of the retina
resulting in corruption of the surviving retinal cell class circuitry.
Ultrastructural examination of the cell identity and circuitry reveal
substantial changes to retinal circuitry with implications for vision
2 Emily Singer, A wiring diagram of the brain, Technology Review, November 2007.
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Fig. 1. (a) Example EM images. Top is from the C. elegans, bottom is from a rabbit
retina. (b) Example membrane detection using thresholding after contrast
enhancement and anisotropic directional smoothing to enhance membranes
(top), and thresholding on the gradient magnitude (bottom). Both methods
highlight the membrane boundaries but fail to remove internal structures.
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rescue strategies (Marc et al., 2008, 2007, 2003; Jones and Marc,
2005; Jones et al., 2003, 2005; Peng et al., 2000). These findings
in retinal degenerative disease mirror findings in epilepsy where
neural circuits also undergo remodeling in presumed response to
abnormal electrical activity clinically manifested as seizures. Sci-
entists are interested in examining normal and pathological synap-
tic connectivities and how neuronal remodeling contributes to
neuronal pathophysiology (Sutula et al., 2002; Pollard et al.,
1994; Koyama et al., 2004). Examination of synaptic and dendritic
spine formation during development provide insight into the adap-
tivity of neural circuits (Sorra et al., 2000; DeBello et al., 2001).
Ultrastructural evaluation of multiple canonical volumes of neural
tissue are critical to evaluate differences in connectivity between
wild type and mutants. The complexity and size of the these data-
sets, often approaching 17 terabytes, makes human segmentation
of the complex textural information of electron microscopic imag-
ery a difficult task. Moreover, population or screening studies be-
come unfeasible since fully manual segmentation and analysis
would require multiple years of manual effort per specimen. As a
result, better image processing techniques are needed to help with
automated segmentation of EM data including identification of
neurons and the connections.

1.1. Serial-section transmission electron microscopy

The modality we have chosen for reconstructing the connec-
tome at the individual cell level is serial-section transmission elec-
tron microscopy (TEM). It provides scientists with images that
capture the relevant structures; however, it poses some interesting
challenges for image processing. Most importantly, serial-section
TEM offers a relatively wide field of view to identify large sets of
cells that may wander significantly as they progress through the
sections. It also has an in-plane resolution that is high enough for
identifying synapses. In collecting images through TEM, sections
are cut from a specimen and suspended so that an electron beam
can pass through it creating a projection. The projection can be
captured on a piece of film and scanned or captured directly as a
digital image. An important trade-off occurs with respect to the
section thickness. Thinner sections are preferable from an image
analysis point of view because structures are more easily identifi-
able due to less averaging. However, from an acquisition point of
view, thinner sections are harder to handle and impose a limit on
the area of the section that can be cut. For instance, in the rabbit
retina, scientists need to study sections with areas as large as
250 lm in diameter to gain a sufficient understanding of neural
connectivity patterns. Sections of this size can be reliably cut at
50–90 nm thickness with the current serial-section TEM technol-
ogy. This leads to an extremely anisotropic resolution, 2–5 nm
in-plane compared to 50–90 nm out-of-plane, and poses two im-
age processing challenges. First, the cell membranes can range
from solid dark curves for neurons that run approximately perpen-
dicular to the cutting-plane, to grazed grey swaths for others which
run more obliquely and suffer more from the averaging effect. Con-
sequently, segmentations of neurons in these 2-D images, are dif-
ficult given the change in membrane contrast and thickness.
Second, due to the large physical separation between sections,
shapes and positions of neurons can change significantly between
adjacent sections.

There are alternative specimen preparation and EM imaging
techniques that can be used for neural circuit reconstruction such
as Serial-Block Face Scanning Electron Microscopy. Briggman and
Denk proposed a specimen preparation which only highlights
extracellular spaces removing almost all contrast from intracellular
structures (Briggman and Denk, 2006b). However, it is not possible
to identify synapses with that approach. Identification of synapses
is an important part of neural circuit reconstruction because it
determines which cells are communicating, and where in the cir-
cuitry they connect. To highlight synapses in TEM, scientists must
use a stain that also highlights intracellular structures, such as ves-
icles and mitochondria, as well as neuron membranes. Therefore,
image segmentation techniques must account for these data char-
acteristics in order to identify and successfully track neurons
across hundreds of sections.

1.2. Neuron segmentation

There are two general approaches for neuron segmentation.
One approach focuses first on the detection of neuron membranes
in each 2-D section (Jurrus et al., 2008; Macke et al., 2008; Ven-
kataraju et al., 2009). These boundaries can be used to identify
individual neurons, which are then linked across sections to form
a complete neuron. Unfortunately, accurate detection of neuron
membranes in EM is a difficult problem given the presence of
intracellular structures. This makes simple thresholding, edge
detection (i.e. Canny), and region growing methods ineffective for
the detection of neuron membranes. Some example images and re-
sults with traditional image processing methods are shown in
Fig. 1. The other approach to neuron segmentation is to directly
use the 3-D characteristics of the data (Andres et al., 2008; Jain
et al., 2007). However, full 3-D approaches are difficult due to
the anisotropic nature of the data. As mentioned earlier, in serial-
section EM, there is a trade-off between section thickness and sec-
tion loss rate. The datasets used in this paper to demonstrate mem-
brane detection are from the C. elegans ventral nerve cord and from
the rabbit retina. For these datasets, the nerve cord has a resolution
of 6 nm � 6 nm � 33 nm and the retina has a resolution of
2 nm � 2 nm � 80 nm. This large section thickness often causes
features to shift significantly between sequential images, decreas-
ing the potential advantages of a direct 3-D approach. For these
reasons, we follow the first approach which is to first perform a
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2-D segmentation followed by a linking of the segmented regions
in 3-D. This approach is particularly suitable for datasets in which
a majority of the neurons run in a general direction which is
roughly orthogonal to the sectioning plane such as the datasets
considered in this paper. The main focus of this paper is to improve
the 2-D neuron segmentation in each section. This information can
then be used to link the segmentation in each section to obtain the
full 3-D reconstruction.

Recent related work indicates that machine learning methods
are an effective approach for detection of neuron membranes.
These methods all use different representations for learning mem-
brane pixels, most of which include training a single instance of a
classifier on image derived features, such as Hessian eigenspaces
(Venkataraju et al., 2009; Mishchenko, 2009) and local statistical
features (Andres et al., 2008). Inspired by Tu’s auto-context shape
classification approach (Tu, 2008), the method described in this pa-
per uses a series of classifiers to more accurately detect mem-
branes in EM images, which is a necessary step for improved 3-D
neuron segmentation as discussed above. However, unlike Tu’s
auto-context (Tu, 2008) which uses boosting to select features
from a large pool of candidates such as Haar wavelet responses,
we use a series of artificial neural networks (ANNs) that operate
on a fixed set of features. The first ANN uses as input the intensity
values sampled directly from the image. The input to the subse-
quent ANNs in the series is comprised of the same set of image val-
ues, in addition to the output of the previous ANN sampled on a
stencil of nearby pixels (as depicted in Fig. 4). The ANNs in the ser-
ies, therefore, have different inputs even though they have a com-
mon desired output. The advantages of this method are twofold.
First, the classifier uses raw data, that is, the image intensities,
rather than a constrained version of the image as given by re-
sponses to a large filter bank or statistical features that will not
scale well for large datasets. Second, the use of the serial ANNs pro-
vides context, which is information from nearby pixels that con-
tributes to the learning, providing increasing amounts of relative
information at each stage of the network. As a result, the series
of ANNs learns to remove vesicles and mitochondria from the
membrane detection and close gaps in places where the membrane
is weak. In this paper, we demonstrate the improvement from the
combined use of stencils and the series of ANNs for two datasets
with distinctly different characteristics.

2. Related work

There are several methods that attempt to segment EM images
of neural tissue. Active contours, in both parametric and level set
forms (Jurrus et al., 2009; Macke et al., 2008; Vazquez et al.,
1998), can provide smooth, accurate segmentations of cells. How-
ever, they are very sensitive to initialization, which must be close
to the neuron membrane, and often confuse internal structures
for neuron membranes. If given an edge term that suppresses
internal structures, such as one that is derived from the output
of the classifier proposed in this paper, these methods may be
more promising. Also, recent work using graph-cut segmentations
on EM images produces promising neuron segmentations starting
from a manual initialization (Vu and Manjunath, 2008). All of these
methods require an initialization and are more appropriate for seg-
menting only a few cells. Our goal is the automatic segmentation of
thousands of cells which renders manual initialization impractical.

Another set of approaches focus on segmenting the neurons by
first performing membrane detection. Simple thresholding meth-
ods can be applied after anisotropic directional smoothing to im-
prove membrane continuity (Tasdizen et al., 2005; Jurrus et al.,
2008). This method does not remove internal cellular structures
and simultaneously fails to detect a sufficiently high percentage
of the true membranes to make accurate segmentations.
Supervised machine learning methods have proved to be useful
for detecting membranes in EM images. For example, Jain et al. uti-
lize a multilayer convolutional ANN to classify pixels as membrane
or non-membrane in specimens prepared with an extracellular
stain (Jain et al., 2007). The convolutional ANN has two important
characteristics: it learns the filters for classification directly from
data, and the multiple convolutions throughout the layers of the
network account for an increasing (indirect) filter support region.
On the other hand, the proposed ANN contains more than 30,000
parameters and, therefore, is computationally intensive and re-
quires very large training sets. For these reasons, this approach
has limited practical usefulness. Andres et al. propose a multi-part
segmentation process that uses statistical learning and watersheds
to segment neural tissue (Andres et al., 2008). Both of these meth-
ods produce clear segmentations of the membranes, however, they
are aimed at datasets in which the stain used on the specimen sup-
presses the contrast of intracellular structures leaving only the cell
membranes visible (Briggman and Denk, 2006b). This preparation
technique simplifies the segmentation task but, on the other hand,
it prevents a full neural circuit reconstruction since this requires
the detection of synapses, which are characterized by certain intra-
cellular structures.

In other work based on supervised learning, simple classifiers
such as a single perceptron applied to a carefully chosen set of fea-
tures has been shown to provide promising results in identifying
membranes in EM images (Mishchenko, 2009). Nevertheless, this
method still needs significant post-processing to connect mem-
branes and remove internal cellular structures. Similarly, Ven-
kataraju et al. propose using local context features computed
from the Hessian matrix to train a boosted classifier to detect
membranes, which highlights the importance of context for mem-
brane detection (Venkataraju et al., 2009). The results obtained
with these methods demonstrate not only the complexity of the
problem, but also the potential of supervised machine learning
for neuron segmentation.

Conceptually, of particular relevance to this work is Tu’s auto-
context framework (Tu, 2008), which uses a series of classifiers
with contextual inputs to classify pixels in images. In Tu’s method,
the ‘‘continuous” output of a classifier, considered as a probability
map, and the original set of features are used as inputs to the next
classifier. The probability map values from the previous classifiers
provide context for the current classifier, by using a feature set that
consists of samples of the probability map at a large neighborhood
around each pixel. This means that a classifier can utilize informa-
tion relayed by previous classifiers from pixel values beyond the
scope of its neighborhood, much like a convolutional network. This
works well for the structures being detected in this paper. For
example, when detecting smooth and elongated features, context
helps identify pixels as belonging to membranes instead of other lo-
cal structures, such as vesicles, by using information from a broader
area. Hence, each subsequent classifier extends the support of the
probability map, improving the decision boundary, and thus the
system can learn the context, or shapes, associated with a pixel
classification problem. Theoretically, the series of classifiers im-
proves an approximation of a posteriori distribution (Tu, 2008).
One of the main contributions of our work is the formulation of a
series of ANNs in an architecture similar to auto-context. The par-
ticular implementation demonstrated by Tu uses 8000 nonspecific,
spatially dispersed, image features, and a sampling of probability
maps in very large neighborhoods. This is appropriate for methods
that use a boosting classifier strategy (Freund and Schapire, 1995)
and are being performed on smaller scale machine learning prob-
lems. However, in the proposed method, a much smaller set of fea-
tures allows for flexibility and training of large datasets, such as the
full rabbit retina dataset (Anderson et al., 2009), which in total is
16TB, and is more suitable for an ANN classifier.
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More generally, the detection of complete membranes, even
when portions of the membrane are low in contrast, is closely re-
lated to the contour completion and salient contour extraction
problems which have been studied extensively in the computer vi-
sion literature. A detailed review of the literature on contour com-
pletion is beyond the scope of this paper. Various approaches have
been proposed including spectral clustering and, graph analysis
(Shashua and Ullman, 1988; Mahamud et al., 2003; Fowlkes
et al., 2004; Zhu et al., 2007), tensor voting (Tang et al., 2002),
probabilistic models (Ren and Malik, 2002) and conditional ran-
dom fields (Ren et al., 2005). Some related work in this area also
uses supervised classification that combines features across differ-
ent scales to detect edges and close contours (Dollar et al., 2006;
Shotton et al., 2008). This paper applies similar techniques in the
use of auto-context, which uses incremental learning to gather
information about features at different levels. Each stage of the
network learns more information about nearby pixels, closing
structures that would otherwise be difficult to identify without
an incremental approach.

3. Method

The method developed here for neuron membrane detection
combines ANN classifiers and image stencil neighborhood feature
vectors. The following sections provide details on each of these
components.

3.1. Artificial neural network

Given the success of ANNs for membrane detection (Mish-
chenko, 2009; Jain et al., 2007) and because auto-context is not
specifically tied to any classifier, we implement a multilayer per-
ceptron (MLP) ANN as our classifier. An MLP is a feed-forward neu-
ral network which approximates a classification boundary with the
use of nonlinearly weighted inputs. The architecture of the net-
work is depicted schematically in Fig. 2.

The output of each processing element (PE) (each of node of the
ANN) is given as (Haykin, 1999; Principe et al., 2000)

y ¼ f ðwT xþ bÞ; ð1Þ

where f is, in our case, the tanh nonlinearity, w is the weight vector,
and b is the bias. The input vector x to PEs in the hidden layer is the
input feature vector discussed in more detail in the next section. For
the output PEs, x contains the outputs of the PEs in the hidden layer.

ANNs are a method for learning general functions from exam-
ples. They are well suited for problems without prior knowledge
of the function to be approximated (a.k.a., ‘‘black box models”).
They have been successfully applied to robotics (Pomerleau,
Layer
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Fig. 2. Neural network diagram with one hidden layer. Inputs to the network
include the image intensity and the values of the image at stencil locations.
1993; Wells et al., 1996) and face and speech recognition (Rabi
and Lu, 1998; Cottrell, 1990), and are robust to noise. Training uses
gradient descent to solve for a solution which is guaranteed to find
a minimum. However, several trade-offs occur in training ANNs
regarding the size of the network and the number of inputs. An
ANN with too many hidden nodes can lead to overfitting of the net-
work (Haykin, 1999), resulting in a set of weights that fits well to
the training data, but may not generalize well to test data. At the
other extreme, if the number of hidden nodes is insufficient the
ANN does not have enough degrees of freedom to accurately
approximate the decision boundary. The number of inputs should
also be keep small to mitigate the problem high-dimensional
spaces, known as the ‘‘curse of dimensionality”. Generally speak-
ing, as the dimensionality of the input space increases, the data be-
comes increasingly sparse which makes it difficult to accurately
learn a decision boundary. Additionally, the training time tends
to scale with the amount of training data and size of the network,
and therefore training smaller networks is generally preferable.
Hence, the number of inputs to each ANN should be large enough
to describe the data, while keeping this number to a minimal.
3.2. Image stencil neighborhood

Choosing the best set of features to use in training an ANN is
crucial for obtaining good segmentations. The field of machine
learning has made available several possible strategies. A possible
approach uses large sets of statistical features as the input to a
learning algorithm. These features can include simple local and
non-local properties, including the pixel values, mean, gradient
magnitude, standard deviation, and Hessian eigenvalues (Andres
et al., 2008; Tu, 2008; Venkataraju et al., 2009). These attempt to
present the learning algorithm with a large variety of mathemati-
cal descriptors to train on, and are designed to work on a variety of
data types. To achieve this generality, however, large numbers of
these features are required to train a classifier. Training a classifier,
and ANNs in particular, with a large number of features is challeng-
ing due to the ‘‘curse of dimensionality” which, if not done care-
fully, can complicate the decision space and make it difficult to
find an optimal solution. Another approach is to design a set of
match filters and apply them to an image to approximate a pixel’s
similarity to a membrane. This works well if the membranes in the
image are uniform and respond well using cross-correlation (Leung
and Malik, 2001; Schmid, 2001). Moreover, the design of the filter
bank requires significant a priori knowledge of the problem. Yet,
the fixed design may not be optimal for the dataset. Most impor-
tantly, the match filters have to be redesigned for datasets with dif-
ferent characteristics. On the other hand, learning these filters from
training data, as in the case of convolutional networks (Jain et al.,
2007), has the advantage that no a priori knowledge is required.
A similar idea was been used in texture classification where is
was shown that direct sampling of the image with a patch is actu-
ally a simpler and better approach for training a classifier com-
pared to the use of filter banks (Varma and Zisserman, 2003).
Image patches have also been used successfully for texture seg-
mentation (Awate et al., 2006) and image filtering (Buades et al.,
2005; Awate et al., 2006; Tasdizen, 2008). Similarly, using image
neighborhoods in our case allows the ANNs to learn directly on
the input data, giving the classifier more flexibility in finding the
correct decision boundary. We define a square image neighbor-
hood as an image patch, shown in Fig. 3a, centered at pixel k, l,

Pk;l ¼ Ikþi;lþj : i; j ¼ �R� 1
2

; . . . ;
R� 1

2

� �
: ð2Þ

R is the width of the square image patch. Unfortunately, the size of
the image patches required to capture sufficient context can be



(b)(a)
Fig. 3. Two image neighborhood sampling techniques: image pixels sampled using
(a) a patch and (b) a stencil. For this example, the stencil contains the same number
of samples, yet covers a larger area of the data. This is a more efficient
representation for sampling the image space.

. . .
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Fig. 4. Serial neural network diagram demonstrating the flow of information
between ANNs. I is the original image, C is the output (probability map) from the
classifier before thresholding, S is the stencil that samples the image data, and T is
the final output from the classifier thresholded to produce a binary segmentation.

3 According to the ‘‘rule-of-thumb” in (Principe et al., 2000), one needs at least 10�
aining samples pf the total number of parameters. Thus, compared to Jain et al.
007) convolutional ANN, our approach needs about 27� less training samples, for
e values given.
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quite large. For this reason, we propose using as input to the ANNs
the values from the image and probability map of the previous clas-
sifier sampled through a stencil neighborhood, shown in Fig. 3b. A
stencil is also centered at pixel k, l and defined as,

Sk;l ¼ [n
a¼1Bk;l;a ð3Þ

where

Bk;l;a ¼ fIkþai;lþaj : i; j ¼ �1;0;1g; ð4Þ

and n is the number of rows the stencil spans in the image. The
stencil can cover large areas representing the desired feature space,
but samples it with a spatially adaptive resolution strategy. In this
way, an ANN can be trained using a small number of samples from
image data, without having to use the whole image patch. Since the
number of weights to be computed in an ANN are dominated by the
connection between the input and the hidden layers, reducing the
number of inputs reduces the number of weights and helps regular-
ize the learned network. Moreover, using less inputs generally al-
lows for faster training. With this, one aims to provide the
classifier with sparse, but sufficient context information and
achieve faster training, while obtaining a larger context which can
lead to improve membrane detection. This strategy, combined with
the serial use of ANNs (described in Section 3.3), grows the region of
interest for classification within a smaller number of stages and
without long training times.

3.3. Serial artificial neural networks

Using principles from auto-context, we implemented a series of
classifiers that leverage the output of the previous network to gain
knowledge of a large neighborhood. For the first classifier, the in-
put is the image intensities around a pixel sampled using a stencil.
For the ANNs in the remaining series, the input vector contains the
samples from the original image, used as input to the first ANN, ap-
pended with the values from the output of the previous classifier
sampled through the stencil neighborhood, yielding a larger fea-
ture vector. While the desired output labels remain the same, each
ANN is dependent on the information from the previous network
and therefore must be trained sequentially, rather than in parallel.
Fig. 4 demonstrates this flow of data between classifiers. I denotes
the image, S the image values sampled from the image using the
stencil, C the output from the ANN, and T the threshold applied
to C at zero, yielding the final membrane detection.

The serial structure allows the classifiers to gather with each
step context information from a progressively larger image neigh-
borhood to the pixel being classified, as occurs with a convolution-
al ANN. Indirectly, the classification from the previous ANN
contains information about features in surrounding pixels, that
is not represented in the original feature set. This allows the
subsequent networks in the series (Fig. 4) to make decisions about
the membrane classification utilizing non-local information. Put
differently, each stage in the series accounts for larger structures
in the data, taking advantage of results from all the previous net-
works. This results in membrane detection that improve after each
network in the series. Fig. 5 visually demonstrates the classification
improving between ANNs in the series as gaps in weak membranes
are closed and intracellular structures are removed with each iter-
ation in the series. The receiver operating characteristic (ROC)
curves in Fig. 6 also demonstrate the increase in detection accuracy
after each ANN in the series.

Combining the original image features with features sampled
from the output of the previous classifier is important because,
in this way, the membrane structure relevant for detection is en-
forced locally and then again at a higher level with each step in
the series of classifiers. One of the advantages of this approach
is that it provides better control of the training, allowing the net-
work to learn in steps, refining the classification at each step as
the context information it needs to correctly segment the image
increases. Again, note that the membrane structure is learned di-
rectly from the data. Compared to a single large network with
many hidden layers and nodes, such as the convolutional ANN
of Jain et al. (2007) which requires 34,000 parameters, the pro-
posed classifier is easier to train. This is mainly because each of
the ANNs have a relatively small number of parameters. For
example, given a single ANN used to compute the results in Sec-
tion 4, the number of parameters needed is approximately 500 for
the first ANN and 1100 for the remaining ANNs in the series. The
number of weights in an ANN with a single-hidden layer is given
by (n + 1)h + (h + 1), where n is the number of inputs and h is the
number of nodes in the hidden layer. For the first ANN in the ser-
ies, n = s, where s is the number of points in the stencil. For the
remaining ANNs in the series, n = 2s, since we sample the original
image and the output from the previous classifier once. The total
number of parameters across the whole series totals to approxi-
mately 5000. In contrast, a convolutional ANN needs (n + 1)h for
the first layer, and (nh + 1)h for the remaining layers, an h2

dependence (Jain et al., 2007). Hence, much less training data is
needed, which is hard to obtain, since the ground truth must be
hand labeled.3 Furthermore, the training is simpler since backprop-
agation is less likely to get stuck on local minima of the perfor-
mance surface (Haykin, 1999; Principe et al., 2000), and the
network will train much faster.
4. Results

Two TEM datasets are used as test cases for the proposed meth-
od. The first dataset is a stack of 50 sections from the ventral nerve
cord of the C. elegans. The second dataset is a single section from
the 16TB rabbit retina dataset. These datasets contain very differ-
ent types of neural cells. The C. elegans data has a resolution of
6 nm � 6 nm � 33 nm and each 2-D section is 662 � 697 pixels.
tr
(2
th



Fig. 5. An example of am image during training (top two rows) and testing (bottom two rows) at each stage (1–5) of the network series. The output from each network is
shown in rows 1 and 3. Rows 2 and 4 demonstrate the actual membrane detection when that output is thresholded. The network quickly learns which pixels belong to the
membranes within the first 2–3 stages, and then closes gaps in the last couple of stages.
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Neuron membranes in the C. elegans data appear as intensity val-
leys; however, not all valleys in the data are neuron membranes,
i.e. membranes of intracellular structures may also appear locally
as valleys. The proposed method successfully learns the appropri-
ate subset of ridges that need to be identified as neuron mem-
branes as will be described in Section 4.2. The rabbit retina data
has a resolution of 2 nm � 2 nm � 80 nm and each 2-D section is
7629 � 7351 pixels. Unlike the C. elegans dataset, neuron mem-
branes in the retina data generally appear as intensity edges. Ow-
ing to the flexibility offered by the use of stencils rather than a
predefined filter bank, the proposed method is also successful in
learning to detect neuron membranes in this dataset as will be dis-
cussed in Section 4.3.

4.1. Experimental setup

Before discussing detailed results of experiments on the two
dataset, we will outline the common experimental details. First,
our setup for these datasets used 5 ANNs in series. Additional net-
works could be included; however, for these datasets, the perfor-
mance converges to a limit (Fig. 6) and improvement in
membrane detection is minimal. Each ANN used in the experi-
ments contained one hidden layer with 20 nodes. We experi-
mented with more layers and different numbers of nodes but did
not find significant advantages. It is important that the number
of nodes be large enough to approximate a nonlinear boundary
and small enough that the ANN does not overfit to the training data
(Cybenko, 1989; Hornik, 1991). Results using 10, 20, and 30 nodes
turned out to be somewhat similar. Given the time versus perfor-
mance trade-off, we chose 20 nodes. The networks were trained
using backpropagation with a step size of 0.0001 and momentum
term of 0.5. We used early stopping as the criterion to determine
when to terminate training (Haykin, 1999; Principe et al., 2000).
This means that a small portion of the training data (20% in our
case), called the validation set, is used only to test the classifier
generalization performance. The training terminates when the
lowest error on the validation set is attained. To mitigate problems
with local minima, each network is trained for 5 Monte Carlo sim-
ulations using randomly initialized weights.

Preprocessing is performed for each image using a contrast lim-
ited adaptive histogram equalization (CLAHE) (Pizer et al., 1990)
filter. This enhances the contrast of the membranes. Window sizes
of 64 � 64 and 256 � 256 were used for the C. elegans and retina
datasets, respectively.

Each image used in the experiments was annotated by an ex-
pert who carefully marked neuron membranes with a one-pixel-
wide contour. This contour was dilated using a disk shaped kernel
with a radius of 2 pixels, ensuring that the positive training exam-
ples cover all of the actual membrane pixels. The negative training
examples were selected as the remaining pixels in the image, after
erosion to remove training pixels that are very close to the mem-
branes. This strategy leaves a thin layer of pixels between the po-
sitive and negative training example pixels that are not used for
training purposes. This ensures that the network learns on pixels
that are either membrane or non-membrane, excluding those that
are more prone to labeling errors.

Finally, to optimize network performance, the total number of
training examples from each image includes all of the positive



Fig. 6. ROC curves for the (a) training data and (b) testing data for each stage of the
network.
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examples and a random selection of negative examples such that
there are twice the number of negative examples, than positive.
Choosing the optimal number of training examples was difficult gi-
ven there were many more negative than positive examples in this
dataset. If all the negative training examples are used then the
ANNS are biased towards classifying pixels as non-membrane.
After conducting a series of experiments for considering the results
from different ratios of positive and negative examples and the
training times, we found the 2:1 ratio resulted in the best segmen-
tation while achieving a reduced training time. Using all the train-
ing data (and other increased ratios, such as 4:1) produced a
similar ROC curve but results were biased towards false negatives.
Clearly, we could have adjusted the threshold in the final stage.
Alternatively, one possible solution for this problem would be
the use of a weighting factor chosen to obtain unbiased training.
However, either approach would have much slower training than
the previous described strategy without improving the overall seg-
mentation. For each pixel in our training data, a stencil with a ra-
dius of 5 (or n = 11 in Eq. (3)) is used to sample the image data
and form the feature vector.

4.2. Results on the C. elegans ventral nerve cord

The nematode C. elegans is an important dataset for neural cir-
cuit reconstruction. Despite being a well studied organism (White
et al., 1986), there are still numerous open questions such as how
genes regulate wiring (Jin et al., 1994) or how connectivity is al-
tered to mediate different behaviors, for example between males
and females (White et al., 2007). Reconstructions of the full ner-
vous system reveals topological characteristics important for
researchers studying neuron wiring. The particular dataset used
in this paper is from the ventral nerve cord of the C. elegans and
is important for studying the topological structure resulting from
neurons making connections to local targets.

To validate the robustness of the method, fivefold cross-valida-
tion was used on a set of 50 annotated images, separated into 5
groups of 10 images in each. The network was trained on each fold
according to the procedure described in Section 4.1, and tested on
the remaining four. The improvement in the classification after
each ANN in the series is visible in the classification of the training
data after each stage, shown in Fig. 5, and in the receiver operating
characteristic (ROC) curves in Fig. 6. The output from the network
improves quantitatively and qualitatively with each network in the
series. Directly sampling the image using a stencil and repeated
uses of the network enables the method to accurately estimate
the appearance of membrane pixels and pixels in surrounding
neighborhoods.

Fig. 7a shows four sections from the C. elegans dataset chosen
at random. The final membrane detection with the proposed
method is shown in Fig. 7e. Note that these are testing results;
that is, these four sections were not used as training data. To
demonstrate the advantages of the proposed method, two other
methods are presented. The first method, shown in Fig. 7b, per-
forms thresholding after enhancing the membranes with aniso-
tropic directional smoothing (Jurrus et al., 2008). Fig. 7c shows
results from an approach similar to the approach in Mishchenko
(2009), which learns boundary confidences using Hessian eigen-
values as input to a single layer neural network. It can be seen
that the proposed method removes a substantially larger percent-
age of the intracellular structures from the detection results as
well as providing better membrane continuity. It is important
to note that in Mishchenko (2009) further post-processing is per-
formed to interpolate between broken boundaries and complete
contours, resulting in an improved result compared to the one
shown here. However, we compare against only the single layer
network part of that method since our goal is to demonstrate
the improvement achieved by the use of ANNs and auto-context.
Of course, the same preprocessing methods could be applied to
the results of the proposed method as well. Fig. 8 shows enlarged
regions demonstrating the removal of large intracellular struc-
tures and closing of weak membranes.

To demonstrate the advantages of directly sampling the image
with a stencil, we also tested the proposed auto-context ANN strat-
egy but with inputs to the ANNs that are derived from a line detec-
tion filter bank rather than sampling the image. We used a filter
bank that consists of a set of 32 line detection filters oriented at
different angles and five circle detection filters with different radii.
The circle detection filters were included to help the auto-context
ANN to learn to remove vesicles from the membrane detection re-
sults. Fig. 7d is the output obtained with the filter bank/series of
ANN approach. While these results are better than the results in
Fig. 7b and c, they contain more false positives than the results
of the full stencil/auto-context ANN approach shown in Fig. 7e.
The advantages of using the stencil becomes clearer in a quantita-
tive comparison as discussed in the next paragraph. Furthermore,
an important practical advantage of using the stencil is that it does
not require any a priori knowledge. Therefore, it can be trained to
detect different structures as will be shown for the retina dataset in
Section 4.3. In comparison, a filter bank designed to capture the
relevant structures for the C. elegans dataset is not expected to cap-
ture the relevant structures in a different dataset which necessi-
tates the design of a new filter bank.



Fig. 7. (a) Cross-sections of the nematode C. elegans acquired using EM. Three demonstrated membrane detection techniques: (b) intensity thresholding after directional
anisotropic smoothing (Jurrus et al., 2008), (c) thresholded boundary confidences from a single ANN trained using Hessian eigenvalues (Mishchenko, 2009), (d) membrane
detection from serial ANNs, trained using membrane filter banks and auto-context, and (e) membrane detection from serial ANNs, trained using image data sampled from
stencils and auto-context.
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Fig. 9 compares the ROC curves for each method from Fig. 7. For
this particular data, a single layer ANN using Hessian eigenvalues
as inputs (labeled ‘‘Hessian”) demonstrates no quantitative differ-
ences from thresholding after directional anisotropic diffusion (la-
beled ‘‘Jurrus et al.”). These ROC curves correspond to the
qualitative results in Fig. 7b and c, respectively. The other three
curves all show a large improvement in performance. The use of
membrane detection filters (labeled ‘‘Filters”) demonstrates how
a carefully chosen set of features can be used for learning to detect
membranes. Image patches (labeled ‘‘Patches”) are just as success-
ful in training to detect membranes as filters. However, in testing,
the patches outperform the filters. We argue that this is due to the
fact that patches sample the image directly and give more flexibil-
ity to the classifier than a filter bank. Using a stencil (labeled ‘‘Sten-
cil”) results in the best performance. The stencil provides the
classifier with two important features. First, similar to patches, it
trains the classifier on image sample directly, as opposed to a fixed
representation as obtained from the filters. Second, it samples a
larger area than the patches, while maintaining the same number
of features (as seen in Fig. 3). The latter feature is very helpful in



Fig. 8. Examples demonstrating how the proposed method removes intracellular structures (left two columns) and closes gaps in a weak membrane (right two columns). The
top row is the original image, columns (a) and (c) show the classifier output, and columns (b) and (d) show the final thresholded segmentation.
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practice since it ensures improved performance without sacrificing
the network training time (actually, in our experiments, using the
stencil improved the training reliability and time).

Fig. 10 demonstrates the final neuron segmentation, after a very
simple region flood fill is applied to the image of detected mem-
branes with the proposed method. This depicts how close the final
segmentation is to the true segmentation. Fig. 11 is a full 3-D neu-
ron segmentation for four key neurons and nearby muscles from
this dataset. Neurons are segmented in each section using a region
flood fill and linked across sections using a minimum path finding
algorithm similar to Jurrus et al. (2008). Hand edits were required
to correct some mistakes in the automatic segmentation. This 3-D
model shows the motor neurons in the ventral nerve cord and their
processes interdigitating along the lateral edge of the nerve bundle
(Fig. 11a) to make contact with the muscles (Fig. 11b). Multiple
muscles, in turn, must send processes to these motor neurons to
receive input. Areas where this communication is occurring are
marked in red. There are three motor neuron inputs into these
muscles: the VA neurons release acetylcholine during backwards
movement, the VB neurons release acetylcholine during forward
movement, and the VD motor neurons release GABA to relax the
muscle to allow sinusoidal movement. These data demonstrate
that axons do not precisely interweave. GABA neurons run along-
side a group of muscle arms and form multiple synapses to differ-
ing subsets of muscles before giving way to acetylcholine motor
neurons. By contrast, the two types of acetylcholine neurons usu-
ally form contacts to the muscles simultaneously. Again, they form
2 to 3 contacts to the muscles for a segment of axon before giving



Fig. 9. [color] ROC curves for (a) training and (b) testing on the C. elegans data.
‘‘Jurrus et al.”: thresholding after directional anisotropic smoothing (Jurrus et al.,
2008). ‘‘Hessian”: single layer neural network operating on Hessian eigenvalues
similar to Mishchenko (2009). The remaining three curves demonstrate the results
from different inputs to the proposed auto-context ANN approach.

Fig. 10. Segmentation of neurons using a flood-fill on the image of detected
membranes. (a) Ground truth and (b) membranes detected with proposed method.

Fig. 11. (a) 3-D renderings of the four neurons competing for information from the
muscles. The location of the synapses, which were extracted from user specified
locations, are shown in red on the neurons. (b) Similar rendering of the muscles that
run alongside the motor neurons.
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way to the GABA motor neuron. This demonstrates the importance
and diagnostic capabilities of full connectivity diagrams and
renderings.
4.3. Results on the rabbit retina

The retina is a complex structure containing several layers of
neurons. Processing light sets off a series of chemical events and
connections among these neurons that scientists would like to
model. Most importantly, scientists would like to characterize neu-
ral circuitry that is damaged and in a diseased state. However,
unraveling the connective patterns in this complex tissue is an
enormous task.

To demonstrate the robustness of our method on a very differ-
ent dataset, an expert hand segmented all of the bipolar, amacrine,
and horizontal cells in a single 2-D section through the retina. This
section is 7629 � 7351 pixels and contains approximately 500 neu-
rons. The image was divided into four equal sections and a fourfold
cross validation technique is used to assess the performance of the
algorithm.

Fig. 12 shows the output on the test data. Fig. 12a shows por-
tions of the TEM image, cropped to show the cellular details.
Fig. 12b is a simple baseline membrane detection obtained by
thresholding the intensity gradient after smoothing the input im-
age with a Gaussian kernel (standard deviation 3 pixels). Thres-
holding the gradient results in some obvious problems.
Differences in contrast and the presence of intracellular features
make isolation of the neuron edges difficult. Fig. 12c shows the
results of applying the series of ANN method with a filter bank
as input. For this data, 25 Leung-Malik edge filters (Leung and
Malik, 2001) were used. The Leung-Malik filter banks consists of
first derivatives of a Gaussian kernel (standard deviation 3 pixels)
at various orientations. The results in Fig. 12d are from the sten-



Fig. 12. (a) TEM images from a rabbit retina. Membrane detection with: (b) thresholding on the gradient magnitude, (c) serial ANNs using the output of an edge detection
filter bank, and (d) serial ANNs using image intensities sampled from a stencil.
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cil/serial ANN approach identical in architecture to the one used
for the C. elegans dataset. From a qualitative perspective, the sten-
cil removes more intracellular structures and is more robust to
changes in contrast. When the weights from the final network,
which was trained with a filter bank, are applied to the testing
images, the edge detection performs poorly. However, sampling
the image using a stencil is a more robust way to detect mem-
brane edges and provides more consistent results across images.
Fig. 13 gives clear examples of how this method removes non-
membrane structures and closes complex gaps resulting from
inconsistent membrane data. Most importantly, the results from
this dataset demonstrate the flexibility of our method on different
feature types. The feature vectors for both datasets are the same,
that is, they are simply image values sampled from the input
data.

Fig. 14 shows the quantitative comparison for the methods
demonstrated in Fig. 12. The gradient magnitude provides a base-
line for how well a simple edge detection method can be expected
to perform. While it detects many of the neuron boundaries, it also
has a lot of false positive responses for internal structures and fails
to close gaps in weak parts of the membranes. The serial networks
provide a very large improvement over this simple method when a
filter bank is in place. However, the proposed stencil/auto-context
ANN method is demonstrated to do still a significantly better job at
detecting boundaries than the filters.
5. Conclusion and future work

In this paper a new approach for neuron membrane detection is
proposed. Inspired by Tu’s auto-context framework (Tu, 2008), our
approach introduces two major contributions. The first contribu-
tion is the introduction of a serial ANN classifier and its application
to neuron membrane detection. The use of context allows the clas-
sifier to close gaps in weak membranes and suppress intracellular
structures by using increasingly non-local information with each
ANN in the series. The second contribution is the use of raw image
intensities sampled through a stencil as inputs to the series ANN
rather than a predetermined filter bank. This provides increased
flexibility to the classifier which can then be trained to detect neu-
ron membranes in datasets with significantly different characteris-
tics. Also, it must be noted the choice of sampling the image with a
stencil rather than using the more traditional patch neighborhood.
As shown in the results, utilizing a stencil yields significantly better
results. This is because, for the same number of features, a stencil
provides context information for a larger neighborhood. Although



Fig. 13. Examples of locations in the data where intracellular structures are removed (left two columns) and gaps in membranes are closed (right two columns). The top row
shows the raw images, columns (a) and (c) show the classifier output, and columns (b) and (d) are the final thresholded segmentations.
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larger patches could be utilized, the number of features would
grow more rapidly to impractical levels, and would be slower
(and more complicated) to train the classifier. These two contribu-
tions result in a neuron membrane algorithm that outperforms
other methods.

A direct comparison to Tu’s auto-context classification using a
probabilistic boosting tree is difficult to do. Applying the same fil-
ter bank to the data presented here results in storage complica-
tions and does not scale to larger datasets like the rabbit retina
data, which is 16TB (Anderson et al., 2009). However, to compare
the performances, our method was tested on the Weizmann Horse
dataset (Borenstein et al., 2004), for which results using Tu’s meth-
od are available, without significant changes in performance. The
method used in this paper had an overall accuracy (or f-value) of
0.834, while Tu’s accuracy was 0.84, and the qualitative differences
were negligible (Paiva et al., 2010). Nevertheless, it must be
emphasized that a major advantage in our method is that the fil-
ters are learning directly from data, tremendously simplifying the
user’s role. By incorporating a similar architecture into the form
of a series of ANNs, we have designed a method that performs well
on EM images and aids in the building of 3-D models for neural cir-
cuit reconstruction, as depicted in Fig. 11.

Given the challenge of full 3D reconstructions, and the extremely
anisotropic resolution of serial-section TEM, we approach this prob-
lem with a two-stage solution that consists of first segmenting
neurons in 2-D sections and then linking them up the segments in
3-D. Therefore, the motivation for improving the accuracy of auto-
matic neuron membrane detection methods is to minimize user



Fig. 14. ROC curves computed on the retina data for the (a) training data and (b)
testing data. For comparison, an ROC curve is included that shows the best
membrane detection when the gradient magnitude is thresholded.
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interaction required to correct the segmentation. Fig. 10 demon-
strates segmentations obtained by applying a simple flood fill
operation to the image of detected membranes without any user cor-
rections. In future work, segmentations obtained using the proposed
method can be extended to other sections, taking advantage of seg-
mentations in sequential sections having similar anatomy. Simple
gap closing methods can also be applied to close small remaining
holes in the membrane for a better 2-D neuron segmentation. Finally,
a similar classifier strategy could prove successful also in segmenting
long tubular structures such as vasculature in MRI due to the capabil-
ity of closing gaps in weak areas of elongated structures.
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