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Abstract— Study of nervous systems via the connectome, i.e.
the map of the connectivities of all neurons in that system,
is a challenging problem in neuroscience. Towards this goal,
neurobiologists are acquiring large electron microscopy datasets.
Automated image analysis methods are required for reconstruct-
ing the connectome from these very large image collections.
Segmentation of neurons in these images, an essential step
of the reconstruction pipeline, is challenging because of noise,
irregular shapes and brightness, and the presence of confounding
structures. The method described in this paper uses a carefully
designed set of filters and a series of artificial neural networks
(ANNs) in an auto-context architecture to detect neuron mem-
branes. Employing auto-context means that several ANNs are
applied in series while allowing each ANN to use the classification
context provided by the previous network to improve detection
accuracy. We use the responses to a set of filters as input to
the series of ANNs and show that the learned context does
improve detection over traditional ANNs. We also demonstrate
advantages over previous membrane detection methods. The
results are a significant step towards an automated system for
the reconstruction of the connectome.

I. I NTRODUCTION

Models of neural circuits are fundamental to the study of
the central nervous system. However, relatively little is known
about the connectivity of neurons, and many state-of-the-
art models are insufficiently informed by anatomical ground
truth. Electron microscopy (EM) is a particularly well suited
modality for imaging of neuronal tissue since it provides the
necessary detail for the reconstruction of large scale neural cir-
cuits, i.e., theconnectome. However, the complexity and large
number of images makes human interpretation an extremely
labor intensive task. A number of researchers have undertaken
extensive EM imaging projects in order to create detailed
maps of neuronal structure and connectivity [1], [2], [3]. A
significant portion of neural circuit reconstruction research
has focused on the nematodeC. elegans which has only 302
neurons and is one of the simplest organisms with a nervous
system. In spite of its simplicity, the manual reconstruction
effort is estimated to have taken more than a decade. Newer
imaging techniques are providing even larger volumes from
more complex organisms, further complicating the circuit
reconstruction process [4]. There is a need for algorithms that
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Fig. 1. Serial neural network. I: Input, F: filter bank, S: neighborhood stencil,
C: context image, T: threshold.

are sufficiently robust for segmenting neurons with little or no
user intervention.

Segmentation of neurons from EM is a difficult task. The
quality and noise in the image can vary depending on the
thickness of the EM sections causing the membranes to change
in intensity and contrast. In addition, intracellular structures
such as mitochondria and synaptic vesicles render intensity
thresholding methods ineffective for isolating cell membranes
(Figure 4(b)). The method described in this paper uses a
series of artificial neural networks (ANNs) to more accurately
detect membranes in EM images, which is a necessary step
for improved three-dimensional neuron segmentation. The first
ANN uses as input a bank of oriented filters that were designed
to match membranes. The input to the subsequent ANNs in
the series is the same set of filters responses, in addition to
the output of the previous ANN on a stencil of nearby pixels
(as depicted in Figure 1). The idea is that ANNs along the
series are able to conciliate context information about likely
classifications of pixels across the image.

II. BACKGROUND

There are several methods that attempt to segment EM
images of neural tissue. Simple thresholding methods can be
applied after isotropic or anisotropic smoothing [5], [6],but
these fail to remove internal cellular structures and simul-
taneously detect a sufficiently high percentage of the true
membranes to make accurate segmentations. While active
contours, in both parametric and level set forms [7], [8],
can provide smooth, accurate segmentations, they require an
initialization and are more appropriate for segmenting a few
cells. If the goal is the automatic segmentation of hundreds
or thousands of cells, manual initialization is not practical,
and an automatic initialization is as difficult as isolatingthe
individual cells—which is the purpose of this work.
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Fig. 2. Stencil neighborhood of size11 × 11 pixels is used on the output
of each ANN to gather context on the output of the ANN.

In related work, Jainet al. used a multilayer convolutional
ANN to classify pixels as membrane or non-membrane in
specimens prepared with an extracellular stain [9]. This stain
however greatly increases the contrast between the cell bound-
aries and intracellular structures, and therefore significantly
simplifies the segmentation task. On the other hand, neural
circuit reconstruction also requires the detection of synapses,
which is only directly possible when intracellular structures
are observed and thus cannot be obtained through the pre-
vious approach. Furthermore, the ANN approach by Jainet
al. contains more than 30,000 parameters and, therefore, is
computationally intensive and requires very large training sets.
On the other extreme, even a perceptron applied to a carefully
chosen set of features has been shown to provide reasonable
results in identifying membranes in EM images [10]. Never-
theless, this method still requires significant post processing
to connect membranes and remove internal cellular structures.
In Jurruset al. [6], a contrast enhancing filter followed by
a directional diffusion filter is applied to the raw images to
enhance and connect cellular membranes. The images are
then thresholded and neuron membranes are identified using a
watershed segmentation method. An optimal path computation
is performed to join segments across slices, resulting in a
segmentation in three dimensions.

Of conceptual relevance to this work is Tu’s auto-context
method [11], which uses a series of classifiers utilizing con-
textual inputs to classify pixels in images. In Tu’s method,the
“continuous” output of a classifier, considered as a probability
map, and the original set of features are used as inputs to the
next classifier. The probability map values from the previous
classifiers provide context for the classifier, by using a feature
set that consists of samples of the probability map at a large
neighborhood around each pixel. Each subsequent classifier
extends the influence of the probability map in a nonlinear
way, and thus the system can learn the context, or shapes,
associated with a pixel classification problem. Theoretically,
the series of classifiers improves an approximation ofa
posteriori distribution [11].

III. M ETHOD

The method for membrane segmentation developed here
combines the responses from a filter bank designed to match
membranes with a series of ANNs for auto-context [11]. Auto-
context learns from image features computed at local pixels
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Fig. 3. (a) Membrane, (b) junction, and (c) vesicle detection filters used for
input into the neural network.

and a classification map applied to the classifier output. The
classification map is a stencil placed over each pixel containing
information about the features in surrounding pixels, thatis
not represented in the original feature set (Figure 2). This
allows the networks at subsequent steps of the series, show in
Figure 1, to make decisions about the membrane classification
utilizing nonlocal information. Put differently, each stage in
the series accounts for larger structures in the data, taking
advantage of results from all the previous networks. The
advantages of this architecture are shown later for closing
of weak membranes and removal of intracellular structures
after each iteration in the series. Combining the original
filter responses with features from the output of the classifier
is important because, in this way, the relevant membrane
structure for segmentation is enforced locally and then again
at a higher level from each step in the series of classifiers.

Given the success of ANNs for membrane detection [10],
[9] and because auto-context is not specifically tied to any
classifier, we implement a multilayer perceptron (MLP) ANN
as our base classifier. An MLP is a feed-forward network
which approximates a boundary with the use of ridges given
by the nonlinearity at each node. In our case, each network has
one hidden layer with 20 nodes. Although we experimented
with the use of two hidden layers, no advantage was observed.
The output of each node is given as,

y = f(wT
x + b), (1)

wheref is in our case thetanh nonlinearity,x denotes the
inputs, w is the weight vector, andb is a bias term. The
inputs to the first network include the image intensity and
the response to a bank of feature detection filters, described
next.

The image features the first ANN uses to learn are mem-
brane and vesicle detection filters. We chose to use filters to
detect features and train the network rather than learning the
filters because we have prior knowledge about the membrane
geometry and can design a match filter to detect them.
Three types of feature detection filters were constructed to
generate responses for the different types of membranes (see
Figure 3). The first and second filter types are both bars,
one to detect membranes and the other to detect membrane
junctions. The width of the bar approximates the width of
the membrane, which in our case is about 5-7 pixels wide.
To detect membranes at different angles, each filter is rotated
between 0 and 180 by20◦. The third filter type is a simple
vesicle detection filter which helps the network learn pixels it
should not classify as membranes, i.e., for rejecting vesicles. It
is constructed as a circle with an off center surround ranging in
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radius depending on the size of the vesicles in the images. For
the data utilized, the radius varies between 3 and 5 pixels. Each
filter is convolved with each pixel in the image:Ii = I ∗ Fi,
whereI is the input image andFi is the ith filter convolved
with I. The complete filter bank,F , contains the membrane
and junction filters, at rotational increments of20◦, and several
scales of vesicle filters, for a total of 32 filters.

Using principles from auto-context, we implemented a serial
classifier that leverages the output of the previous networkto
gain knowledge of a large neighborhood. For the first classifier,
the input is the set of outputs from the filter bank. For the
remaining steps, data from the stencil is gathered from the
output of the previous classifier, reinforcing the membrane
structure from one classifier to the next. The input is then
the output of the stencil applied to the context image, and
the set of filters in the original image. Figure 1 demonstrates
this flow of data between classifiers. Each ANN produces a
classification, or context image, denotedC, and the final output
is thresholded inT after the last ANN in the series.

By using a filter bank as the initial input, the network can
quickly learn the context of the data it is trying to classify,
while also acting as a regularization term for the learning
algorithm. It better represents the type of data being learned.
With each step in our serial classifier, context allows the
network to use information about structure from a broader
image neighborhood to the pixel being classified, while the
filters inputs reinforce the elongated structure of membranes.
This results in segmentations that improve after each network
in the series. Figure 5 visually demonstrates the classification
improving between ANNs in the series. Much like a con-
volutional network, at each stage of the series, the network
uses more context around each pixel to make a classification.
This means that learning and application of the classifier is
more efficient since one does not have to deal with large
image features, and the network does not have the task of
inferring the elementary structure from the dataset, i.e.,find the
filters. Consequently, this accounts for a smaller and simpler
network which can be trained from smaller datasets. Overall,
our implementation also has advantages due to the use of
multiple networks. This approach provides better control of
the training, allowing the network to learn in steps, refining the
classification at each step as the context information it needs to
correctly segment the image increases. Hence, our approachis
much more attractive to train, as opposed to utilizing a single
large network with many hidden layers and nodes. Using a
single large network would be time consuming and difficult
to train due to the many local minima in the performance
surface, and requires large training datasets which are hard to
obtain since the ground truth must be hand labeled.

IV. RESULTS

The ANNs used in our tests are solved with backpropagation
using a step size of.0001 and a momentum term of.5. To
avoid local minima in computing the best set of weights at
each series in the network, the ANN uses cross-validation and
Monte Carlo simulations. The network is trained using cross-
validation on a portion of the input data, and the network

terminates when the cross-validation error increases for 3
consecutive iterations. To compute the best set of weights,10
Monte Carlo simulations of the network are run, each with a
different set of random weights. The weights from the network
with the highest percentage of correctly trained instancesin
the cross-validation set are used to compute the segmentation
for that step in the series. The time it takes to train 1 ANN is
approximately 3-6 hours.

An expert classified 50 images in the dataset, carefully
marking membranes. The negative training examples are the
remaining pixels in the image, after morphological erosionto
remove training pixels that are very close to the membranes.
This ensures that the network learns on pixels that are mem-
brane and non-membrane, but does not become confused by
pixels that are neither.

To test the robustness of the method, we use five fold cross-
validation on the set of 50C. elegans expert annotated EM
images. The 50 images are separated into groups of 10. For
each fold, the network is trained on one group and tested on
the remaining four groups. The only preprocessing performed
for each image is a contrast limited adaptive histogram equal-
ization (CLAHE) [12] filter, with a window size of 64, to
enhance the contrast of the membranes before the filter bank
is applied. Figure 4 shows a set of test images along with the
segmentation found using different methods. The first method,
shown in the 2nd column, performs thresholding after the
contrast is enhanced and anisotropic smoothing is performed.
The 3rd column is a segmentation similar to Mishchenko [10],
who learns boundary confidences using Hessian eigenvalues
as input to a single layer neural network. Mishchenko per-
forms further post-processing to interpolate between broken
boundaries and complete contours, resulting in an improved
segmentation compared to the one shown here. We compare
against only the single layer network part of his method
since our goal is to demonstrate the improvement achieved by
the use of an ANN and auto-context. Furthermore, the same
preprocessing methods could be applied to the results of the
proposed method as well. The final column is the segmentation
found using the serial network presented in this paper. For this
particular data set, we chose a network series that consistsof 5
ANNs. Figure 5 shows the output between each network in the
series. At each stage, the network removes internal structures
and closes membrane gaps. Over several networks, this results
in noticeable improvements in the membrane segmentation.

The receiver operating characteristic (ROC) curves in Fig-
ures 6 demonstrate the improvement in the segmentation at
each stage of the series. Each curve is computed by averaging,
for the stage, the ROC curves over all cross-validation folds.
Even after just one stage of the network, the classification
has improved dramatically. Further stages help to refine the
membrane locations and remove structures remaining inside
the membranes.

It is important to compare the final neuron segmentation
that the different methods produce. Figure 7 demonstrates
the differences between the segmentations using the proposed
method. While this segmentation is not perfect, it is a large
improvement upon previous methods. For a complete segmen-
tation to be possible, minor hand edits are required along with
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(a) (b) (c) (d)

Fig. 4. Different membrane segmentations for four test images, each trained using one fold from the five fold cross-validation strategy. (a) Cross-section of
the nematodeC. elegans with a resolution of 6nm× 6nm× 33nm, acquired using EM. Three demonstrated segmentation techniques: (b) thresholding on
the CLAHE enhanced, smoothed data, (c) thresholded boundary confidences using Hessian eigenvalues, and (d) the proposed method, serial ANNs, trained
using membrane filter banks and auto-context.
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(1) (2) (3) (4)

Fig. 5. An example of an image in each stage (1-4) of the network series. At each stage, the network learns more about pixelsthat do and do not belong
to the membrane. The top row is the output from the neural network, and the bottom row is the thresholded output.
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Fig. 6. ROC curves for the (a) training data and (b) testing data at each stage of the series. For comparison, ROC curves areincluded for anisotropic
smoothing combined with thresholding and learned boundaries using Hessian eigenvalues, as demonstrated in Figure 4(b) and (c).
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(a) (b)

Fig. 7. Simple segmentation of neurons using a flood-fill on (a) the ground truth and (b) the membranes detected in Figure 4(d), which uses the proposed
method.

some region closing techniques to be considered as future
work.

V. CONCLUSION AND FUTURE WORK

In this paper we propose the combined use of filter banks,
principles from auto-context, and a series of ANNs for the
segmentation of neuron membranes in EM images. On one
hand, the application of filters to the input data and a stencil
to the output of each classifier gives context for the classifier to
use to close gaps in membranes and remove internal structures.
On the other hand, both the filters and serial ANN architecture
in the framework act as regularization terms, forcing the
network to learn incrementally, using features that match the
data on multiple context scales provided by each step.

In spite of the specificity of this application, the concepts
and framework proposed may be potentially useful in other
domains. For example, similar strategies could also prove
successful in segmenting long tubular structures such as vas-
culature in MRI, due to the capability of closing gaps in weak
areas of elongated structures.
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