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STRUCTURAL AND RADIOMETRIC ASYMMETRY IN
BRAIN IMAGES

SARANG JOSHI, PETER LORENZEN, GUIDO GERIG, AND ELIZABETH
BULLITT

ABSTRACT. This paper presents a general framework for analyz-
ing structural and radiometric asymmetry in brain images. In
a healthy brain, the left and right hemispheres are largely sym-
metric across the mid-sagittal plane. Brain tumors may belong
to one or both of the following categories: mass-effect, in which
the diseased tissue displaces healthy tissue; and infiltrating, in
which healthy tissue has become diseased. Mass-effect brain tu-
mors cause structural asymmetry by displacing healthy tissue, and
may cause radiometric asymmetry in adjacent normal structures
due to edema. Infiltrating tumors have a different radiometric
response from healthy tissue. Thus, structural and radiometric
asymmetries across the mid-sagittal plane in brain images provide
important cues that tumors may be present. We have developed
a framework that registers images with their reflections across the
mid-sagittal plane. The registration process accounts for tissue dis-
placement through large deformation image warping. Radiometric
differences are taken into account through an additive intensity
field. We present an efficient multi-scale algorithm for the joint
estimation of structural and radiometric asymmetry. Results for
nine MR images of patients with tumors and four normal control
subjects are presented.

Key Words: Brain symmetry analysis, plane of symmetry esti-
mation, deformable image mapping, medical image analysis.

1. INTRODUCTION

The healthy human brain is largely symmetric across the mid-sagittal
plane. Recognizing that structural asymmetry may indicate disease,
in our previous work we examined shape and volume differences be-
tween the left and right hippocampi in patients with schizophrenia [1]
[2][3][4], epilepsy [5][6][7], and Alzheimer’s disease [8]. Most other work
involving structural asymmetry has focused on small-scale geometric
inter-hemispheric differences [9][10][11] [12][13][14][15]. Up to now, lit-
tle attention has been paid to gross differences between the left and

right brain hemispheres in patients with brain tumors. In this paper,
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an extension of [16], we describe our unified framework for studying
not only large- and small-scale structural variations, but also intensity
variations occurring in images of patients with brain tumors.

As part of a larger effort aimed at improving the diagnosis and treat-
ment of tumor patients, our group is investigating techniques for ana-
lyzing the regional effects and vascular characteristics of brain tumors.
The initial stages of this work is aimed toward the automatic identifica-
tion of tumors in MR images. We are investigating several, potentially
synergistic, methods for segmenting tumors: multi-channel (e.g. white
matter, grey matter, and cerebrospinal fluid among others) statistical
pattern recognition, level set evolution, atlas-based registration, and
asymmetry analysis.

Tumors exhibit two main effects in MR images: mass-effect and infil-
tration. Mass-effect tumors displace and distort the underlying struc-
ture. Infiltrating tumors affect the tissue characteristics, changing the
radiometric response in images. Most cases show a combination of
these two effects. For example, in purely mass-effect tumors, the pres-
ence of edema induces changes in the radiometric response of adjacent
normal structures. We have developed a single framework to study
both structural and radiometric asymmetry in images of patients with
brain tumors.

We study the asymmetry of the brain in MR images by registering
an image with its reflection about the plane of symmetry. Given a
scalar 3D MR image, I(z) € IR™ where z = [z, 79, 23]" € Q C IR?, of
the brain and corresponding plane of symmetry, the structural defor-
mations and changes in the radiometric response of the tissue due to
the the disease process are estimated via the following mean squared
error minimization

(1.1)
A, 4,4, = arg min /Q 11(z) = I(H(z — q) + q + d(z)) + f(z)||%dz

Haqada

where H is a Householder reflection matrix, formally defined in Section
2.1.1, and g € IR? is a translation characterizing the plane of symme-
try. The high dimensional vector field d(x) € IR® describes the geo-
metric deformations in the brain across the plane of symmetry, and the
additive scalar intensity field f(z) € IR describes the intensity varia-
tion. The latter two quantities are regularized with derivative operators
to ensure smoothness during the estimation process. Throughout the
background of 3D MR image of the brain is assumed to be uniformly
black.
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FIGURE 2.1. Flow chart representing the two-stage algorithm

In this paper, we present a two-stage algorithm. In the first stage of
the process, H , 4, f are estimated through a multi-scale iterative ap-
proach while holding the deformation field fixed as the additive identity,
d(z) = 0 Vz € Q. In this way, we obtain both the estimated plane of
symmetry characterized by H and g, and an initial estimate of the
intensity variation field, f .

The second stage estimates the structural deformations characterized
by d(z) in Equation (1.1) and refines the estimate of the intensity field
variation f(x) via an extension of the large deformation diffeomorphic
image warping algorithms developed in [17][18][19].

Section 2 of this paper describes the two-stage process mentioned
above. Section 3 presents results of the plane of symmetry estimation
and asymmetry analysis of intensity field variation and high dimen-
sional local deformations. The performance of this algorithms is also
discussed.

2. METHOD

The two stage algorithm for estimating structural deformations and
intensity variations is depicted in the flow chart show in Figure 2.1 .
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The remainder of this section details this two-stage process. The fol-
lowing subjection, 2.1, develops the first part of the framework which
involves estimating the plane of symmetry and initial intensity field
variation. Section 2.2 extends the framework to include high dimen-
sional local deformations.

2.1. Estimation of Plane of Symmetry. Given a scalar 3D MR
image, I(z), of the brain we would like to estimate the plane of sym-
metry as well as investigate the inter-hemispheric asymmetry in the
brain. In this paper, we define the plane of symmetry to be the plane
about which inter-hemispheric similarity is maximal. This plane is not
necessarily the mid-sagittal plane defined by the anterior commissure
and the posterior commissure [20].

A number of techniques have been employed to compute the plane
of symmetry in MR images of the brain. Many of these methods in-
volve fitting a 3D plane from a set of symmetry lines extracted from
2D images. Smith and Jenkinson [13] present an algorithm that finds
symmetry via symmetry profiles. Of these 2D approaches many employ
a cross-correlation symmetry measure. Liu et al. [21][22] extract the
plane of symmetry from a set of 2D slices via an edge-based technique.

Our approach differs from these methods in that we make a direct
estimation of the plane of symmetry from a whole 3D volume. This ap-
proach is less sensitive to the variability in the inter-hemispheric fissure.
Ardekani 23] et al. present a 3D multi-resolution cross-correlation
method for estimating the plane of symmetry. Prima et al [24] present
an in-depth analysis of previous plane of symmetry estimation methods
along with their own, which involves matching the centers of homolo-
gous blocks by reflective symmetry. Rather than performing a series
of localized point-to-point correspondences, we estimate the plane of
symmetry globally over all €2. The plane of symmetry is parameterized
via the Householder reflection matrix, H, and a translation, q. The
inter-hemispheric intensity variation due to the presence of tumors or
bias field induced by the MR acquisition or both is modeled as an
additive scalar field f(x).

The inter-hemispheric intensity variation due to the presence of tu-
mors is modeled as an additive scalar Gaussian random field, f(z), with
covariance induced by a linear differential operator L; following [25].
Namely, we let {f(z), x € 2} be a random process process satisfying
the stochastic partial differential equation

(2.1) Ly f(z) = e(z)
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where e(x) is white noise. That is, {(e,y) ~ N(0,(y,y)). From [25]
we know that {f(x), z € Q} is a zero-mean Gaussian process with
covariance

K(z,y) = /G(m,u)G(y,u)du,

where G is the Green’s function of L; satisfying LG (z,y) = §(z — y).

Since we choose L to be the Laplacian, V?, we therefore have G(z,y) =
1

llz—y|l"
Using the Bayesian paradigm the global energy function is defined

using a Gaussian mean squared error data likelihood function and the
quadratic Gaussian norm induced by the linear differential operator
on f(x). The linear differential operator norm enforces smoothness
constraints and regularizes the estimation of the the additive intensity
field. The optimization, in Equation (1.1), then becomes:

arg min i I(z) — I(H(z — q) + @) + f(z))||*dx

@2 8 [ |ILf@)|Pd
Q
where L; = V? is the Laplacian operator.

2.1.1. Algorithm for Estimating the Plane of Symmetry. We begin by
defining the parameterization of the plane of symmetry via the House-
holder reflection matrix. We construct a reflection matrix H from a
plane characterized by its unit normal vector v shown in Figure 2.2 .

Let p' be the reflection of the point p € Q about the plane of sym-
metry. We let p; be the projection of p onto the line defined by v,
that is p; = vvlp. Let p, be the reflection of p; about the ori-
gin, po = —p; = —vvlp. Therefore, p' = p + po — p1 and, hence,
Hp = Ip — vwlp — vvTp = (I — 2vvT)p. Thus, given a plane as de-
scribed by v, we can construct its associated Householder reflection
matrix,

(2.3) H=1-2w",

where |[v|| = 1 is the Householder vector. The Householder matrix
is symmetric, HT = H, and orthogonal, H' H = I, with determinant
det |H| = det |I — 2007 | =1 = 2||p||? = —1.
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FIGURE 2.2. This figure depicts the Householder reflec-
tion construction. The plane of symmetry, POS, is char-
acterized by its normal, v.

In our framework an image, I(x), is considered to have perfect sym-
metry about a plane defined by Householder reflection matrix H pass-
ing through point q if

/Q 1) = I(H(z — q) + q)|[2dz = 0.

The iterative algorithm for minimizing the energetics defined in Equa-
tion (2.2) is derived by embedding the optimization of the Householder
matrix H and corresponding point ¢ in the space of affine motions
GL(3) x IR® C IR*. Rather than estimating H and § directly, we
estimate an affine matrix, /Al, and a translation vector, £, by a quasi-
Newton’s method and project the result onto the space of Householder
matrices using the Householder projection theorem.

Theorem 1:(Householder Projection Theorem) Let A € GL(3) be an
affine matrix with negative determinant. The Householder reflection
matrix, H , which minimizes the Frobenius norm to A,

A

(2.4) Hzargmbi[nHA—HHF,
is given by:
(2.5) H=1-2ee"

where e is the eigenvector associated with the smallest eigenvalue of A.
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Proof: From Equations (2.4) and (2.3) we obtain the following rela-
tion, which defines H,

(2.6) H = ||[A—(I-200")||r where
(2.7) o = argmin||A — (I — 2vv7)||p.
where || - || denotes the Frobenius norm. Minimizing the right-hand

side of Equation (??) is equivalent to minimizing the following trace
calculation

tr[(A—(I—=2vv")) (A= (I=2vv"))T] = tr(AAT)=2tr(A)+4tr(AvvT)+3.

Minimizing the above equation with respect to v reduces to the problem
of minimizing tr( AvvT) with respect to v. Matrix A can be written with
its eigen-decomposition, A = ULV7T where

g1 0 0
YX=|10 02 0 |,01>09>03 and V = [ej ege3].
0 0 03
Construct v = Va for some unit vector o = [ay, ag, a3]”. We then

have
tr(Avo?) = tr(USV Vaadl V7).

Since both U and V7 are orthogonal and thus do not contribute to the
trace calculation we simply find a v that minimizes tr(Xaa®). That is,

& = argmintr(Saa’)
67

. 2 2 2
= arg min (0107 + 0205 + 0303)
a1,02,03

subject to : oF +aj+as=1.

This implies that & = [0,0,1]7. Hence, v = e3 the eigenvector associ-
ated with the smallest eigenvalue o3 of A.
QED.
With the Householder projection theorem, we embed the optimiza-
tion in IR' by first registering the image, I(x), with it’s reflection,
I,.(z), about the YZ-plane passing through the image centroid follow-
ing Prima et al. [10]. Figure 2.3 exemplifies this procedure. In Figure
2.3, I(x) is represented by a solid line depicting an outline of an axial
slice of a skull and I.(x) as a dotted outline. We define the reflected
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FIGURE 2.3. Reflection Technique
The original image, I(x), is represented as a solid outline in the upper
left, the reflected image image, I,.(x), as a dotted line in upper right,
the affine motion via the arrows in the lower left, and finally, the
computed plane of symmetry as the dashed line shown in the lower
right.

image, I’re(x) via I’re(x) = I(S(J? - :u)



STRUCTURAL AND RADIOMETRIC ASYMMETRY IN BRAIN IMAGES 9

and p is the centroid of I(x) calculated from raw intensity values. We

estimate the A, £, and f that minimize the following:
(2.8)

Al f—argmln/HI L.(Az+t)+ f(2)]| d:c—i—ﬁ/ |IL;f(z)|dz,

where f(x) is the inter-hemispheric intensity variation due to the pres-
ence of tumor model as an additive random Gaussian field as described
previously.

The lower left panel of the figure illustrates, via the arrows, the esti-
mation of this affine motion, A and £, that takes the original solid line
outline into the flipped dotted outline, such that I,.(z) = I(A(z —
p) +t+ p). Reﬂecting I,.(z) back across the YZ-plane produces

I(SA(z — p)+1+ - 1) which best approximates the original image I(z).
The estimate of H then becomes the projection of SA, which charac-
terizes the normal, 0, in Equation (2.3) of the plane of symmetry. The
estimate ¢, which is the point in the point-normal representatlon of
the plane, is given by solving the equation —Hj+§= —Hu + 14 p.
Solving for ¢ yields,

Q= pt (-
1 .
(2.9) = p+ EU’UTt.

2.1.2. Quasi-Newton Optimization Algorithm. Having parameterized
the plane of symmetry via the Householder matrix we now derive the
Quasi-Newton optimization algorithm for estimating the affine motion,
(A,t). Let A* = [af] , t* = [t§,15,15]" be the estimates after iteration
k. The iterative algorlthm is defined via the update step

ARl = AF L AA and Pt =t + AL

We prove that the estimates (A, {) minimizing Equation (2.8) are given
by the stable points of the algorithm. For convenience we define the
notation,

gy 9 z3 0 0 0 0 O
X = 0 0 0 1 X9 T3 0 0
0 0 0 0 0 0 r1 X2 I3
and

k_ k k k k k k k k k 4k 4k k1T
a —[au Aty Qi3 Gy Qgy Qg3 G3; A3y Gg3 17 15 ts} .

Using the above notation, Equation (2.8) can be written as,
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2:10) B(@) = [ [110)~LXah)+ @) o+ [ [Lf*) P

k+1

Let the estimate at iteration £+ 1, a®*", be given by the update Aa €

IR of a*, that is

(2.11) af = a* + Aa.
The energy in Equation (2.10) at iteration k£ + 1 then becomes,

/ 1(2)~ Tye(X (aF+Aa))+ £ (z) Pdz+ B / L1 (2| Pd.

Using the Taylor series expansion of I,..(x) up to the second order about
Xa*, we approximate E**! as follows,
(2.12)

B@ )~ [ 1)) =TI [ CCAPH@) Pt [ |1y (0) P

Notice that Equation (2.12) is quadratic with respect to Aa. The
update step Aa is chosen to minimize E(a*™') which implies

VAaE = 0.
Applying this gradient we obtain,

VadE /[1 Le(Xa")+ ¥ (2)]V (z)" do+ (/Q V(:U)TV(x)dx) Aa=0

where V(z) = VI,.[%»X. Thus,
(2.13)

Aag = — [/V( 'V (x dx} /[1 — Lo (Xa*) + f*(x)]V (z)" dx

Theorem 2: The stable points a = (A, t) of the above iterative algo-
rithm minimize the energy in Equation (2.8) and satisfy the necessary
condition

V.E(a) = 0.
Proof: 1f a is a stable point of the above algorithm then the update
Aa in Equation (2.13) is zero implying that

/[I — Lo(Xd") + fF(2) ]V (2)Tdz = 0,

where, as before, V(z) = VI.|% . X. This is exactly the necessary
condition for minimizer V,FE(a) = 0.
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QED.

After convergence of the algorithm we compute the estimate for the

Householder reflection. From the Householder Projection Theorem and

Equation (2.9) we have H = I — 2ee” where e is the eigenvector asso-
ciated with the smallest eigenvalue of SA and § = p + %eeTf.

2.1.3. Intensity Field Estimation. At each iteration of the Quasi New-
ton algorithm derived above for estimating (A, t), an estimate for the
inter-hemispheric intensity variation f*(z) is obtained by minimizing

(2.14)
+ = argmin 5(f) / 11(@)— Tye(AFa84)+ f (2) | Pdo+ / Ly ()|,

where AF, t* are the estimates of the affine motion and f*(z) is the
intensity field variation estimate at the k' iteration. The necessary
condition for the minimizer of (2.14) is that the Gateaux differential
SE(f;n) for all allowable perturbations 7 is zero [26]

BU ) = Al [ 10 = L+ + @) + anto) s
+8 [ 1L4(f4(@) + (o)) Pda]lo-ods
= [ 207@) L2+ )+ 14(0) + an(a)}n(o) acods
48 [ 14T} ) + an(@)n(@)a-ods
= 2 [ [16) ~ Ll +4) + A @n(o)ds
+4 /Q Ly L} f* (2)de]y(z) da

where LJ} is the adjoint of L;. The conditions 0 E(f;n) = 0 for all n(z)
imply that f*(z) satisfy the differential equation,

(2.15) I(z) — Le(A*z + t*) + f(z) + BLyLLf () =

The above differential equation is solved using the Fast Fourier Trans-
form as follows. Let 2 be a periodic discrete lattice having dimen-
sions L x M x N. Further define the residue at iteration £ to be
r*(x) = [L,(A*z + t¥) — I(z)]. Given this, the intensity differential
equation (2.15) can be re-stated as,
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(2.16) [BLT Ly +1]f*(x) = r*(z).

We write f*(z) and r*(z) in terms of their Fourier representations,

N—-1M-1L-1

fFz) = F*(u, v, w)el<®>
w=0 v=0 u=0
N—1M-1L-1
rk(z) = R*(u, v, w)ed<**>
w=0 v=0 u=0
where w = [wy, Wy, wy)? with w, = 2% w, = 2w, = 22 and
F% RF € @. We re-write Equation (2.16) as,

N-1M-1L-1

(2.17) Lf¥(z) = Z Z ZLeK“”DFk(u, v, w)

w=0 v=0 u=0
where L = ﬁLfL} + 1. As L is a differential operator with complex
exponentials as it’s eigenfunctions. Equation (2.17) becomes
N—1M—-1L-1

Lf¥(z) = Z Z Z)\(u,v,w)ej<w’w>Fk(u,v,w),

w=0 v=0 u=0
where A(u, v, w) are the eigenvalues of the operator L. We now compute
the eigenvalues A\(u, v, w):

pI<wE> [ pi<wa>
= (BLyL} +1)e<w>
(2.18) = (BA3(u,v,w) 4 1)e? <>

where \f(u,v,w) are the eigenvalues of the operator L; = V2. Using
the standard definition of the finite differences approximation of the
Laplacian,

AMu, v, w)

2 j(wuT1+wyTor+wwzs) jwy (z1+1) twy (z1—1) _ jwuT1
Ve e +e 2e

ejwv(w2+1) + eiwv(zz—l) — QpIwv2

+ + &

e]ww(mg—l—l) + ezww(zg—l) — 9piwwas,

the eigenvalues become,

(2.19) Af(u,v,w) = 2coswy, + 2 cosw, + 2 cosw, — 6.
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Substituting (2.19) into (2.18) we obtain,

AMu,v,w) = 4B[—6(cosw, + cosw, + cos wy,)
+2(COS Wy, COS Wy, + COS Wy, COS Wy + COS Wy, COS Wy
+ cos? wy, + cos? wy, + cos? wy, + 9] + 1.

Finally, we can compute f(x) by taking the inverse Fast Fourier Trans-
form,

N—-1M-1L-1

k+1 _ 1 1 k —j<w,x>
J ) = 2rnLM N wz_;) UZ—; uz_% A(u,v,w)R (u,0,w)e '
2.1.4. Multi-scale Approach to Estimating the Affine Motion. For an
efficient implementation we employ a multi-scale approach in estimat-
ing A and £ directly from I(z). We construct a pyramid of three images
of decreasing size taken at increasing scale via Gaussian kernel convo-
lutions, I(z;0) = G(0,0) @ I(x) where o = 27 and 7 = 2, 4, 8 voxels.
The estimation process begins with the images at the largest scale by
estimating A and { for the image. The results of this process become
the initialization for the estimation process for the next smaller scale
image. This process is repeated until A and ¢ are estimated at the
original scale of I(z).

The convergence criteria for progress to successive scales is simply
that both ||A¥! — A¥|| < ¢ and |[tF*! — #*|| < ¢ for some sufficiently
small ¢.

An initial estimate for A° and ¢ is obtained via the method of mo-
ments as follows: assuming that the image, I(x), has finite first and
second moments, the first and the second moments of the image I(z)
become

1
pr = W/Qxl(x)dx

1

K= i / (& — pr) (@ — )" I(2)de

If A is a general non-singular affine matrix the first and second moments
of the image, I(z) = I(Ax +t), can be expressed as

Mi = pr—t
(2.20) K; = AK;A™!
Let Sy = Ky and Sy = /K;. From Equations (2.20) it follows

that A = S1S;" and t = p; — pj. Using this construction the initial
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estimates A° and t° are computed by calculating the first and second
moments of the image I(x) and it’s reflected image I..(z).

2.2. Analysis of Inter-hemispheric Geometric Deformations via
Image Mapping . After estimating the plane of symmetry, attention
now focuses on small scale geometric differences across the plane of
symmetry. The approach developed is similar to the work of Thirion
et al. in that the geometric variation is captured via the definition of a
high dimensional deformation field. However in previous work [27][28],
such analyses have been directed purely toward detection of geomet-
ric differences. We present an algorithm that jointly estimates defor-
mation and inter-hemispheric radiometric intensity differences. The
method used for estimating the deformation field is an extension of
the fluid flow formulation of Christensen et al. and is only briefly de-
scribed here. For a complete description of the deformation algorithm
see [17][18][19].

The high dimensional displacement vector field d(z) and the scalar
intensity field f(z) are estimated using an alternating optimization
technique that minimizes the quadratic error

B = [ 1)~ L(H =0+ a+d@)+ /@) Pdo+5 [ |[Lef(a)|ds

where the L; = V? is a Laplacian operator that ensures smoothness
of the estimate of f(z) as in Equation 2.2 in the plane of symmetry
estimation. The regularization parameter 8 controls the influence of
inter-hemispheric intensity variation on the estimation of the displace-
ment field, d(z). As 8 — 0, no regularization penalty is incurred on the
intensity field f(z) and, hence, results in the trivial solution become,

diz) = 0

f(@) = Le(H(x—q)+q)—I(z)
As  — o0, the inter-hemispheric intensity variation is accommodated
entirely by the displacement field, d(x). In this paper we do not study
the optimal choice of regularization parameters.

Following Christensen, the deformation field d(z) is defined via an
integration of an O.D.E.

d(z) =12+ /0 o(d(. 1), t)dt.

Energetics are induced on the velocity field v(-,t) using the Navier-
Stokes operator Ly = aV? + bV - V + ¢I. The energetics induced on
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the velocity field become

BE(v) = /0 1 /Q | Lav(z, t)|[2dwdt.

Following [18], a computationally efficient algorithm for image match-
ing is used which exploits the fact that the Navier-Stokes operator does
not differentiate in time. A time indexed, tx,k = 1,--- , N, sequence
of optimizations are solved for a locally optimum velocity field v(z, t;).
The transformation is then computed by forward integrating the locally
optimum velocity field

te1
d(z,tgy1) = d(z, tg) +/ v(d(z,0),0)do.
23
Since this is a locally-in-time optimal method the dimensionality of
the optimization is reduced. The radiometric intensity variation is
incorporated into this framework by performing the optimization for
f(z) at each time step

fa) = argmin /Q 11(z) = (Le(H(z — q) + ¢ + d(z, 1)) + [(2)|Pdz

o / L f(z)|

The above optimization is computed using the Fast Fourier Transform
as described in section 2.1.3.

In analyzing the computed displacement, d(x), we examine two de-
rived properties of the deformation field: the Jacobian and divergence.
We are not the first to use these properties to study volumetric changes
in structures within the brain for pathology detection. P. Thompson
and A. Toga use local vector field operations to construct tensor maps
that describe magnitude and principal directions of tissue dilation and
contraction as well as local rates of change in dynamically changing
brains [29]. J. P. Thiron and G. Calmon use local vector field opera-
tors to analyze deformations to detect and quantify multiple-sclerosis
lesions in the brain [30].

2.2.1. The Jacobian. In studying the inter-hemispheric geometric dif-
ferences we first consider volumetric change due to the deformation
field, d(x). Given a linear transformation 7" : IR®> — IR? the volume of
an object S under that transformation is

(2.21) volume of T'(S) = | det T'| x volume of S.
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Grid, z Warped Grid, h(z) log J(h(z))

FIGURE 2.4. Determinant of Jacobian Example

In our case, T is defined as the Jacobi matrix of the transformation
h(z) = = + d(x) with respect to z,

oh
a(xla T2, x3) ‘

Hence, the change in volume, as a scale, is measure by the Jacobian of

T, defined as the absolute value of the determinant of Jacobi matrix
T.

2.22) J(T) = |detT)|
det (I +

T =

(
(2.23) =

a(dla d27 d3) )

8(331, T, 333)

The Jacobian of T', and hence of h(x), captures the local inter-hemispheric
volume differences of corresponding anatomical structures.

This scaling of volume can be thus interpreted in the following man-
ner:

<1 contraction of volume
J(T){ =1 no change in volume
> 1 dilation of volume
Correspondingly, log J(T') < 0, log J(T') = 0, and log J(T) > 0 indicate
contraction, no change, and dilation of volume respectively.

Shown in Figure 2.4 are a grid, x, the grid under a hypothetical
deformation characterized by a contraction (upper left) and a dilation
(lower right), h(z), along with the logarithm of the Jacobian, log J(T).
The latter is rendered using a spectral colormap where negative values
are indicated by violet and blue hues, zero as medium green, and pos-
itive values as yellow, orange and red. Notice that the contraction in
the upper left appears as a blue and violet region in the logarithm of
Jacobian image and that the dilation is indicated by orange and red.



STRUCTURAL AND RADIOMETRIC ASYMMETRY IN BRAIN IMAGES 17

FIGURE 2.5. Divergence

2.2.2. Divergence. Another measure of volume change is motivated
by the use of the Divergence Theorem where we capture local inter-
hemispheric shape variation using the divergence operator [31]. For
any closed surface S bounding a regular region 7', the surface integral
$4(d(x),n)ds captures the total change of the surface in its normal di-
rection as show in Figure 2.5 . By the Divergence Theorem, this change
is given by the integral of the divergence,

fi (d(z),n)ds = /T V - d(z)dz,

where T is a regular region, an open set that is equal to the interior of
its closure, bounded by a surface S and n is the local surface normal to
S. In this figure, the change in the surface is depicted by the movement
of the solid via the normals which are represented by arrows. The value
of the integration is indicated in the figure.

The divergence of a vector field can also be viewed as the trace of
the Jacobian matrix. In the case of the aforementioned transformation,

h(z), this is

a(hla h/2a h/3)
a(xla T2, .’173)
>, oh;
1 aCC, ’

divh(z) = tr

(2.24) -

i:
3. RESULTS

Results are presented for the mid-plane estimation in Sub-section 3.1,
followed by results obtained for the intensity variation and structural
deformation in Sub-section 3.2. These results are based on the study
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of nine MR images of tumor bearing patients and four MR images of
health normal controls.

The nine tumor patient, T1-weighted, images were acquired using
a 1.5 Telsa Siemens Magnetome Vision MR scanner. Four of these
images are 256 x 256 x 130 in size with spatial resolution 0.8984mm x
0.8984mm x 1.5mm. Three of these images are 256 x 256 x 120 in size
with spatial resolution 0.9375mm x 0.9375mm x 1.5mm. The remaining
two images are 256 X 256 x 52 in size with spatial resolution 0.8984mm x
0.8984mm x 3.0mm.

The four normal control gradient-echo T1-weighted images were ac-
quired using a 1.5 Telsa GE Signa Scanner. These 256 x 256 x 128
images have spatial resolution 0.9375mm x 0.9375mm X 1.5mm.

3.1. Plane of Symmetry Estimation. We have analyzed the per-
formance of the plane of symmetry estimation algorithm on nine tumor
patients. We have found that the plane of symmetry estimation algo-
rithm to be visually robust in the presence of large tumors as well as
to the original alignment of the plane of symmetry with respect to the
YZ-plane. Figure 3.1 presents two sets of axial and coronal slices of
images of patients with tumors. The estimated plane of symmetry is
shown in magenta. Figure 3.2 provides a validation test image of a
patient which has been rotated axially twenty degrees. The image on
the left shows the estimated plane of symmetry through an axial slice
of data. The right side images shows a 3D iso-surface rendering of the
same image with the estimated 3D plane of symmetry. Notice that the
estimation of the plane of symmetry, also shown in magenta, is robust
in the presence of the tumor.

To validate the plane of symmetry estimation we computed the plane
of the symmetry for each of the nine tumor patient images and four nor-
mal control images for known rotations of the images by 0, 5, 10, 15, 20,
and 25 degrees axially. The angle between the computed Householder
vector of each rotated image and the computed Householder vector of
the non-rotated image is produced. The results of this computation are
presented in Table 1 and Table 2. Since the algorithm for computing
the Householder vector, described in Section 2.1.1, estimates an affine
motion of an image through its reflection across the Y Z-plane, the ro-
tation captured by the affine estimation is twice that of the computed
Householder vector. That is, the known rotations for the affine motion
are 0, 10, 20, 30, 40, and 50 degrees axially.

From the results it can be seen that for the normal subjects the
algorithm is robust for angles up to 25 degrees. For all but two of the
tumor subjects the method estimates the 25-degree rotation to within
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Axial Coronal

FIGURE 3.1. Two sets of axial and coronal slices of MR,
images of patients with tumors. The estimated plane of
symmetry is shown as magenta line.

TABLE 1. Computed Householder Angles for Normal Controls

Rotation 50 10° 15° 20° 259
4.9807 | 9.9897 | 14.9916 | 19.9946 | 24.9893
4.9981 | 10.0178 | 15.0220 | 20.0271 | 25.0247
5.0078 | 10.0145 | 15.0255 | 20.0342 | 25.0303
4.9988 | 10.0076 | 15.0143 | 20.0216 | 15.0206
Average Error | 0.0075| 0.0126 | 0.0175 | 0.0221 | 0.0216
Computed angles between the Householder vector of the non-rotated
image, vy, and that of the Householder vector of each rotated image,
vp: 0 = arccos((vo, vy)).
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20 Degree Axial Rotation 3D Iso-surface

FIGURE 3.2. Shown on the left is an axial slice through
the patient with the estimated plane of symmetry shown
in purple. The right panel shows the 3D rendering of the
skin as well as the estimated plane of symmetry. Notice
the robustness of the algorithm in the presence of the
large tumor.

TABLE 2. Computed Householder Angles for Tumor Patients

Rotation 59 109 159 20° 259
5.0302 | 10.0476 | 15.0642 | 20.0728 | 20.2522
4.9631 | 9.9801 | 14.9912 | 19.9993 | 25.0123
4.9091 | 9.9129 | 14.9114 | 19.9005 | 24.0192
4.9776 | 9.9802 | 14.9833 | 19.9812 | 24.9662
5.0010 | 9.9979 | 14.9998 | 19.9942 | 24.9822
4.9377 | 9.9517 | 14.9593 | 19.9344 | 24.8775
4.9440 | 9.9231 | 14.9078 | 19.8912 | 24.8878
4.9566 | 9.9603 | 14.9697 | 19.9600 | 24.9480
4.9978 | 9.9889 | 14.9803 | 19.9688 | 17.5397
Average Error | 0.0384 | 0.0392 | 0.0402 | 0.0492 | 1.5044
Computed angles between the Householder vector of the non-rotated
image, vy, and that of the Householder vector of each rotated image,
vp: 0 = arccos((vo, vy)).

0.1902 degrees. Given the typical placement of the subjects in MR
scanners, we do not expect rotations of more than 15 degrees.
Figures 3.3 and 3.4 show plane of symmetry estimation and simple
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Axial Coronal

FIGURE 3.3. Plane of symmetry estimation results for a
given control subject.

Axial Sagittal Coronal

FIGURE 3.4. The top row of the figure shows the ax-
ial sagittal and the coronal views through an example
control image . The bottom row shows the difference be-
tween the original and reflected images, where blue and
violet represent negative values, yellow and red represent
positive values, and green represents values near zero.
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TABLE 3. Per-voxel Average Tumor Subject Norms

Brain Volume (cm®) | & [, [ld(2)|Pdz | & [o || fnal(®)|[Pde
1,641.5 0.2706 2.1412
1,306.0 0.2468 1.7841
1,5682.4 0.3213 1.0743
1,345.5 0.2026 1.2944
1,363.5 0.2994 1.4087
1,363.1 0.3755 0.9969
1,388.3 0.9872 4.5946
1,299.2 0.3109 0.2737
1,618.1 0.3361 1.3816

d(x) is measured in voxel space
f(z) is measured in intensity units
N is the number of voxels in the brain volume

reflection difference image respectively for an image of a normal control
subject.

3.2. Asymmetry: Tumor Subjects and Normal Controls. We
have applied the algorithms presented in Section 2 for the study of
brain asymmetry in images of the nine tumor patients. The top row of
Figure 3.5 shows the axial, sagittal, and coronal views of a patient with
a right frontal glioma. The plane of symmetry estimation algorithm,
3.1, was used to produce the reflected image across the plane of symme-
try shown in the bottom row. The high dimensional deformation vec-
tor field, d(z), capturing the normal and pathological inter-hemispheric
geometric variability and the intensity field, f(z), capturing the radio-
metric variation were calculated using the algorithm described in 3.2.
Figure 3.6 indicates the computed deformation and shows tumor as the
bright region in right frontal region of the brain. More strikingly the
tumor is evident as the dark purple region present in the computed
intensity field image show in Figure 3.7 .

For the normal control image shown in Figure 3.4 computed Jacobian
and Divergence results are presented in Figure 3.8 . The corresponding
computed additive intensity field is shown in Figure . As would be
expected from normal healthy subjects, from these two figures there is
no discernible asymmetry.

For the purposes of comparison we examined the per-voxel average
displacement norm, ||d(z)||?, and additive intensity field norm, || f(z)|[?
normalized with respect to brain volumes for all the images. The re-
sults of which are presented in Tables 3 and 4 for the tumor and control
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Axial Sagittal Coronal

FIGURE 3.5. The top row of the figure shows the axial
sagittal and the coronal views through an example pa-
tient image with a glioma in the right frontal lobe. The
middle row shows the same views of the image reflected
about the plane of symmetry. The bottom row shows
the difference between the original and reflected images,
where blue and violet represent negative values, yellow
and red represent positive values, and green represents
values near zero.

group respectively. In addition, per-voxel average regularization norms
are presented in Tables 5 and 6 . From these results one can see, in
Figure 3.10 , that although global estimated displacement between the
two groups, tumor subjects and controls, is roughly commensurate, the
same can not be said of the global estimated additive intensity field.
In the case of the tumor subjects, the global additive intensity field
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Axial Sagittal Coronal

FIGURE 3.6. The top row shows the same views
through the logarithm Jacobian of the transformation
fieldh(z) . The bottom row shows the Divergence of the

same.
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FIGURE 3.7. This row shows the same views through
the estimated intensity field f(z) capturing the inter-
hemispheric radiometric differences.

measure is roughly twice that found in the control subject group. This
is expected as the high dimensional warping is expected to accommo-
date normal bilateral asymmetry whereas the additive intensity field
is expected to account for the gross asymmetry due to the presence of

pathology.
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Axial Sagittal Coronal

FIGURE 3.8. The top row shows the same views
through the logarithm Jacobian of the transformation
fieldh(z) . The bottom row shows the divergence of the

same.
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FIGURE 3.9. This row shows the same views through
the estimated intensity field f(z) capturing the inter-
hemispheric radiometric differences.

These results provide only a rough qualitative difference between the
tumor and normal controls and that robust statistical inference should
not be drawn from them. A proper study would require that images
taken from both groups be of the same resolution and controlled for
patient characteristics such as age and gender.
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TABLE 4. Per-voxel Average Normal Control Norms

Brain Volume (cm®) | & [, [ld(2)|Pdz | & [o || fnal(®)|[Pde
1,335.0 0.4099 0.4704
1,395.3 0.2944 0.8456
13443 0.5310 0.0584
1,680.6 0.3256 0.5896

d(x) is measured in voxel space
f(z) is measured in intensity units
N is the number of voxels in the brain volume

TABLE 5. Per-voxel Average Tumor Subject Regulariza-

tion Norms
Brain Volume (cm?) | & [, [|Lad(2)[dz | % [, 1Ly fepar(@)|[*de
1,641.5 9.029e-04 6.83e+03
1,306.0 7.054e-04 4.69e+03
1,582.4 1.710e-03 7.97e+03
1,345.5 1.004e-03 1.15e+-04
1,363.5 1.208e-03 7.84e+03
1,363.1 1.261e-03 7.45e+03
1,388.3 2.719e-03 1.21e+4-04
1,299.2 1.380e-03 2.57e+03
1,618.1 1.264e-03 9.60e+03

d(x) is measured in voxel space
f(z) is measured in intensity units
N is the number of voxels in the brain volume

TABLE 6. Per-voxel Average Normal Control Regular-
ization Norms

Brain Volume (cm?®) | & [, [[Lad(2)|]Pdz | & [, | Ls fena1(@)]°d
1,335.0 2.011e-03 5.50e+03
1,395.3 1.016e-03 6.96e+03
1,344.3 2.087e-03 1.05e+04
1,680.6 1.634e-03 6.49e+03

d(x) is measured in voxel space
f(z) is measured in intensity units
N is the number of voxels in the brain volume

4. CONCLUSION

This paper presents a novel framework for analyzing structural and
radiometric asymmetry in brain images. During the registration pro-
cess radiometric intensity variation is accommodated via an additive
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FIGURE 3.10. Tumor/Normal Comparison
Plot of Table 3 and Table 4 which compare the average per-voxel
additive intensity field norms, + [, ||d(z)||?dz, on the left and
compare the average per-voxel deformation field norm,

% Jo I fenal(®)|?dz , on the right.

intensity field. Since our framework is modality independent we would
like to examine the asymmetry present in images of other modalities.
This work will be used as part of a larger framework to automatically
extract and analyze brain tumors.

As mentioned in Section 3 all the images presented in the paper
are T1-weighted MR images without contrast agent. The addition of
contrast agent would only affect the computed diffeomorphism if the
resulting increase in radiometric response (image intensity) was not
symmetric with respect to the plane of symmetry.
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