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Abstract—This paper presents a multiscale framework based on
a medial representation for the segmentation and shape characteri-
zation of anatomical objects in medical imagery. The segmentation
procedure is based on a Bayesian deformable templates method-
ology in which the prior information about the geometry and shape
of anatomical objects is incorporated via the construction of ex-
emplary templates. The anatomical variability is accommodated
in the Bayesian framework by defining probabilistic transforma-
tions on these templates. The transformations, thus, defined are
parameterized directly in terms of natural shape operations, such
asgrowth and bending, and their locations. A preliminary valida-
tion study of the segmentation procedure is presented. We also
present a novel statistical shape analysis approach based on the
medial descriptions that examines shape via separate intuitive cat-
egories, such as global variability at the coarse scale and localized
variability at the fine scale. We show that the method can be used
to statistically describe shape variability in intuitive terms such as
growing and bending.

Index Terms—Deformable templates, image segmantation, me-
dial geometry, statistical shape analysis.

I. INTRODUCTION

M ODERN anatomical imaging technologies have enabled
extremely detailed study of anatomy, and the develop-

ment of functional imaging modalities has provided detailedin
vivo-associated information regarding physiological function.
While modern imaging modalities provide exquisite imagery of
the anatomy and its function, automatic segmentation of these
images and the precise quantitative study of the biological vari-
ability exhibited within them continue to pose a challenge. In
this paper, we present a multiscale medial framework based on
deformable templates [7], [12], [16], [20], [22], [26], [28] for
the automatic extraction and analysis of the shape of anatomical
objects from the brain and abdomen imaged via magnetic res-
onance imaging and computed tomography (CT),respectively.
The multiscale deformable template approach is based on the
medial-axis representation of objects first proposed by Blum [4]
for studying shape. Shape analysis is emerging as an important
area of medical image processing because it has the potential to

Manuscript received November 9, 2001; revised April 2, 2002. This work was
supported by the National Institutes of Health (NIH) under Grants P01 CA47982
and Grant R01 CA67183.Asterisk indicates corresponding author.

*S. Joshi is with the Medical Image Display and Analysis Group, Univer-
sity of North Carolina at Chapel Hill, Chapel Hill NC 27514 USA (e-mail:
joshi@radonc.unc.edu).

S. Pizer, P. T. Fletcher, P. Yushkevich, A. Thall, and J. S. Marron are with
the Medical Image Display and Analysis Group, University of North Carolina
at Chapel Hill, Chapel Hill NC 27514 USA.

Publisher Item Identifier S 0278-0062(02)05538-6.

improve both the accuracy of medical diagnosis and the under-
standing of processes behind growth and disease [9], [10]. We
present a novel shape analysis method that can quantify shape
variability, explain it in intuitive shape-derived terms, and pin-
point the places where variability is most pronounced. We use
our method to analyze the shape of the mid-sagittal slice of the
corpus callosum. This approach is an extension of work by Pizer
[23] and Fritsch [15] on deformable medial representation of ob-
jects.

We adopt a Bayesian approach of incorporating prior
knowledge of the anatomical variations and the variation of
the imaging modalities. Following the deformable templates
paradigm, we construct exemplary templates to incorporate
prior information about the geometry and shape of the anatom-
ical objects under study. The infinite anatomical variability
is accommodated in the Bayesian framework by defining
probabilistic transformations on these templates [16]. The
segmentation problem in this paradigm is that of finding the
transformation of the template that maximizes the posterior

where is the prior probability function capturing prior
knowledge of the anatomy and its variability and is
the data likelihood function capturing the image data-to-geom-
etry relationship. For efficiency of implementation, we equiva-
lently maximize the log-posterior given by

up to an additive constant

The modeling approach taken in this paper for building ex-
emplary templates and associated transformations is based on a
multiscale medial representation. The transformations defined
in this framework are parameterized directly in terms of natural
shape operations, such asthickeningandbending, and their lo-
cations.

This multiscale approach has many stages of scale; at each the
geometric primitives are intuitive for that scale. At each scale,
the spacing is proportional to the size of space (modeling aper-
ture) that they summarize, this leads to a spatial tolerance that
successively decreases as the scale is refined. A Markov random
field approach is used for defining the energetics of the log prob-
abilities needed for the posterior. The log probabilities at a given
scale are not only conditioned on a neighborhood at that scale,
but conditioned on the result of the next coarser scale. The poste-
rior at each scale can then be separately optimized, successively
refining the scale. The multiscale nature of our approach allows
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for the investigation of these properties at various scales from
the coarse scale of entire body sections to the fine scale on the
order of the resolution of the imaging modality. The size prop-
erties derived from the medial description allow the creation of
natural levels of scale, each suited for shape description at that
scale level.

Sections II and III discuss the medial representation of ob-
jects; Section III, in particular, discusses the deformation of
models to fit image data and the geometric measures used in the
log prior term which measures geometric typicality. Section IV
discusses the log-likelihood term measuring the match of a de-
formed model to a target image, and Section V gives segmenta-
tion results using this method. In Section VI, methodology for
the statistical analysis of shape variability is presented.

II. M EDIAL REPRESENTATION OFOBJECTS

Many authors in image analysis, geometry, human vision,
computer graphics, and mechanical modeling have come to
the understanding that the medial relationship between points
on opposite sides of a figure is an important factor in the
object’s shape description. Biederman [1], Marr [19], Burbeck
[5], Leyton [18], and others have produced psychophys-
ical and neurophysiological evidence for the importance of
two-dimensional (2-D) medial relationships in human vision.
Medial geometry has also been explored in three dimensions
by Nackman [21] and Siddiqi [25] and medial-axis modeling
techniques have been applied by many researchers, including
Bloomenthal [3] and Sherstyuk [24], Cameron and Robb
[6], Storti [27], and Blanding [2]. Of these, Bloomenthal
and Sherstyuk created skeletal-based convolution surfaces;
Cameronet al. explored skeleton-based surface deformation;
and Storti and Blanding did skeletal-based solid modeling in
a CAD framework.

Our representation, described in [23], expands the notion
of medial relations from that of a simple medial skeleton by
1) including a width-proportional tolerance and 2) using a
width-proportional discrete sampling of the medial manifold in
place of a continuous representation. The advantages—relative
to the traditional medial-axis methods descended from Blum
[4]—are in representational and computational efficiency and
in stability with respect to boundary perturbation. One of the
weaknesses of medial-axis methods for shape analysis is the
instability of the medial axis with respect to boundary pertur-
bations; small perturbations of the boundary can drastically
change the topology of the medial axis. In the deformable
template approach presented in this paper, the medial-axis
topology of objects under consideration is fixed to be that of
the template. This has the drawback that a given medial-axis
topology cannot define the boundary of an object to an ar-
bitrary precision. Associating a tolerance with the boundary
position provides opportunities for stages of the representation
with successively smaller tolerance. Representations with
large tolerance can ignore detail and focus on gross shape; in
these large-tolerance stages, discrete sampling can be coarse,
resulting in considerable efficiency of manipulation and presen-
tation. Smaller-tolerance stages can focus on refinements of the
larger-tolerance stages and, thus, capture more local aspects. To

finally accommodate very fine structure—on the order of the
voxel dimension of the imaging modality—we define a dense
displacement field on the boundary of the medially implied
object accommodating the fine-scale boundary features. As
this vector displacement field is not medially based, it allows
the fine-scale features of the boundary to be accommodated
robustly without introducing topological instability into the
medial-axis description.

M-reps, the medial representation used in this paper,
are based on a hierarchical representation of linked figural
models—protrusions, indentations, neighboring figures and
included figures—which represent solid regions and their
boundaries simultaneously. The linked collection of figural
components imply a fuzzy (i.e., probabilistically described)
boundary position with a width-proportional tolerance. At small
scale these figural boundaries are made precise by displacing a
dense sampling of the m-rep implied boundary. A model for a
single figure is made from a net (a mesh or a chain) of medial
atoms; each atom describes not only a position and width, but
also a local figural frame giving figural directions and an object
angle between opposing, corresponding positions (medial
involutes) on the implied boundary. A figure can be expressed
as a sequence over scale of medial nets, implying successively
refined (smaller tolerance) versions of the figural boundary.
At the final stage, a dense displacement field is defined on the
boundary of the medially implied object that accommodates
the fine-scale perturbations of the object boundary.

A. Single-Figure Description via M-Rep

The medial representation used is based on the medial frame-
work of Blum [4]. In this framework, a geometrical object is
represented as a set of connected continuous medial manifolds.
These medial manifolds are formed by the centers of all spheres
(circles, in two dimensions) that are interior to the object and
tangent to the object’s boundary at two or more points. The me-
dial description is defined by the centers of the inscribed spheres
and by the associated scalar field of their radii. Each continuous
segment of the medial manifold represents a medial figure. In
this paper, we focus on objects that can be represented by a
single medial figure.

In two dimensions, there at two basic types of medial fig-
ural segments with medial manifolds of dimension zero and
one. Figural segments with a single point (zero-dimensional)
represent the degenerate case of circular objects. In three dimen-
sions, there are three basic types of medially defined figural seg-
ments with corresponding medial manifolds of dimension
zero, one, and two, respectively. Figural segments with 2-D me-
dial manifolds represent slab-like segments. Tube-like segments
where the medial manifold is an one-dimensional (1-D) space
curve and spherical segments, where the medial manifold con-
sists of a single point are degenerate cases. Shown in Fig. 1 are
examples of slab like and tubular figures.

In nondegenerate cases, the medial manifold divides each
figure into two opposing halves. The two halves of the figure’s
boundary come together at a manifold called the crest. In three
dimensions, the crest is a curve that connects the two sides of the
slab-like segment. In two dimensions, the crest is composed of
two points at the tips of the object boundary. The points on the
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(a) (b)

(c) (d)

Fig. 1. The top row shows an example of a slab-like figure with a 2-D medial manifold. The bottom row shows a tubular figure with 1-D medial manifold.

crest are maxima of boundary curvature. The centers of spheres
(or circles) inscribed at the crest form the edges of the figural
segments of the medial manifold. The derivatives of the radial
field exhibit catastrophic behavior at these edges, making them
difficult to model discretely. [11]

B. Discretized Figural Segments

In this paper, we focus on single-figure objects having single
continuous medial manifolds that are discretized. We sample the
medial manifold over a spatially regular lattice; the elements
of this lattice are calledmedial atoms.

For 2-D figures, the lattice is a linear chain of medial atoms
. For three-dimensional (3-D) slab-like figures,

the lattice is a quadrilateral mesh , .
The number of medial atoms in a lattice is inversely proportional
to the scale of the medial description.

A 2-D medial atom, shown in Fig. 2(a), carries first-order
geometric information at a point on the 1-D medial manifold. A
zeroth-order description consists of the positionand the radius

of the inscribed circle centered at. A first-order description
includes the unit spatial tangentof the medial manifold at
and captures first-order width information by theobject angle
, which describes the change in radius along the medial axis

by the Blum relationship , for the arc length
on the medial manifold.

The places where the inscribed circle centered attouches
the two halves of the boundary, indexed by 1,1, are defined
as , with respective normals , , given by

(1)

(2)

where is the rotation matrix.
Due to the catastrophic behavior of the radius field at the

crest, we introduce a special medial atom at the ends of medial
chains [Fig. 2(b)] for robust sampling. These medial atoms in-
clude an extra parameterthat defines the position of the crest
point on the object boundary and is given by

where represents a circular end cap and in-
creasing elongation.

Following the construction of 2-D medial atoms above,
3-D interior medial atoms are defined as a four-tuple

consisting of: , the center of the
inscribed sphere, , the local width defined as the radius
of the sphere; , the local frame parameterized by
( ), where is the normal to the medial manifold, is
the direction in the tangent plane of the fastest narrowing of the
implied boundary sections; and the object angle
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(a) (b)

Fig. 2. (a) A 2-D medial atomm represents a double tangency of a circle to the boundary. It is a four-tuple defined by positionx, width r, vectorb tangent to
the medial axis, and object angle�. (b) An end atom is a medial atom with an additional component�.

determining the angulation of the implied sections of boundary
relative to . The two opposing boundary points implied by
the medial atom are given by and and the respective
normals

(3)

(4)

where is a rotation by in the ( ) plane. Fig. 3
shows these relationships.

For stability at the crest, as in two dimensions, medial atoms
on the boundary of the medial manifold also include an extra
elongation parameterdetermining the crest position.

Both in two dimensions and three dimensions, the above rep-
resentation gives the central location of the solid section of
figure that is being represented by the atom. The scalar
gives the local scale and size of the solid section of figure that
is being represented by the atom. The object angleand the di-
rection also define the gradient of the scalar fieldvia

The scalar field also provides a local ruler for the precise sta-
tistical analysis of the object.

C. Spline Interpolation of Medial Atoms

For the remainder of this section, we focus on 3-D medial
geometry; 2-D construction follows an analogous, simpler
form. Given a quadrilateral mesh of medial atoms ,

, we define a continuous me-
dial surface via a Bézier interpolation of the discretely sampled
medial atoms. The medial position , ,

is defined via a bicubic polynomial interpolation
of the form

Fig. 3. A 3-D medial atom defined by the four-tuplefx; r;F; �g with
involutes perpendicular to the implied surface.

with chosen to satisfy the known normal/tangency and
continuity conditions at the sample points . The radius func-
tion is also interpolated as a bicubic scalar field on the
above interpolated medial manifold, givenand at the mesh
points points . Having interpolated and its gradient, the
frame and the object angle are defined via the rela-
tionship . With the continuous
medial manifold thus defined, the continuous implied boundary
in the interior can be calculated as

(5)

(6)

The end section of the medially implied boundary is defined via
the parametric curve from one involute to the other passing
through the point orthogonally to . The curve is pa-
rameterized by and defined by

where



542 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 21, NO. 5, MAY 2002

(a) (b)

Fig. 4. The m-rep model of the template kidney. (a) The medial atoms and the implied surface are shown. (b) The model overlaid on the associated CT imagery
is shown.

The defined boundary is comprised of the two opposing inte-
rior sections, defined by (5) and (6) and the end section defined
above which contains the crest of the object.

We have also been exploring the inverse construction by first
defining a continuous spline boundary fitted to the points,

. The spline boundary is then used to find the exact contin-
uous medial manifold. This method is used to produce the 2-D
results.

D. Figural Coordinate System

For both image segmentation and shape analysis, we require
consistent correspondences between object boundaries. Further,
for image segmentation, the likelihood measure (deformed
model to target image match) requires correspondence between
template intensities at positions in relative to the model
and target image intensities at positions in relative to the
deformed model. Both of these correspondences are made via
the medial geometry.

For 3-D objects, the 2-D continuous medial manifold of a
figure is parameterized by ( ), with and taking the atom
index numbers at the discrete mesh positions. In two dimen-
sions, the corresponding 1-D linear medial manifold is param-
eterized via a single parameter. In both two dimensions and
three dimensions, interior boundary points use a single param-
eter designating the side of the medial manifold
on which the point lies. On the end section of the boundary,
varies continually between 1 and 1 passing through 0 at the
crest. For single figures, boundary correspondences are defined
via the common parameterization ( ) for 3-D objects and
( ) for 2-D objects.

This also permits parameterization in the neighborhood of the
m-rep. Positions in the image in the neighborhood of the im-
plied boundary are indexed by ( ), where ( ) is the
parameterization of the closest point on the medially implied

boundary and is the signed distance (interior negative, ex-
terior positive) from the boundary in multiples of the local
radius of the medial point at ( ). We are currently studying
the implications of an object-based metric based on this figural
parameterization.

E. Construction of M-Rep Figures

Using the visualization and computer-aided design tech-
niques developed for 2-D and 3-D medial modeling, we have
built numerous models of anatomical objects. In this paper, we
focus on the automatic segmentation of the kidney as imaged
in CT for radiation treatment for cancer. Shown in Fig. 4 is
the template m-rep model of the kidney built from a CT of the
abdomen.

III. T RANSFORMATION OFM-REP FIGURES

Having defined the construction of typical anatomical objects
via m-rep figures, anatomical variability is accommodated by
defining a cascade of transformations, , in-
creasing in dimensionality. These transformations are applied
globally to the entire object as well as locally to individual
atoms at various scales. Each transformation is applied at its
own level of locality to each of the primitives appearing at that
level. At each level of locality—by the Markov random field
framework—the primitive is related only to immediately neigh-
boring primitives at that level. Each level’s result provides both
a initial value and a prior for the primitives at the next finer scale
level. The transformation at the last (finest) scale level is a dense
displacement field applied to the boundary of the figure on the
scale of the voxel resolution of the imaging modality.

A. Object-Level Similarity Transformation

We begin with a similarity transformation:
is defined on the scale of the entire object



JOSHIet al.: MULTISCALE DEFORMABLE MODEL SEGMENTATION AND STATISTICAL SHAPE ANALYSIS USING MEDIAL DESCRIPTIONS 543

and is applied to the whole medial manifold . The similarity
transformation scales, translates and rotates equally all the
medial atoms of the object, that is

Notice that the similarity transformation does not affect the ob-
ject angle. As the medial representation is invariant under the
similarity transformation, this is equivalent to applying the sim-
ilarity transformation to the implied boundary of the me-
dial mesh to yield the transformed boundary.

A prior is induced on the above transformation based on
the displacement of the implied boundary of the objects.
Throughout, an independent Gaussian prior on boundary
displacement is used with variance proportional to the local
radius with the proportionality constant. For the whole
object similarity transformation the log-prior becomes

In two dimensions, the similarity transformation and the prior
are analogous with the rotation matrix being in and the
translation in .

B. Atom Level Transformation

Having accomplished the gross placement of the figure,
attention is now focused on the subsections of the figure
defined by each of the medial atoms. At this stage local
similarity transformations and rotations of the local angulation,

,
are applied to the medial atom; that is

(7)

The resulting implied boundary is defined as. A prior on
the local atom transformations is also induced based on
the displacement of the implied boundary with an additional
Markov random field prior on the translations, guaranteeing the
smoothness of the medial manifold. In keeping with the level of
locality, let be the portion of the implied boundary affected
by the atom . The prior energy on the local transformation

of the atom becomes

where is the corresponding position on the figural boundary
implied by the transformed atom and is the translation
component of the local transformation . Good association
between points on the boundaryand the deformed boundary

is made using the figural coordinate system describe in Sec-
tion II-D. The point is the point on the deformed model
having the same ( ) coordinates as that of the original point

. The integral in the above prior is implemented as a discrete
sum over a set of boundary points by defining a sampling of the
( ) coordinate space and calculating the associated implied
boundary before and after an atom deformation. Again the 2-D
construction is analogous.

C. Dense Boundary Displacement Field Transformation

At the final stage, the implied boundary of the figure is dis-
placed in the normal direction using a dense displacement field
defined on the implied boundary

where is the normal to the implied boundary at
and is the scalar displacement field. The definition of this
dense displacement field allows us to accommodate the local,
small-scale boundary features. These small-scale features are
the main cause of the instability in the traditional, Blum medial
descriptions of objects. As the vector field is nonmedial based,
the small-scale boundary features are robustly accommodated.

As with the local atom transformations, the prior is induced
on the dense displacement field using a Markov random field
prior derived from energetics associated with thin elastic mem-
branes to guarantee smoothness. The log-prior on the displace-
ment field becomes

(8)

The above prior is implemented via a discrete approximation
as follows. Let , be the set of discrete
boundary points on the implied boundary. Let be the
set of neighbors of the point ; then

becomes the discrete approximation to (8).

IV. I MAGE DATA LOG-LIKELIHOOD

Having defined the transformation and the associated prior
energetics, we now define the data likelihood function needed
for defining the posterior. We construct this function by defining
correlation between a predefined template image and the
data in the neighborhood of the boundary of the medially
defined object . Letting be the size of the collar around the
object in multiples of , the local radius, the data log-likelihood
function becomes

(9)

where is the point in the template image at dis-
tance from the boundary point and ( ) is the point in
the data image at distance from the boundary point in the
transformed object . This association between points in the
template image and the data image is made using the object cen-
tered coordinate system described in Section II-D. Image posi-
tions in the neighborhood of the implied boundary are indexed
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(a) (b) (c)

Fig. 5. (a) Axial, (b) coronal, and (c) sagittal slices through the subject kidney CT data set. The contours show the results of the object similarity transformation
and the atom deformation. Notice the improvements in the results at the places marked.

(a) (b) (c)

Fig. 6. (a) Axial, (b) coronal, and (c) sagittal slices through the subject kidney CT data set. The improvement in the segmentation of the kidney after the dense
displacement field deformation. The contours show the results of the atom transformation and the dense displacement field deformation.

by ( ), where ( ) is the parameterization in the ob-
ject centered coordinate system of the closest point on the medi-
ally implied boundary and is the signed distance (interior
negative, exterior positive) from the boundary in multiples of
the local radius of the medial point at ( ). In implementing
the correlation defined in (9), care must be taken in computing
the surface integral by a discrete voxel summation. The template
image needs to be normalized by the determinant of the Jacobian
associated with the implied model surface. At model-building
time, intensities in the template image are associated with
their positions’ ( ) values. As the model deforms, a target
image position is calculated for each template ( ) value
using the deformed model and the intensity interpolated at that
target image position is associated with the corresponding tem-
plate intensity.

We have have been using two basic types of templates: an an-
alytical template computed from the derivative of the Gaussian
and an empirical template learned from an example image from
which the template medial model was built.

Using the data likelihood defined above and the prior defined
in the previous section, the log posterior is defined as a weighted
sum of the two terms, with weights chosen by the user. For op-
timizing the log-posterior with respect to the global object sim-
ilarity transformation and the local atom-by-atom transforma-
tion, we use a conjugate gradient optimization algorithm; for

optimizing the posterior with respect to the dense displacement
field we use a simple steepest decent algorithm.

V. SEGMENTATION RESULTS

We have used the automatic segmentation procedure in three
dimensions for extracting the kidney parenchyma, including
the renal pelvis, in subjects undergoing radiation treatment for
cancer. We present, in detail, results from a series of three data
sets. Taking a few seconds, the user rigidly places the template
model in the subject data set. This initialization of the algorithm
is followed by the automatic hierarchical segmentation which
takes on the order of 5 minutes for convergence. At the first
scale level, an object similarity transformation is estimated
accommodating gross size and orientation differences between
the template model kidney and the subject’s kidney.

The next scale level in the hierarchical procedure is the atom-
deformation process accommodating local shape differences at
the scale of individual atoms. Fig. 5, shows the improvement
in the segmentation as a result of the atom-deformation, thus
accommodating more local object shape changes.

The arrow in Fig. 6 highlights the improvement due to the
final stage of the deformation, as the dense displacement field
accommodates the fine featured variation in the shapes of the
kidney.
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For quantitative comparisons of the segmentations of the
method with manual segmentations, we have used two metrics
from a geometric scoring package developed by Guido Gerig
and Matthieu Jomier called VALMET: relative overlap and
mean surface distance. The relative overlap measure is defined
as the ratio of the intersection of the two segmentations divided
by the union. Although the relative overlap is commonly used
in the literature for scoring segmentations, it is sensitive to the
size of the object and is not very effective in characterizing
shape differences between two segmentations. The symmetric,
mean surface distance between the boundary of the two
segmenations using, Euclidean distance transforms of the
segmentations, is defined as follows: let,
and , be the boundary points of two
segmentations , ; the mean surface distance then is

Shown in Table I is the summary of results from the study of
the three data sets. The results shown in Figs. 5 and 6 above
are typical of the three data sets and are from Data set 613.
The segmentation improves at each stage of the algorithm for
all three data sets.

To study the performance of the procedure, the left and the
right kidneys in 12 data sets were hand segmented by an expert
rater. As the aim the validation study is to compare the perfor-
mance of the automatic segmentation with real clinically used
segmentations, the hand segmentations where performed using
the segmentation module of our clinically used radiation treat-
ment planning system. Each of the kidneys in the data sets were
than segmented using the hierarchical deformable procedure de-
scribed. Fig. 7 shows the relative overlap and the mean surface
distance between the hand segmentations and the result of the
final stage of the hierarchical procedure.

The average relative overlap between the human segmenta-
tion and the automatic procedure for the 24 kidneys segmented
is 89% with a standard deviation of 3.60%. The average mean
surface distance is 0.18 cm with a standard deviation of 0.05
cm. All 12 data sets were processed at an isotropic resolution
of 0.2 cm. From the results, it can be seen that the accuracy of
the segmentation, as measured via the mean surface distance is
on the order of the resolution of the data set and is on average,
within one pixel of the hand segmentation.

In the results presented, a Gaussian derivative image template
was used. The Gaussian derivative template is designed to give
increased response at boundaries of objects defined by high gra-
dient. In the CT image, the kidney sits in an environment where
part of its boundary is distinctly darker, but part of its boundary
region is formed by the liver. In this region, there is either very
little contrast, or the liver is a bit lighter, or there is a narrow
strip of dark between the kidney intensity and the liver intensity.
We expect substantial improvements in the results by the use of
a training image template in place of the Gaussian derivative
template. This model to image match would be improved even

TABLE I
TABLE SHOWING RELATIVE OVERLAP AND MEAN SURFACE DISTANCE

BETWEEN THE MANUAL AND THE AUTOMATIC SEGMENTATIONS AT

THE DIFFERENT STAGES OF THEHIERARCHICAL PROCEDURE FOR

THE THREE DATA SETS

(a)

(b)

Fig. 7. The mean surface distance between the hand segmentation and the final
stage of the hierarchical procedure is shown in (a). The relative overlap is shown
in (b).

more by a statistical model of this image template, reflecting
image intensity variations relative to the geometric model. We



546 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 21, NO. 5, MAY 2002

are in the process of implementing a statistical active appear-
ance model following [8] to capture these intensity variations.

VI. STATISTICAL ANALYSIS OF SHAPE

The goal of this work is not only to develop efficient repre-
sentation and robust segmentation of individual objects, but also
to develop statistical shape descriptions that capture anatom-
ical variability across a population in an intuitive and localized
fashion. The statistical shape representations that we have de-
veloped are based on the medial geometry and provide sepa-
rate descriptions in terms of geometrical properties (bending or
growth), scale (coarse or fine) and location (the whole object or
a local region). We achieve this by building a set of medially de-
rived features that are separable in these terms and are invariant
under similarity transform. Application of principal component
analysis to these features allows us to visualize and compare
the different types of variability. In this section, we present our
early results in two dimensions. We are currently generalizing
the procedure to three dimensions.

We present results of analyzing the mid-sagittal cross sections
of the corpus callosum of 71 subjects. The data consists of bi-
nary hand-segmented images divided into 31 normals and 40
schizophrenics. These images serve well for testing our method
because the shape of the corpus callosum can be appropriately
approximated with a single chain of medial atoms.

We now outline the basic segmentation procedure which
is performed on each image in the population. Following the
segmentation framework developed in the previous section, a
coarse-scale single-figure 5-atom m-rep template of the corpus
callosum is constructed manually. The template is deformed to
fit a binary image with large tolerance producing a coarse scale
segmentation . The coarse m-rep is interpolated and
resampled, forming a 9-atomprediction m-rep , which is the
initial estimate at the finer scale. is again deformed to fit
the same image with lower tolerance, giving us the finer-scale
segmentation . The procedure can be repeated to produce
yet finer scale descriptions

In order to establish correspondence, the distances between
adjacent medial atoms are forced to be equal during segmenta-
tion of coarse m-reps. During the segmentation of fine m-reps,
the medial atoms in the prediction m-reps are allowed to move
only orthogonally to the direction of the medial manifold as
given by .

A. Statistical Features

Having segmented the images, we now develop the statistical
shape description that is fundamentally invariant under the simi-
larity transform. In the literature, methods such as the Procrustes
algorithm have been used to align objects in space to achieve
this invariance [7], [13]. A drawback of these methods is that
one is not able to get a truly local description of variability, as
the alignment procedure itself is global in nature and based on
all the data.

Instead of aligning m-reps, we compute a set of statistical
features that intuitively describe shape and are both globally
and locally invariant under the similarity transform. The features
used are unit-free and magnification invariant, as they describe

ratios between different object-related distances either explicitly
or as sines or cosines of angles.

Two types of features are computed:coarse featuresdescribe
the coarse m-rep andrefinement featuresdescribe the dif-
ferences between and , thus capturing only the local fine
scale information.

Coarse features capture shape information contained in me-
dial atoms and in relationships between adjacent atoms. They,
thus, describe shape in terms of either bending or local growth;
growth refers to the widening or elongation of a part of the ob-
ject relative to the rest. Of the five coarse features computed, the
first two measure bending. The feature

describes how the figure bends at each of the interior medial
atoms. The norm of the cross product gives the sine of the angle
between the neighboring atoms.

The feature

measures the angle between the vectorand the line joining the
atom to its neighbor.

The remaining three features measure local growth. The fea-
ture , , captures the width at the medial
atom, where is the mean in-
teratom distance. Feature , , describes the
change in width at the atom. The final coarse feature ,

and , is only defined at end atoms and measures the elon-
gation of the object’s ends.

To describe fine-scale local shape that is similarity transfor-
mation invariant, we base the fine-scale features on the differ-
ences between the coarse and fine m-reps. Sinceand
imply the same boundary and and have an atom-to-atom
correspondence, we use the differences betweenand .

The first two refinement features represent the displacement
of the fine medial atom in with respect the corresponding
atom in . Feature

where , are elements of the medial atoms in , measures
the component of this displacement in the direction perpendic-
ular to the medial axis of . For internal medial atoms, this
component captures all of the displacement since these atoms
are not allowed to move along the axis during segmentation.
End atoms are allowed to move freely and feature

and

is used to capture their movement along thedirection.
The remaining features measure differences in the direction

of the medial axis ( ), object angle
( ), width (

) and end elongation ( and ).
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The above features completely capture the information in an
m-rep which can, therefore, be reconstructed up to a similarity
transform. Given the absolute position, orientation and radius of
just one medial atom, we can use the information contained in
the coarse features to rebuild the coarse m-rep. Similarly,
given a reconstructed m-rep and the refinement features,
we can reconstruct . The reconstruction algorithm is derived
simply from the feature definitions; since the sampling distance
is not one of the features, reconstruction relies on enforcing reg-
ular sampling of atoms during segmentation.

B. Statistical Analysis

Following Cooteset al. [7], we use Principal Component
Analysis to define the shape variability. Let be a
collection of feature vectors. Each feature vector contains
statistical features associated with a segmentation of one corpus
callosum image. The feature vectors contain subsets of the fea-
tures defined above. For example, for a statistical analysis of
coarse scale bending, we use

Let be a feature matrix whoseth row is . For some
integer , the mapping from feature space to the-dimensional
coefficient space is given by the-dimensional reduction func-
tion based on

(10)

where is the mean of , are the eigenvalues of
—the covariance matrix of —in decreasing order and

are the corresponding eigenvectors of.
The corresponding mapping from coefficient space to feature

space is given by

(11)

The value is chosen as the smallest integer that satisfies

(12)

where is the fraction of total variability that we want
the coefficient space to capture. A typical value used foris
0.95, discarding 5% of the shape variability, which we attribute
to noise.

C. Corpus Callosum Classification

To discriminate between a pair of classesand , we use
a technique based on the Fisher linear discriminant [14], a di-
rection in feature space which under projection yields the the
greatest separation between the means of two classes.

Fig. 8 shows the projections of the coarse m-rep features of
each member of the schizophrenic class and each member of the
normal class onto the Fisher linear discriminant. There is little
separation between the classes.

Fig. 8. Coarse features of schizophrenic and normal corpora callosa projected
into the Fisher linear discriminant.

Leave-one-out applied to schizophrenic and normal corpora
callosa, yields false-positive error of 0.52 and false-negative
error of 0.49. The results of classification are negative, as are
similar classification results reported by other researchers [17].

D. Visualization of Shape Variability

Each point in the coefficient space corresponds to a point in
the feature space, which in turn corresponds to a shape that can
be visualized. Important insight can be gained by reconstructing
shapes that correspond to points sampled along one of the co-
ordinate directions in coefficient space. Variability captured by
the th principal mode can be visualized by first finding the fea-
ture vectors

(13)

where are the unit basis vectors in coefficient space
and then reconstructing the m-reps corresponding to.

Alignment of the reconstructed object is necessary to produce
a visually meaningful animation because the coarse statistical
features lack information about the absolute placement of the
m-rep. Thus, for visualization only, we apply the Procrustes al-
gorithm [13] to the locations of the medial atoms belonging to
all of the reconstructed coarse m-reps.

Fig. 9 summarizes the global variability in the coarse m-reps
of the schizophrenic corpus callosum. It displays m-reps and
implied boundaries corresponding to coefficient space points

2 , and 2 in Fig. 9(a) and 2 , and 2 in
Fig. 9(b).

Fig. 10(a) summarizes the PCA performed on coarse features
by plotting the eigenvalues of the covariance matrix and their
cumulative sums. This plot shows that 10 dimensions
are needed to capture 95% of the variability. Fig. 10(b) shows
projections of the coefficient vectors onto the coordinate di-
rections in coefficient space. Aside from a few outliers, training
shapes lie within two standard deviations from the mean and
their distribution is strikingly Gaussian.
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(a) (b)

(c) (d)

Fig. 9. Shapes reconstructed along the first two primary modes of variability in coarse features from�2� to 2�. All coarse features are combined in this figure,
without separation into growth and bending. (a), (b) Shows the medial axis and (c), (d) shows the implied boundary.

(a) (b)

Fig. 10. Summary of PCA on coarse features. (a) Eigenvalues of the covariance matrix of features computed from coarse m-reps (schizophrenic corpus callosum).
(b) Distribution of coarse shapes in PCA coefficient space.

The ability to separate variability into localized components
and the ability to decompose global variability into bending and
growth are strengths of our method. The bending information is
captured by the first two features and . Illustrated in Fig. 11
is the primary mode of variation resulting from applying the

PCA to only these features. The change in bending is primarily
explained by the fact that some corpora callosa are curved like
a ’C’ while others are straighter. In this and the subsequent two
figures, the shapes at2, 0 and 2 standard deviations along
the mode are shown. The left panel shows medial geometry and
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Fig. 11. First principal mode of variability computed using coarse featuresf andf which capture the bending of the corpus callosum in the population.

Fig. 12. First principal mode of variability computed using coarse featuresf , f , andf which capture the growth of the corpus callosum in the population.

Fig. 13. First principal mode of variability computed using all fine features at the posterior of the organ which capture local fine-scale shape variability. The PCA
is performed only on the features computed from the last two medial atoms. The mean on the population is used to reconstruct the remainder of the figure.

right panel shows the implied boundaries. Growth variability is
captured by the features , , and . Fig. 12 shows the first
mode of variability associated with these coarse growth features.
Notice that the primary component of growth variability is the
uniform widening of the corpus callosum.

Fig. 13 shows the primary mode of variability resulting from
applying the PCA to all the fine scale features associated with
the last two medial atoms at the posterior of the corpus callosum.
Here elongation is the main component of shape variability.

VII. D ISCUSSION ANDFUTURE WORK

It can be seen from the quantitative analysis of the segmen-
tations that the accuracy of the automatic segmentation as mea-
sured via the average surface distance is on the order of the res-
olution of the imaging modality. All the results shown in this

paper were generated using a Gaussian derivative template for
the data-likelihood. Although these results show that our cur-
rent methodology can segment structures in the abdomen such
as the kidney with high level of accuracy, we expect that the re-
sults would be substantially improved by the use of a training
image template in place of the Gaussian derivative template,
thus allowing a spatially varying template to capture the dif-
ferent gray scale characteristics of the kidney boundaries. The
model-to-image match would be further improved by a statis-
tical model reflecting image-intensity variations across a popu-
lation of subjects. We are currently extending this frame-work
to the deformation of objects with multiple attached subfigures
and multiple objects, with priors that reflect the knowledge of
the associated relative typical geometry.

Another major contribution of this paper is the development
of a shape analysis methodology that leverages the intuitive
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and multiscale properties of the medial representation. Our
statistical features have distributions that qualitatively appear
Gaussian, although some features have outliers. Statistical
methods that do not assume normality may further improve
analysis.

In this paper, statistical methods have been applied to one
level of detail at a time. Analysis on combined features appears
promising because it can detect correlation between local vari-
ability at fine scale and global variability at coarse scale.

We are extending the statistical analysis method to three di-
mensions and multifigural complexes.
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