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ABSTRACT

In connectomics, neuroscientists seek to identify the synap-
tic connections between neurons. Segmentation of cell mem-
branes using supervised learning algorithms on electron mi-
croscopy images of brain tissue is often done to assist in this
effort. Here we present a partial differential equation with
a novel growth term to improve the results of a supervised
learning algorithm. We also introduce a new method for rep-
resenting the resulting image that allows for a more dynamic
thresholding to further improve the result. Using these two
processes we are able to close small to medium sized gaps in
the cell membrane detection and improve the Rand error by
as much as 9% over the initial supervised segmentation.

Index Terms— connectomics, electron microscopy, par-
tial differential equation, biology

1. INTRODUCTION

Segmentation of electron microscopy (EM) images of brain
tissue using automatic segmentation techniques is an area
of intensive research. Researchers interested in mapping
the connectivity of neurons are scanning increasingly more
images for this purpose [1, 2]. The size of each image and
volume of data collected make it impractical for humans to
label every neuron membrane individually. Having the ability
to automatically identify and trace neurons will free neuro-
scientists to spend time analyzing these connections instead
of just trying to identify them.

Some of the difficulties in performing this automatic
segmentation are the presence of membrane-like structures
within the cells, variations in the physical topologies of cells,
and the noise in the image. In order to be successful, a fully
automatic segmentation must address and overcome each of
these issues. In this paper, we develop an algorithm that uses
a partial differential equation (PDE) as an additional process-
ing step to exploit the general cell shape and improve the
results of a supervised learning algorithm such as [3, 4, 5].
Our algorithm uses a similar approach to [6] in that active
contours [7] are used as a constraint on the image. In our
method we initialize with the output of a supervised learning
process and apply a novel anisotropic growth term to not only
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Fig. 1. Example of (a) original image, (b) membrane ground
truth, and (c) probability map from a supervised learning
method showing gaps in the membrane.

refine the boundary but also to close gaps in the boundary
as opposed to using user input to fine-tune and correct an
initial guess as was done in [6]. Other algorithms such as [8]
have also used similar boundary refinement techniques, but
without the same growth term. In addition, we introduce a
novel representation of the membrane confidence based on
the number of iterations required for an intensity threshold to
be crossed.

In Section 2 we describe the details of the PDE and the
stability issues from using the selected growth term. We also
explain the method used to portray the final result. We present
the results of running our method on various probability im-
ages in Section 3 followed by discussion of future work and
conclusion in Section 4.

2. METHODS

Our PDE processing is an entirely unsupervised process
that improves the probability map generated by a supervised
learning stage by closing small to medium sized gaps in the
membrane detection results. Our motivation is that super-
vised learning algorithms such as [5] will sometimes leave
gaps within a cell membrane, but are more successful at re-
moving intracellular structures. Figure 1 shows an example
of a probability map where most of the interior structures
have been removed but some small gaps remain. In addition,
while previous research has shown the ability to fix over-
segmentation errors with the watershed merge tree classifier
[9], it is mostly unsuccessful at removing under-segmentation
errors.

Let f be an image initialized from a probability map
where 1 represents locations with a low probability of being
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Fig. 2. Example of (a) NL-means [10] denoised image, (b)
probability map, (c) λ1 map, and (d) λ2 map. Subtracting λ1
darkens the strong membrane areas and adding λ2 pushes out
along the edges of the membranes.

cell membrane and 0 represents locations with a high prob-
ability of being cell membrane. Such a map can come from
a supervised classifier. We update f according to the rule
fk+1 = fk + ∂t(∂f) where

∂f = −ηλ1 + χλ2 + α|∇f |∇ · ∇f
|∇f |

+ β∇f · ∇G (1)

The ∂t term is a parameter that can be adjusted to improve the
stability of the update rule and the η, χ, α, and β terms are
parameters that can be used to control how much weight each
different term in the PDE has relative to the other terms.

The growth terms in (1) are−ηλ1+χλ2 where λ1, λ2 are
the eigenvalues of the Hessian matrix of f , and λ1 > λ2. The
larger eigenvalue of the Hessian of f represents the change
across the direction of maximum gradient at each point in
f . Figure 2(c) shows that narrow dark structures will have a
larger positive value for λ1 that when subtracted will sharpen
membrane structures. As an inverse diffusion, this will effec-
tively bring together areas of wide gray into a narrow dark
region over a number of iterations.

The smaller eigenvalue of the Hessian of f represents the
change in the direction perpendicular to the direction of the
maximum gradient at each point in f . As shown in Fig-
ure 2(d) λ2 is smallest along the edges. When coupled with
the image gradient constraint, this will result in directed mem-
brane growth at membrane terminal points which will connect
across membrane regions missed in the initial segmentation.
In the discrete implementation of the Hessian, central differ-
ences are used to compute each of the 2nd derivatives.

The ∇ · ∇f
|∇f | term in (1) computes the mean curvature

at each pixel location in f [7]. Using the curvature term
forces some smoothness along the boundaries between the

membrane and non-membrane. Because the cells are gen-
erally large rounded structures with few sharp corners, high
curvature areas are uncommon resulting in the curvature term
favoring objects shaped like the interior of a typical cell. In
the discrete implementation of this curvature term, finite cen-
tral differences are used to compute∇f .

The final term in (1) has∇G = exp(− |∇I|2
σ2 ) where I is a

version of the original image filtered with the non-local means
algorithm [10] to reduce the effects of noise and blurred with
a Gaussian filter to widen the influence of the edges. We
chose the non-local means algorithm for noise removal due
to its success with textured images. The intent of this term
is to push the edges of f to be along the edges of the orig-
inal image. We assume that there is a strong edge between
membrane and non-membrane. Without further constraints
this produces a jagged edge because of the noisy nature of the
image edges. Combined with the curvature term, the edges of
f will produce a cleaner edge that closely follows the edges
in the original image. In the discrete implementation of this
gradient term, an upwind scheme is used to compute ∇f and
finite central differences are used to compute∇G and∇I .

Together the curvature and gradient terms provide a
means for controlling the inverse diffusion and directed
growth terms, but they don’t completely control the result
to converge to a meaningful solution. To provide a meaning-
ful solution a fixed number of iterations must be selected to
achieve the optimal result. Observing the results of this algo-
rithm for a variable number of maximum iterations on a set
of different images shows a result where the optimal number
of iterations is different for every image. To allow for greater
flexibility on the result, we choose a threshold γ below which
the locations in f are considered to be membrane and then for
each location in f record at which iteration number it reached
that threshold.

Once the maximum number of iterations is complete, we
take as the result the membrane iteration number divided
by the maximum number of iterations. Locations that never
reach the threshold are then assigned a value of 1 and are con-
sidered to be non-membrane. The result is a confidence map
similar to the initialization where 1 represents locations with
a low confidence of being cell membrane and 0 represents lo-
cations with a high confidence of being cell membrane. The
primary consideration in selecting the number of iterations to
run is ensuring that it is sufficiently long for all of the small
to medium sized membrane gaps to be closed.

One additional constraint that we place on each iteration
to control the range is to clip f above and below a certain
threshold since the growth term which can create f values
that are either less than 0 or greater than 1. We account for
these situations by setting all locations where f < 0 to 0 and
all locations where f > 1 to 1 at every iteration. Clipping
at these values ensures that f remains similar to a probability
map throughout all iterations.



3. RESULTS

To test the results of this algorithm we used two different
datasets. The first dataset we used for these experiments is
a stack of 60 images from a serial section Transmission Elec-
tron Microscopy (ssTEM) data set of the Drosophila first in-
star larva ventral nerve cord (VNC) [11]. It has a resolution
of 4 × 4 × 50 nm/pixel and each 2D section is 512 × 512
pixels. The corresponding binary labels were annotated by
an expert neuroanatomist who marked membrane pixels with
zero and the rest of pixels with one. During the ISBI Electron
Microscopy Image Segmentation Challenge 30 images were
used for training and the remaining images were used for test-
ing. For this dataset we will use 2 different probability maps
as the initialization point for the PDE to show how the quality
of the initialization effects the result of the PDE.

The first probability map we used was generated using
multi-scale series artificial neural networks (MSANN) [5].
This map suffers from under segmentation in general but has a
fairly low false-positive rate. The second probability map we
used was generated using deep neural networks (DNN) [4,
12]. This map was the leading result from the 2012 ISBI
Electron Microscopy Image Segmentation Challenge and has
very little under-segmentation. The parameters used were op-
timized empirically using the 30 training images and the re-
maining 30 images were used as test images. The PDE ran
for 1200 iterations with η equal to .3, χ equal to .3, α equal
to 0.2, and β equal to 1.2. This places the most weight on the
gradient term to balance the growth induced by the inverse
diffusion and directed growth terms and minimal weight on
the curvature term.

Figure 3 shows the original image, ground truth, MSANN
probability map, and resulting image after processing with the
PDE. The results for the entire dataset are reported in Table 1
using the 1 minus pair f-score (1 − F ) metric. This metric
was used in the ISBI 2012 segmentation challenge [13] and is
a measure of disagreement in the segmentation. The threshold
was chosen to provide the lowest 1− F .

MSANN DNN
Method MSANN +PDE DNN +PDE

Training 0.2084 0.1170 no data no data

Testing 0.1509 0.1242 0.0504 0.0533

Table 1. 1 − F performance of the PDE on two different
probability maps using the Drosophila dataset.

The second dataset used for these experiments is from the
mouse neuropil. This set consists of 70 images size 700 ×
700× manually annotated by an expert electron microscopist
that have been separated into 5 bins with 14 images per bin.
1 bin of 14 images was used in training of the MSANN and
the same set of images was used for empirical parameter opti-
mization. The other 4 bins were used as different sets of test-
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Fig. 3. Example of (a) original raw image from the
Drosophilia dataset [11], (b) true label, (c) MSANN result,
and (d) MSANN+PDE result. Small to medium sized gaps
throughout the image are closed and weak membranes are
strengthened.

ing images. There was not a DNN network probability map
available for this dataset. For this experiment the same pa-
rameters were used as in the Drosophila dataset but for 1400
iterations. The results for this dataset are shown in Figure 4
and Table 2.

Method Bin 1 Bin 2 Bin 3 Bin 4 Bin 5

MSANN 0.1626 0.2749 0.2419 0.2115 0.2716

MSANN
+PDE 0.1274 0.2226 0.2247 0.1482 0.2196

Table 2. 1 − F performance of the PDE on different bins of
probability maps using the mouse neuropil dataset.

4. DISCUSSION

Using a PDE we were able demonstrate an ability to close
small to medium sized gaps that remain after a supervised
learning process has performed initial segmentation of the im-
ages. When these types of gaps are prevalent there is a sig-
nificant improvement in the 1 − F of the result. If the gaps
are too large such as in bin 3 of the mouse neuropil dataset or
there are very few gaps to close such as with the DNN proba-
bility maps on the Drosophila dataset the improvement is not
as pronounced. Even in the case of no gaps to close, the 1−F
is not significantly negatively affected by the PDE. This deep
convolution example while quite good on it’s own, takes one
year to train without a GPU cluster [4] making a more effi-
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Fig. 4. Example of (a) original raw image from the mouse
neuropil dataset, (b) true label, (c) MSANN probability map,
and (d) results of MSANN + PDE processing. Small to
medium sized gaps still closed, but large gaps remain and
some oversegmentation is introduced.

cient alternative desireable. In each of these cases, there is
some amount of oversegmentation that results from the pro-
cessing. This tendency to create oversegmentations prevents
running the algorithm for sufficient iterations to close larger
gaps. Further improvement of this PDE process could include
an additional constraint that prevents oversegmentation or by
applying an additional process designed to improve the result
of an oversegmentation.
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